Loading...
The Physico-Chemistry of Materials and Electrolytes for Energy laboratory (PCM2E) was created in 2012 and works in the field of energy conversion and storage (batteries, supercapacitors, hybrid photovoltaics, ionic liquids), on nanostructured materials and organic electrochromic devices.
The overall project of the laboratory is built around skills in electrochemistry, thermodynamics and materials chemistry. The laboratory has three priority themes which are:
- Axis 1: Electrolytes, membranes and electrode materials for energy storage
- Axis 2: Organic semiconductors and nanostructured materials
- Axis 3: Ionic Liquids
Full Text57
|
Bibliographic references202
|
Open Access38 %
|
Keywords
Interface
SEI
Binary mixtures
Propylene carbonate
Thermal conductivity
Isobaric heat capacity
Carbazole
Speed of sound
Chemical activation
Ionic liquid
Gamma butyrolactone
Supercapacitor
N-methylacetamide
Acetonitrile
Modeling
CO2 capture
Thin films
Electrochemistry
Rubber
Density functional theory
Lithium salt
2-apyrimidines
Bistrifluoromethylsulfonylimide
Volumetric properties
Deep eutectic solvents
Lithium
1-butyl-1-methylpyrrolidinium bistrifluoromethylsulfonylimide
Ionic Liquid
Tensiometry
Transport properties
Lithium ion batteries
Negative electrode
Heat transfer fluids
MnO2
Protic ionic liquid
Cyclic voltammetry
Deep eutectic solvent
Hole transporting material
Safety
Cathode
Physical properties
Statistical physics
Supercapacitors
SEI additives
Adiponitrile
Electrochemical storage
Battery
Manganese oxide
Copolymerization
Lithium-ion batteries
Cathode materials
2D ionic transport
Electrolytes
Conducting polymers
Lithium compounds
Capacitance
Catholyte
Ionic liquids
Conductimetry
Micellar parameters
Thermophysical properties
Electrodes
Energy storage systems
Nanoparticles
Carbon nanotubes
Manganese
Heat capacity
Adsorption isotherms
Electrolyte additives
Li-ion battery
Electrolyte/electrode interface
Morphology
Cryoetching
Electrochemical performances
Temperature
Cathodes
Electrochemical capacitors
LiS batteries
Water
LiTFSI
Perovskite solar cells
Activated carbon
Electrolyte
Nanocomposites
Electrochemical polymerization
High voltage
Viscosity
Graphite
Batteries
Polypyrrole
Ionic Liquids
Dynamic light scattering
Li-ion batteries
Electrochemical impedance spectroscopy
High potential spinel
Alkylcarbonates
Na-ion batteries
Protic ionic liquids
Group contribution model
Latest publications
-
-
-
-
Refka El Oueslati, Badr Jismy, Benjamin Flamme, Nicolas Leclerc, Fouad Ghamouss, et al.. A redox-active porous polymer based on poly(imide-triazine) as a high-performance cathode for lithium-ion batteries. Journal of Materials Chemistry A, 2024, 12 (26), pp.15866-15873. ⟨10.1039/D4TA00221K⟩. ⟨hal-04735470⟩
-
Soukaina Hilali, Louise van Gheluwe, Mervé Yagmur, Laura Wils, Myriam Phelippe, et al.. NaDES-based biorefinery of Spirulina (Arthrospira platensis): A new path for sustainable high value-added metabolites. Separation and Purification Technology, 2024, 329, pp.125123. ⟨10.1016/j.seppur.2023.125123⟩. ⟨hal-04213157⟩
-
-
-
Bharath Dyaga, Antoine Lemaire, Shubhradip Guchait, Huiyan Zeng, Bruno Schmaltz, et al.. Impact of the dopant location in the semi-crystalline structure of alternated donor–acceptor copolymers on the polarity switching p → n mechanism. Journal of Materials Chemistry C, 2023, 11 (47), pp.16554-16562. ⟨10.1039/D3TC02416D⟩. ⟨hal-04602872⟩
-
Shubhradip Guchait, Laurent Herrmann, Karim Kadri, Nicolas Leclerc, François Tran-Van, et al.. Impact of Regioregularity on Alignment and Thermoelectric Properties of Sequentially Doped and Oriented Films of Poly(3-hexylthiophene). ACS Applied Polymer Materials, 2023, 5 (7), pp.5676-5686. ⟨10.1021/acsapm.3c00972⟩. ⟨hal-04190233⟩
-