Processing and Maturation of Cathepsin C Zymogen: A Biochemical and Molecular Modeling Analysis - Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100 Accéder directement au contenu
Article Dans Une Revue International Journal of Molecular Sciences Année : 2019

Processing and Maturation of Cathepsin C Zymogen: A Biochemical and Molecular Modeling Analysis

Cezary Czaplewski
Adam Lesner

Résumé

Cysteine cathepsin C (CatC) is a ubiquitously expressed, lysosomal aminopeptidase involved in the activation of zymogens of immune-cell-associated serine proteinases (elastase, cathepsin G, proteinase 3, neutrophil serine proteinase 4, lymphocyte granzymes, and mast cell chymases). CatC is first synthetized as an inactive zymogen containing an intramolecular chain propeptide, the dimeric form of which is processed into the mature tetrameric form by proteolytic cleavages. A molecular modeling analysis of proCatC indicated that its propeptide displayed a similar fold to those of other lysosomal cysteine cathepsins, and could be involved in dimer formation. Our in vitro experiments revealed that human proCatC was processed and activated by CatF, CatK, and CatV in two consecutive steps of maturation, as reported for CatL and CatS previously. The unique positioning of the propeptide domains in the proCatC dimer complex allows this order of cleavages to be understood. The missense mutation Leu172Pro within the propeptide region associated with the Papillon–Lefèvre and Haim–Munk syndrome altered the proform stability as well as the maturation of the recombinant Leu172Pro proform.

Dates et versions

hal-03677258 , version 1 (24-05-2022)

Identifiants

Citer

Anne-Sophie Lamort, Yveline Hamon, Cezary Czaplewski, Artur Gieldon, Seda Seren, et al.. Processing and Maturation of Cathepsin C Zymogen: A Biochemical and Molecular Modeling Analysis. International Journal of Molecular Sciences, 2019, 20 (19), pp.4747. ⟨10.3390/ijms20194747⟩. ⟨hal-03677258⟩
41 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More