Loading...
The Physico-Chemistry of Materials and Electrolytes for Energy laboratory (PCM2E) was created in 2012 and works in the field of energy conversion and storage (batteries, supercapacitors, hybrid photovoltaics, ionic liquids), on nanostructured materials and organic electrochromic devices.
The overall project of the laboratory is built around skills in electrochemistry, thermodynamics and materials chemistry. The laboratory has three priority themes which are:
- Axis 1: Electrolytes, membranes and electrode materials for energy storage
- Axis 2: Organic semiconductors and nanostructured materials
- Axis 3: Ionic Liquids
Full Text57
|
Bibliographic references202
|
Open Access38 %
|
Keywords
Manganese oxide
Electrodes
Batteries
Lithium ion batteries
Heat transfer fluids
Catholyte
LiS batteries
Morphology
Cathode
Deep eutectic solvent
Statistical physics
Electrochemical performances
Protic ionic liquids
Electrolyte/electrode interface
Tensiometry
LiTFSI
Heat capacity
Cathodes
Nanoparticles
2-apyrimidines
Na-ion batteries
Electrochemistry
Li-ion batteries
Dynamic light scattering
Acetonitrile
Alkylcarbonates
Ionic liquid
SEI additives
Electrochemical storage
Safety
Transport properties
Isobaric heat capacity
Cryoetching
Carbon nanotubes
Electrochemical impedance spectroscopy
Viscosity
Nanocomposites
High voltage
Perovskite solar cells
Electrolyte
Adiponitrile
Electrochemical capacitors
Polypyrrole
Binary mixtures
CO2 capture
Capacitance
Adsorption isotherms
Micellar parameters
Lithium-ion batteries
Activated carbon
Chemical activation
Carbazole
Water
Cathode materials
Lithium compounds
Electrochemical polymerization
Thin films
Modeling
Conductimetry
Cyclic voltammetry
Lithium
Thermophysical properties
Ionic Liquids
N-methylacetamide
Deep eutectic solvents
Hole transporting material
Conducting polymers
Ionic liquids
Bistrifluoromethylsulfonylimide
Manganese
Lithium salt
High potential spinel
1-butyl-1-methylpyrrolidinium bistrifluoromethylsulfonylimide
Density functional theory
MnO2
Protic ionic liquid
Interface
Battery
SEI
Volumetric properties
Energy storage systems
Ionic Liquid
Propylene carbonate
Copolymerization
Gamma butyrolactone
Temperature
Negative electrode
Electrolytes
Rubber
Supercapacitor
Electrolyte additives
Supercapacitors
Thermal conductivity
Graphite
Group contribution model
Li-ion battery
Physical properties
2D ionic transport
Speed of sound
Latest publications
-
-
-
-
Refka El Oueslati, Badr Jismy, Benjamin Flamme, Nicolas Leclerc, Fouad Ghamouss, et al.. A redox-active porous polymer based on poly(imide-triazine) as a high-performance cathode for lithium-ion batteries. Journal of Materials Chemistry A, 2024, 12 (26), pp.15866-15873. ⟨10.1039/D4TA00221K⟩. ⟨hal-04735470⟩
-
Soukaina Hilali, Louise van Gheluwe, Mervé Yagmur, Laura Wils, Myriam Phelippe, et al.. NaDES-based biorefinery of Spirulina (Arthrospira platensis): A new path for sustainable high value-added metabolites. Separation and Purification Technology, 2024, 329, pp.125123. ⟨10.1016/j.seppur.2023.125123⟩. ⟨hal-04213157⟩
-
-
Shubhradip Guchait, Laurent Herrmann, Karim Kadri, Nicolas Leclerc, François Tran-Van, et al.. Impact of Regioregularity on Alignment and Thermoelectric Properties of Sequentially Doped and Oriented Films of Poly(3-hexylthiophene). ACS Applied Polymer Materials, 2023, 5 (7), pp.5676-5686. ⟨10.1021/acsapm.3c00972⟩. ⟨hal-04190233⟩
-
Bharath Dyaga, Antoine Lemaire, Shubhradip Guchait, Huiyan Zeng, Bruno Schmaltz, et al.. Impact of the dopant location in the semi-crystalline structure of alternated donor–acceptor copolymers on the polarity switching p → n mechanism. Journal of Materials Chemistry C, 2023, 11 (47), pp.16554-16562. ⟨10.1039/D3TC02416D⟩. ⟨hal-04602872⟩
-
-