Communication Dans Un Congrès Année : 2024

Turning Low-Code Development Platforms into True No-Code with LLMs

Transformer les plates-formes de développement low-code en véritables plates-formes no-code grâce aux grands modèles de langue

Résumé

The relevance of low-code / no-code development has grown substantially in research and practice over the years to allow non- technical users to create applications and, therefore, democratise software development. One problem in this domain still persists: many platforms remain low-code as the underlying modeling layer still requires professionals to write/design a model, often using Domain Specific Languages (DSLs). With the rise of generative AI and Large Language Models (LLMs) and their capabilities, new possibilities emerge on how Low Code Development Platforms (LCDPs) can be improved. This paper shows how the capabilities of LLMs can be leveraged to turn DSL-based low-code platforms into true no-code. We an- alyzed how textual modeling can be replaced by generating the required model using LLMs. We conducted a user experiment to compare textual modeling with the use of LLMs for that task. Our results show that task completion time could be significantly im- proved, and the majority of users prefer using the LLM-aided mod- eling. Based on these findings, we discuss the integration of these techniques into an existing low-code platform to transform it into true no-code.
Fichier principal
Vignette du fichier
Turning_Low_Code_Development_Platforms_into_True_No_Code_preprint.pdf (1.44 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04730443 , version 1 (10-10-2024)

Licence

Identifiants

Citer

Nathan Hagel, Nicolas Hili, Didier Schwab. Turning Low-Code Development Platforms into True No-Code with LLMs. MODELS Companion ’24, Sep 2024, Linz (AUSTRIA), Austria. ⟨10.1145/3652620.3688334⟩. ⟨hal-04730443⟩
81 Consultations
79 Téléchargements

Altmetric

Partager

More