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Abstract. The motivation behind our work is to present a new methodology for
symbol recognition. The proposed method employs a structural approach for rep-
resenting visual associations in symbols and a statistical classifier for recognition.
We vectorize a graphic symbol, encode its topological and geometrical informa-
tion by an attributed relational graph and compute a signature from this structural
graph. We have addressed the sensitivity of structural representations to noise,
by using data adapted fuzzy intervals. The joint probability distribution of signa-
tures is encoded by a Bayesian network, which serves as a mechanism for pruning
irrelevant features and choosing a subset of interesting features from structural
signatures of underlying symbol set. The Bayesian network is deployed in a su-
pervised learning scenario for recognizing query symbols. The method has been
evaluated for robustness against degradations & deformations on pre-segmented
2D linear architectural & electronic symbols from GREC databases, and for its
recognition abilities on symbols with context noise i.e. cropped symbols.

Key words: symbol recognition, overlapping fuzzy interval, structural signature,
Bayesian network.

1 Introduction

Graphics recognition deals with graphic entities in document images and is a subfield of
document image analysis. These graphic entities could correspond to symbols, math-
ematical formulas, musical scores, silhouettes, logos etc., depending on the applica-
tion domain. Llados & Sanchez [1] have very correctly pointed out that the documents
from electronics, engineering, music, architecture and various other fields use domain-
dependent graphic notations which are based on particular alphabets of symbols. These
industries have a rich heritage of hand-drawn documents and because of high demands
of application domains, overtime symbol recognition is becoming core goal of auto-
matic image analysis and understanding systems. Hand-drawn based user interfaces,
backward conversion from raster images to CAD, content based retrieval from graphic
document databases and browsing of graphic documents are some of the typical ap-
plications of symbol recognition. Detailed discussion on the application domains of
symbol recognition has been provided by Chhabra [2] and Llados et al. [3].
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The research surveys by Chhabra [2], Llados et al. [3], Cordella & Vento [4] and
Tombre et al. [5] provide a detailed and state of the art historical review of work done
in the field of symbol recognition over last two decades. Graphic symbol recognition
is generally approached by syntactic, structural, statistical or hybrid methods of pattern
recognition. Syntactic approaches involve the use of grammars and syntactical parsing
[6] and are usually considered as a special case of structural approaches [3]. Structural
and statistical approaches are normally differentiated by the data structures that they
employ for pattern representation. Structural approaches use symbolic data structures
such as strings, trees and graphs, whereas, the statistical approaches are characterized
by the use of feature vectors for representing patterns [6].

Cordella & Vento [4] have provided a detailed listing of methods employing dif-
ferent structural, statistical or hybrid approaches for graphic symbol recognition. The
symbolic data structures are very powerful in their representational capabilities. How-
ever, the structural approaches lack in the availability of efficient tools for matching
and comparison [6]. On the other hand, the use of feature vectors by many statistical
approaches limits their representational capabilities but the availability of a much richer
repository of mathematical tools in statistical domain [6] and the associated computa-
tional advantages, makes them a more favorable choice in certain cases. The use of light
weight feature vectors and computationally powerful statistical classifiers allows to de-
sign fast and efficient systems which are sufficiently scalable and domain independent.

Several research works have been undertaken to combine structural and statistical
approaches, with the aim to utilize their strengths and avoid the weaknesses. Delalan-
dre et al. [7] employ a statistical technique for extracting the components (that compose
the symbol) and the loops formed by these components. Afterwards, they construct
graphs from these loops and deploy an inexact graph matching algorithm for recogni-
tion. Hse et al. [8] have used Zernike descriptor with various statistical classifiers for
sketched symbol recognition. Barrat et al. [9] have used various shape descriptors with
naive Bayes classifier for symbol recognition. Among the hybrid approaches, specially
over last decade, the vectorial signatures (also referred as structural signatures) (2.1)
have gained considerable attention [10]. The vectorial signatures encode the geometric
and topologic relations between elementary vectorial primitives. Many recognition and
spotting systems have been developed around these signatures [11,12,13,14,15,16].

The rest of paper is organized as follows: §2 gives a general description of our
method, §3 is devoted to detailed description of each part of the proposed system, ex-
perimental results are presented in §4 and the paper is concluded with some future
directions of work in §5.

2 The proposed method and related works

In this section we outline our proposed method and highlight its placement with past
works (that employ a similar methodology). The method is a hybrid of structural and
statistical pattern recognition approaches; we exploit representational power of struc-
tural approaches and employ computational efficiency of statistical classifiers.
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2.1 Vectorial signatures (or structural signatures)

Ventura & Schettini [17] were the first to introduce the concept of vectorial signa-
tures for symbol recognition, back in 1994. They extract thin and thick elementary
structures (in terms of geometric constraints between line primitives) from symbol, de-
scribe them by local features and create a signature for symbol. Finally, they deploy
a hypothesis-and-test paradigm for detecting occurrences of symbols in line drawings.
A recent overview of past works using structural signatures is given by Rusinol [10].
These works include [11,12,13,14,15]. Coustaty et al. [15] have applied structural sig-
nature for symbol recognition. They extract segments from the symbol in image by
Hough transform, describe their spatial organization by a topological graph and com-
pute a structural signature. They have deployed a Galois Lattice as classifier and have
shown the robustness of their method against high levels of degradation. Dosch et al.
[14] (originally proposed for symbol spotting) and its improvement by Rusinol et al.
[13] (for both recognition and spotting), work on a vectorial representation. They ex-
tract spatial relationships between pairs of segments and hierarchically organize them
into basic shapes. Their signature is comprised of the cardinalities of occurrences of
spatial relations between segments in a shape. Zhang et al. [12] work on a vectorial
representation, and use circle and arcs as well, in addition to line primitives. They de-
fine a structural signature in terms of relations between these primitives and employ a
brute force comparison for recognizing a query signature. Qureshi et al. [11] vector-
ize a graphic symbol, construct its Attributed Relational Graph (ARG) and compute
a structural signature for it (the G-Signature). For classification of query symbol they
use nearest neighbors rule with Euclidean distance as measure of dissimilarity. Their
G-Signature is discriminant in case of hand-drawn deformations and has been shown
invariant of rotation and scaling.

These works show the invariance of structural features to transformations and il-
lustrates their representational capabilities. However, we argue that the sensitivity of
structural signatures to noise (degradations & deformations) limits these systems to be
used for real-life applications, and to scale to large number of symbol models. In this
work, we propose to take structural signatures to the domain of fuzzy sets, to enable
them to cope with uncertainties, and extend our previous work [16], which in fact takes
forward the work of [11]. We have selected Bayesian networks for dealing with uncer-
tainty in symbol signatures during learning and recognition phases, and propose to use
(overlapping) fuzzy intervals instead of rigid boundaries [16] for features in signature.
Our motivation behind these choices are the previous works involving Bayesian frame-
work [18] and fuzzy sets [19], that have shown the significance of these methodologies
in improving robustness against uncertainties in data. We have increased the scalability
capabilities of structural signatures by employing uncertainty-management during sig-
nature design, learning and classification phases. The signature is given in Fig.2 and it
is discussed in §3.2.

2.2 Bayesian networks

Bayesian networks are probabilistic graphical models and are represented by their struc-
ture and parameters. Structure is given by a directed acyclic graph and it encodes the
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dependency relationships between domain variables whereas parameters of the network
are conditional probability distributions associated with (each of) its nodes. A Bayesian
network, like other probabilistic graphical models, encodes the joint probability distri-
bution of a set of random variables, and could be used to answer all possible inference
queries on these variables. A humble introduction to Bayesian networks is in [20,21].

Bayesian networks have already been applied successfully to a large number of
problems in machine learning and pattern recognition and are well known for their
power and potential of making valid predictions under uncertain situations. But in our
knowledge there are only a few methods which use Bayesian networks for graphic sym-
bol recognition. Recently Barrat et al. [9] have used the naive Bayes classifier in a ‘pure’
statistical manner for graphic symbol recognition. Their system uses three shape de-
scriptors: Generic Fourier Descriptor, Zernike descriptor & R-Signature 1D, and applies
dimensionality reduction for extracting the most relevant and discriminating features to
formulate a feature vector. This reduces the length of their feature vector and eventually
the number of variables (nodes) in Bayesian network. The naive Bayes classifier is a
powerful Bayesian classifier but it assumes a strong independence relationship among
attributes given the class variable. We believe that the power of Bayesian networks is
not fully explored; as instead of using predefined dependency relationships, if we find
dependencies between all variable pairs from underlying data we can obtain a more
powerful Bayesian network classifier. This will also help to ignore irrelevant variables
and exploit the variables that are interesting for discriminating symbols in underlying
symbol set (§3.3 and §3.4).

2.3 Originality of our approach

Our method is an original adaptation of Bayesian network learning for the problem
of graphic symbol recognition. For symbol representation, we use a structural signa-
ture. The signature is computed from the ARG of symbol and is composed of geomet-
ric & topologic characteristics of the structure of symbol. We use (overlapping) fuzzy
intervals for computing noise sensitive features in signature. This increases the abil-
ity of our signature to resist against irregularities [19] that may be introduced in the
shape of symbol by deformations & degradations. For symbol recognition, we employ
a Bayesian network. This network is learned from underlying training data by using the
quite recently proposed genetic algorithms by Delaplace et al. [22]. A query symbol is
classified by using Bayesian probabilistic inference (on encoded joint probability dis-
tribution). We have selected the features in signature very carefully to best suit them to
linear graphic symbols and to restrict their number to minimum; as Bayesian network
algorithms are known to perform better for a smaller number of nodes. Our structural
signature makes the proposed system robust & independent of application domains and
it could be used for all types of 2D linear graphic symbols. Also, relatively basic com-
putations are involved for recognizing a query symbol which enables our system to
respond in real time and it could be used, for instance, as a preprocessing step of a
traditional symbol recognition method or for indexation & browsing of graphic docu-
ments.
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3 Detailed description

In this section we describe the representation, description, learning and classification
phases of our system. These phases have been outlined by Cordella & Vento [4] in
their research survey on symbol recognition. The authors have remarked that almost
all graphics recognition systems could be looked upon as operating in representation,
description and classification phases.

3.1 Representation phase

This important & basic phase of our system concerns the formation of an Attributed
Relational Graph (ARG) data structure, as proposed by Qureshi et al. [11], and is sum-
marized in Fig.1. The topological and geometric details about structure of symbol are
extracted and are represented by an ARG. In first step, the symbol is vectorized and
is represented by a set of primitives (labels 1, 2, 3, 4 in Fig.1). In next step, these
primitives become nodes and topological relations between them become arcs in ARG.
Nodes have ‘relative length’ (normalized between 0 and 1) and ‘primitive-type’ (Vec-
tor for filled regions of shape and Quadrilateral for thin regions) as attributes; whereas
arcs of the graph have ‘connection-type’ (L, X, T, P, S) and ‘relative angle’ (normalized
between 0◦ and 90◦) as attributes.

Fig. 1. The representation phase.

3.2 Description phase (fuzziness of signature)

This phase concerns the extraction of features and computation of structural signature,
from ARG of an underlying symbol. In order to increase the robustness of our signature
and to enable it to resist the irregularities & uncertainties introduced in shape of symbol
as result of noise (degradations & deformations), we introduce (overlapping) fuzzy
intervals to our previous work [16]. Fig.2 presents our proposed structural signature for
a symbol. Our motivation behind choosing structural features is to exploit their ability
to identify symbols in context [13].

Group-1 & Group-2 (of features in structural signature) encode the size of symbol
and arrangement of its primitive components, respectively. These features discriminate
between symbols of different sizes and also between symbols of same size but with
a different arrangement of primitives. Group-3 encodes the density of connections for
nodes. This group discriminates between symbols that have similar number of primi-
tives with a similar arrangement but different density of connections at nodes. Group-4
& Group-5 exploits the attributes of primitives and encodes details of length & angle



6 MM. Luqman, M. Delalandre, T. Brouard, JY. Ramel & J. Lladós

Fig. 2. Structural signature for graphic symbol.

attributes. These groups complement the criteria (of Groups-1, Group-2 & Group-3) for
outlining boundaries, between symbol classes, in feature space.

The computation of features in Group-1 & Group-2 is straightforward and is achieved
by counting the relevant information in ARG of graphic symbol. For features in Group-
3, we first compute a list of connection-density counts of all nodes of all ARG of sym-
bols in underlying symbol set. And then use this list of connection-density counts for
finding connection-density intervals for computing feature in Group-3 of structural sig-
nature. We use a histogram based binning technique from [23] for this purpose. The
technique is originally proposed for discretization of continuous data and is based on
use of Akaike Information Criterion (AIC) [24]. It starts with an initial m-bin histogram
of data and finds optimal number of bins for underlying data. Two adjacent bins are
merged by using an AIC-based cost function as criterion; until the difference between
AIC-before-merge and AIC-after-merge becomes negative. We arrange these bins in
overlapping fashion (fuzzy approach) and use them as intervals for computing number
of nodes lying in different connection-density intervals. This gives us a distribution of
nodes in structural ARG with low, medium and high density of connections, which we
use as features of our signature.

Group-4 (and Group-5) is computed by dividing relative length (and relative angle)
in three overlapping intervals, as shown in Fig.3 (and Fig.4). The overlapping intervals
(fuzzy approach) handle the irregularities caused by distortions and degradations, and
ensure that these irregularities do not affect the signature.

Fig. 3. Intervals for computing
number of small, medium and full
length primitives.

Fig. 4. Intervals for computing
number of small, medium and full
angle connections.
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3.3 Learning phase

After representing the symbols in learning set by ARG and describing them by struc-
tural signatures, we proceed to learning of a Bayesian network. The signatures are first
discretized [23]. We discretize each feature variable (of signature) separately and inde-
pendently of others. The class labels are chosen intelligently in order to avoid the need
of any discretization for them. The discretization of ‘number of nodes’ and ‘number of
arcs’ achieves a comparison of similarity of symbols (instead of strict comparison of
exact feature values). This discretization step also ensures that the features in signature
of query symbol will look for symbols whose number of nodes and arcs lie in same
intervals as that of the query symbol.

The Bayesian network is learned in two steps. First we learn the structure of the
network by genetic algorithms proposed by Delaplace et al. [22]. These are evolution-
ary algorithms, but in our case they have provided stable results (for a given dataset
multiple invocations always returned identical network structures). Each feature in sig-
nature becomes a node of network. The goal of structure learning stage is to find the
best network structure from underlying data which contains all possible dependency re-
lationships between all variable pairs. The structure of the learned network depicts the
dependency relationships between different features in signature. Fig.5 shows one of
the learned structures from our experiments. The second step is learning of parameters
of network; which are conditional probability distributions Pr(nodei|parentsi) associ-
ated to nodes of the network and which quantify the dependency relationships between
nodes. The network parameters are obtained by maximum likelihood estimation (MLE);
which is a robust parameter estimation technique and assigns the most likely parameter
values to best describe a given distribution of data. We avoid null probabilities by us-
ing Dirichlet priors with MLE. The learned Bayesian network encodes joint probability
distribution of the symbol signatures.

Fig. 5. A Bayesian network structure after learning; each node corresponds to a feature
variable.

The conditional independence property of Bayesian networks helps us to ignore
irrelevant features in structural signature for an underlying symbol set. This property
states that a node is conditionally independent of its non-descendants given its imme-
diate parents [20]. Conditional independence of a node in Bayesian network is fully
exploited during probabilistic inference (see §3.4) and thus helps us to ignore irrele-
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vant features for an underlying symbol set while computing posterior probabilities for
different symbol classes (see §3.4).

3.4 Classification phase (graphic symbol recognition)

For recognizing a query symbol we use Bayesian probabilistic inference on the encoded
joint probability distribution. This is achieved by using junction tree inference engine
which is the most popular exact inference engine for Bayesian probabilistic inference
and is implemented in [23]. The inference engine propagates the evidence (signature
of query symbol) in network and computes posterior probability for each symbol class.
Equation 1 gives Bayes rule for our system. It states that posterior probability or prob-
ability of a symbol class ci given a query signature ‘evidence e’ is computed from
likelihood (probability of e given ci), prior probability of ci and marginal likelihood
(prior probability of e). The marginal likelihood (Equation 3) is to normalize the pos-
terior probability; it ensures that the probabilities fall between 0 and 1.

Pr(ci|e) =
Pr(e, ci)

Pr(e)
=

Pr(e|ci)× Pr(ci)

Pr(e)
(1)

where,

e = f1, f2, f3, ..., f16 (2)

Pr(e) =

k∑
i=1

Pr(e, ci) =

k∑
i=1

Pr(e|ci)× Pr(ci) (3)

The posterior probabilities are computed for all ‘ k’ symbol classes and the query
symbol is then assigned to class which maximizes the posterior probability i.e. which
has highest posterior probability for the given query symbol.

4 Experimentation

The organization of four international symbol recognition contests over last decade
[25,26,27,28], has provided our community an important test bed for evaluation of
methods over a standard dataset. These contests were organized to evaluate and test the
symbol recognition methods for their scalability and robustness against binary degra-
dation and vectorial deformations. The contests were run on pre-segmented linear sym-
bols from architectural and electronic drawings, as these symbols are representative of a
wide range of shapes [26]. GREC2005 [27] & GREC2007 [28] databases are composed
of the same set of models, whereas GREC2003 [26] database is a subset of GREC2005.

4.1 Symbols with vectorial and binary noise

We experimented with synthetically generated 2D symbols of models collected from
database of GREC2005 [27,31]. In order to get a true picture of the performance of our
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Model Level-1 Level-2 Level-3

Fig. 6. Model symbol with deformations; used for simulat-

ing hand-drawn symbols and applied using an application from

project Epeires [27].

Model GREC’05 Degrade-1

Fig. 7. Model symbol with degraded exam-

ple; used to simulate photocopying / printing /

scanning and applied using ImageMagick [29] &

QGar package [30].

proposed method on this database, we have experimented with 20, 50, 75, 100, 125 &
150 symbol classes. We generated our own learning & test sets (based on deformations
& degradations of GREC2005) for our experiments. For each class the perfect symbol
(the model) along with its 36 rotated and 12 scaled examples was used for learning;
as the features have already been shown invariant to scaling & rotation [11,16] and
because of the fact that generally Bayesian network learning algorithms perform better
on datasets with large number of examples. The system has been tested for its scalability
on clean symbols (rotated & scaled), various levels of vectorial deformations and for
binary degradations of GREC symbol recognition contest (Fig.6 and Fig.7). Each test
dataset was composed of 10 query symbols for each class.

Table 1. Results of symbol recognition experiments.

Number of classes (models) 20 50 75 100 125 150
Clean symbols (rotated & scaled) 100% 100% 100% 100% 100% 99%

Hand-drawn deformation
Level-1 99% 96% 93% 92% 90% 89%
Level-2 98% 95% 92% 90% 89% 87%
Level-3 95% 77% 73% 70% 69% 67%

Binary degrade 98% 96% 93% 92% 89% 89%

Table 1 summarizes the experimental results. A 100% recognition rate for clean
symbols illustrates the invariance of our method to rotation & scaling. Our method out-
performs all GREC participants (available results from GREC2003 [26] and GREC2005
[27] competetions) in scalability tests and is comparable to contest participants for low
levels of deformation & degradations. The recognition rates decrease with level of de-
formation and drop drastically for high binary degradations. This is an expected be-
haviour and is a result of the irregularities produced in symbol signature; which is a
direct outcome of the noise sensitivity of vectorization step, as also pointed out by [3].
We used only clean symbols for learning and (thus) the recognition rates truely illus-
trate the robustness of our system against vectorial and binary noise. Fig.8 compares
our results with [11] (The system proposed in [11] presents recognition rates only for
20 models).

4.2 Symbols with contextual noise

A second set of experimentation was performed on a synthetically generated corpus, of
symbols cropped from complete documents [32]. These experiments focused on eval-
uating the robustness of the proposed system against context noise i.e. the structural
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Fig. 8. Comparison of recognition rates.

noise introduced in symbols when they are cropped from documents. We believe that
this type of noise gets very important when we are dealing with symbols in context in
complete documents and to the best of our knowledge; no results have yet been pub-
lished for this type of noise. We have performed these experiments on two subsets of
symbols: consisting of 16 models from floor plans and 21 models from electronic di-
agrams. The models are derived from GREC2005 database [27,31] and are given in
Fig.9 and Fig.10. For each class the perfect symbol (model), along with its 36 rotated
and 12 scaled examples was used for learning. The examples of models, for learning,
were generated using ImageMagick [29] and the test sets were generated synthetically
[32] with different levels of context-noise (Fig.11) in order to simulate the cropping of
symbols from documents. Test symbols were randomly rotated & scaled and multiple
query symbols were included for each class. The test datasets are available at [33].

Fig. 9. Model symbols from electronic drawings. Fig. 10. Model symbols from floor

plans.

Model = Level-1 = = Level-2 = = Level-3 =

Fig. 11. An arm chair with different levels of context noise.

Table 2 summarizes the results of experiments for context noise. We have not used
any sophisticated de-noising or pretreatment and our method derives its ability to re-
sist against context noise, directly from underlying vectorization technique, the fuzzy
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approach used for computing structural signature and the capabilities of Bayesian net-
works to cope with uncertainties. The models for electronic diagrams contain symbols
consisting of complex arrangement of lines & arcs, which affects the features in struc-
tural signature as the employed vectorization technique is not able to cope with arcs &
circles; as is depicted by the recognition rates for these symbols. But keeping in view
the fact that we have used only clean symbols for learning and noisy symbols for test-
ing, we believe that the results show the ability of our signature to exploit the sufficient
structural details of symbols and it could be used to discriminate and recognize symbols
with context noise.

Table 2. Results of symbol recognition experiments for context noise.

Noise
Model
symbol
(classes)

Query symbol
(each class)

Recognition rate

(match with

topmost result)

Recognition rate

(a match in

top-3 results)

Floor plans
Level-1 16 100 84% 95 %
Level-2 16 100 79% 90 %
Level-3 16 100 76% 87 %

Average recog. rate 80% 91%

Electronic diagrams
Level-1 21 100 69% 89%
Level-2 21 100 66% 88%
Level-3 21 100 61% 85%

Average recog. rate 65% 87%

5 Conclusion

Structural methods are the strongest methods for graphics representation and statistical classifiers
provide efficient recognition techniques. By designing a mechanism to convert a structural rep-
resentation to feature vector, the whole range of statistical tools (classifiers) are opened for that
structural representation. First, we have presented an overlapping fuzzy interval based methodol-
ogy to convert an ARG based representation of graphic symbol to a feature vector. Our signature
exploits the structural details of symbols. And second, an original adaptation of Bayesian network
learning for the problem of graphic symbol recognition, has been presented. We represent sym-
bols by signatures and encode their joint probability distribution by a Bayesian network. We then
use Bayesian probabilistic inference on this network to classify query symbols. Experimental
results show an improvement in recognition rates and scalability of the old system.

Our system does not use any sophisticated de-noising or pretreatment and it drives its power
to resist against deformations and degradations, directly from representation, description, learning
and classification phases. We have addressed the issue of sensitivity of structural representations
to noise and deformations; by introducing overlapping fuzzy intervals for computing structural
signature. The features in signature are affected by the small quadrilaterals that are produced
during vectorization (in case of noisy symbols), which produce irregularities in signature. The
use of fuzzy approach for computing structural signature and probabilistic inference of Bayesian
networks gives our system a certain level of resistance against these irregularities.

We believe that the recognition rates will be improved for real learning sets which include
deformed and degraded examples as well. The system is extensible to new models. The signature
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is invariant to rotation & scaling and robust against deformations & degradations. It is adapted to
underlying symbol set and has a resistance against context noise. The proposed system has the
capability to generate its learning set from models and could be used for 2D linear symbols from
a wide range of application domains. The use of lightweight signature and statistical classifier
makes our method efficient (could be used for real time queries) and scalable to a large number
of symbol classes. In future we plan to use this method, as quick graphic symbol discrimination
technique, for designing a system for symbol spotting and indexation of line drawing documents.
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