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ABSTRACT: This study relates to a project that aims to develop a specific numerical tool to simulate the
behavior of elastomeric bearings or laminated devices used in helicopter rotors. In these applications, the elas-
tomeric material can be filler-reinforced synthetic rubber or natural rubber. In normal flight conditions, such
structures are submitted to multi-axial, multi-frequencies and multi-amplitudes loadings. Furthermore, the de-
sign of these parts has to take into account of a large range of temperatures (−40oC to 70oC).
Here, characterization tests carried out on a carbon-black filled butadiene rubber are presented. The expremental
campaign comprises static and dynamic tests at various controlled temperatures on uniaxial (tension, compres-
sion, simple shear and torsion) or multiaxial specimens (tension-torsion). The aim of this characterization is to
determine the dynamical stabilized behavior (de-Mullinsized). As expected, the material exhibits a non-linear
viscoelastic behavior. The Payne effect and the frequency dependency are observed in a range of amplitudes
and frequencies corresponding to flight conditions. Multi-step relaxation tests show that the dissipation is not
fully viscoelastic and that other dissipative phenomena take place in the material.
To model the material behavior, we investigate the reliability of three material models to predict uni- and multi-
axial stabilized dynamic behavior. These models are all based on the thermodynamics of irreversible processes
at finite strain. The first one is based on a statistical rheological approach and is mainly an extension of the
model developed by Martinez et al. (Martinez, Boukamel, Méo, & Lejeunes 2011). The second one is purely
phenomenological: scalar internal variables associated with time-dependent effects are introduced and com-
bined with a Zener model. The last one is the Linder et al. model (Linder, Tkachuk, & Miehe 2011).

1 INTRODUCTION

For years, elastomers are widely used in industry.
Their microstructure confers on them a dissipative
behavior and a high deformability. These properties,
amongst others, make these materials an appropriate
candidate for many industrial applications. This study
focuses particularly on elastomeric bearings and lami-
nated devices used in helicopter rotors. For safety rea-
sons, those parts are supposed to support extreme op-
erating conditions, in terms of temperatures and load-
ings. Thus, to meet the specifications, their mechani-
cal behavior must be well known when they are sub-
mitted to dynamic loading, with several frequencies,
large amplitudes, on a wide range of temperatures.

To model the visco-elastic behavior of rubber-like
materials, several approaches can be used:

• Models with integral formulation consider stress
as a function of strain history (e.g. (Coleman &
Noll 1961)).

• Micro-physically motivated models are based on
interactions between the fillers and the matrix
(e.g. (Miehe & Göktepe 2005)).

• Differential formulations use the concept of in-
termediate states (e.g. (Méo 2000)).

Hereafter, we choose a differential formulation to
describe the material response to large strains and
to several frequencies. The Payne effect and the fre-
quency dependency are taken into account by the in-
troduction of internal variables integrated in a model
which is analoguous to a rheological assembly with
several dissipative branches.



In this paper, some results of the characterization
campaign are presented. Amplitude- and frequency-
dependency are especially highlighted in both axial
and shear loadings. Step-relaxation tests are also car-
ried out to exhibit the static behavior of the material.

Then, we propose a new model, based on the ther-
modynamics of irreversible processes, to describe the
material response. Last, the reliability of this model
and two other ones issued from literature, is investi-
gated by comparition with expermiental tests.

2 EXPERIMENTAL OBSERVATIONS

2.1 Tests description

In accordance with our industrial applications, we aim
to characterize the multi-axial, dynamical, stabilised
behavior of a carbon-black filled Butadiene Rubber
in a frequency range from 0 to 30Hz, and for strain
amplitudes up to 100%. In order to do this, we car-
ried out an experimental campaign on double-shear,
H2 and diabolo specimens. These specimens are con-
sistently softened before each test in order to elimi-
nate the Mullins effect, that is not to be taken into ac-
count in our modeling. In details, this campaign relies
on the following tests:

• Relaxation tests and step-relaxation tests.

• Quasi-static tests (ie at low strain rate).

• Cyclic tests at several amplitudes and several fre-
quencies, with or without pre-strain.

• Physical chemistry characterization (DMA and
DSC).

Moreover, these tests were carried out in a climate
chamber at several temperatures (−40oC and 70oC).

2.2 Experimental results

The Fig.1 shows us that the viscoelastic response of
the material significantly depends on the strain am-
plitude. Indeed, the relaxation stress is higher for low
strain levels. Moreover, the dissipative behavior of the
material is mainly viscoelastic: in the Fig.2 and Fig.3,
the relaxation stress in the loading phase and in the
unloading phase are almost identical for a given de-
formation level. By joining those relaxed stress, the
hyper-elastic behavior can be defined. This behavior
represents the static response of the material. In these
graphs, we exploit the relaxation stress in the unload-
ing phase: in a visco-plastic case, the plastic stress is
thereby eliminated. We obtain a rubber-like typical
hyper-elastic behavior. The material presents a soft-
ening response for small strain amplitudes and then
stiffer for larger amplitudes.

In this study, we focuses on the influence of strain
amplitude and frequency on the stiffness and on the
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Figure 1: Normalized relaxation tests at several strain levels
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Figure 2: Step-relaxation in the case of tensile load
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Figure 3: Step-relaxation in the case of shear load

dissipation. We define the stiffness as the slope of
the straight line throught the hysteresis extrema, and
we assume that the hysteresis area is directly asso-
ciated to the dissipation per cycle. The curves Fig.4
represents these dependencies. The stiffness and the
dissipation per cycle sligtly increase with frequency,
but the Payne effect is much more pronounced in our
strain range.

Lots of models and approaches can be found in the
literature to describe visco-elastic behaviors with fre-
quency dependencies, that give good correlations with
experimental results (see e.g. (Höfer & Lion 2009)
and (Miehe & Göktepe 2005)). However, amplitude-
dependent behavior at large strains is more rarely
taken into account (see (Martinez 2005)) because this
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(a) Effect of frequency on dynamic stiffness
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(b) Effect of amplitude on dynamic stiffness
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(c) Effect of frequency on dissipation
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(d) Effect of amplitude on dissipation

Figure 4: Effects of frequency and strain amplitude on dynamic stiffness and dissipation during a cycle

reversible effect is not naturally integrated into clas-
sical models. As far as we know, there is no visco-
hyper-elastic approach describing the effects of both
frequency and large amplitudes, and valid for multi-
axial loadings.

3 CONSTITUTIVE EQUATIONS

3.1 Thermodynamical setting

As we consider the material as quasi-incompressible,
the transformation gradient tensor F can be split into
a volumic part and an isochoric part:

F = (J1/3
Id).F̄ (1)

Where Id is the second-order identity tensor.

Furthermore, by using the concept of intermediate
state (see (Sidoroff 1974) and (Sidoroff 1975)), the
isochoric part of the transformation gradient tensor is
decomposed in an elastic part and a viscous part:

F̄ = F̄e.F̄v (2)

Let σ be the Cauchy stress tensor, D the eulerian
strain rate tensor and J the determinant of F. Neglict-
ing the thermal effects, we assume that in the eulierian
configuration, the Clausius-Duhem inequality can be
written as follows:

φ = σ : D − ρ0J
−1ψ̇ ≥ 0 (3)

Where φ is the intrinsic dissipation, ρ0 is the den-
sity in the initial configuration.

Then, we choose to express the specific free energy
as the sum:

ψ(B̄, B̄e, ω, J) = ψiso0 (B̄) +ψisov (B̄e, ω)+ψvol(J) (4)

B̄ = F̄.F̄T and B̄e = F̄e.F̄
T
e are the isochoric left

Cauchy-Green tensor and the elastic isochoric left
Cauchy-Green tensor, respectively. ω ∈ [0,1] is an in-
ternal variable representing the breakdowns between
the filler agglomerates and the polymer matrix. This
phenomenom is at the origin of the Payne effect. It is
a reversible process so that the filler-chain links can
reform (see (Heinrich & Klüppel 2002)). However,
in the following, the reversible aspect won’t be taken
into account.



We can therefore write ψ̇ as:

ψ̇(B̄, B̄e, J) =
∂ψiso0 (B̄)

∂B̄
: ˙̄B +

∂ψisov (B̄e, ω)

∂B̄e

: ˙̄Be

+
∂ψisov (B̄e, ω)

∂ω
ω̇ +

∂ψvol(J)

∂J
J̇

(5)

With:
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Tr(D)B̄

˙̄
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3
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o
v.V̄e

J̇ = JTr(D)

(6)

Where D̄
o
v =

1

2
Re.

(

˙̄
Fv.F̄

−1
v + F̄

−T
v . ˙̄FTv

)

.RT
e is an

objective mesure of the isochoric viscous deformation
rate and V̄e is a isochoric pure deformation tensor.

Let’s assume that each term of the intrinsic dissipa-
tion (3) are independently positive, which is a usual
assumption to ensure the Clausius-Duhem inequality
to be verified. Moreover, making the hypothesis that
each thermodynamical force obey a normality prin-
ciple with respect to a dissipation potential ϕv(D̄

o
v),

equations (5), (6) and (3) are combined to obtain the
following constitutive equation and evolution law:
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(7)

With:


















σ0 = 2ρ0J
−1

[

B̄.
∂ψiso0 (B̄)

∂B̄

]D

σv = 2ρ0J
−1

[

B̄e.
∂ψisov (B̄e, ω)

∂B̄e

]D (8)

The equation (7) can be seen as a rheologic analogy
with a unique dissipative branch. This corresponds to
the Zener model described in Fig.5.

3.2 Behavior law setting-up: the various potentials

The expression chosen for ψiso0 (B̄) is the form given
in (Gornet, Macrkmann, Desmorat, & Charrier 2012):

ψiso0 (I1(B̄), I2(B̄)) = c1
∫

e

[

c3(I1(B̄)−3)
2
]

dI1

+3c2
∫ 1
√

I2(B̄)
dI2

(9)

ϕv

ψ0

ψv

F̄

F̄v F̄e

Figure 5: Zener model

Where I1(B̄) and I2(B̄) are the first and the second
invariants of B̄, respectively, and c1, c2 and c3 are ma-
terial parameters.

Concerning the dissipative branch, a neo-hookean
form is chosen for ψisov (B̄e, ω), with the coefficient
G(ω) varying linearly with ω. We choose a quadratic
form for the pseudo-potential of viscous dissipation
ϕv(D̄

o
v). These potential can be written as follows:























ψisov (B̄e, ω) = G(ω)(I1(B̄e)− 3)

with G(ω) = G0ω

ϕv(D̄
o
v) =

η

2
D̄
o
v : D̄

o
v

(10)

To define the evolution law for ω(t), we must keep
in mind that the inequality (7c) must be verified. Not-

ing that the equation (10a) makes
∂ψisov (B̄e, ω)

∂ω
be al-

ways positive, ω̇ necessarily needs to be negative. We
choose:

ω̇ =
1

h

((

3

I1(B̄)

)r

− ω

)〈

ω −

(

3

I1(B̄)

)r〉

(11)

With 〈.〉 is the positive part function, h is a character-
istic time and r is a parameter.

At last, the volumic part of the free energy is chosen
to be written as follows:

ψvol(J) = k (J − 1)2 (12)

Where k is a constant similar to a compressibility
modulus.

4 RESULTS AND DISCUSSION

4.1 Identification of the model parameters

According to the experimental observations, we want
to take into account time-dependent phenomena asso-
ciated with several characteristic times hi. Thus, we
extend the previous model to a case with n viscous
branches, so that the viscous free energy becomes:

ψisov (B̄e, ωi) =

n
∑

i=1

Gi(ωi)(I1(B̄e)− 3) (13)
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Figure 6: Identification of the elastic part of the free energy

With:

Gi(ωi) = Giωi (14)

For each ωi, the evolution law is:

ω̇i =
1

hi

((

3

I1(B̄)

)ri

− ωi

)〈

ωi−

(

3

I1(B̄)

)ri〉

(15)

In order to identify the parameters of the model, we
minimize the error function between the tests and the
model. To do so, we use a numerical non-linear global
optimization based on an genetic algorithm proposed
in Mathematica.

We proceed in two steps:

1. Identification of the coefficients of the elastic
part of the free energy, using the step-relaxation
tests, in shear load and traction load simultane-
ously

2. Identification of the coefficients of the viscous
part of the free energy, using traction relaxation
tests and cyclic shear tests at 3 frequencies and 3
amplitudes.

The results of the identification of the elastic branch
of the model and the relaxation end points in shear
and tensile load are presented Fig.6. The model de-
scribes the non-linearities for the two loading modes.

Before identifying the viscous part, we have cho-
sen to set 5 dissipative branches with 5 characteristic

times defined as τi =
2η

Giωi
distributed according to a

logarithmic scale (0.01s; 0.1s; 1s; 10s and 100s). The
Fig.7 presents some results of the identification of the
viscous branches. We can note that the model prop-
erly describes the softening behavior when amplitude
increases.

4.2 Discussion

We now compare our model (called ”Zener with
Payne”) with the models described in (Linder,
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Figure 7: Stabilized cycle on a shear test at 3Hz and two ampli-
tudes (25% and 100%)
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Figure 8: Effect of the amplitude on the stiffness for the different
models and comparison with experiments

Tkachuk, & Miehe 2011) and in (Martinez,
Boukamel, Méo, & Lejeunes 2011). The graphs
Fig.7 and Fig.8 exhibit the Payne effect. Neither
the Martinez model nor the Linder model presents
an amplitude dependence. Our model correctly
predict the fact that the stiffness decreases with high
amplitudes whatever is the frequency. However, the
stiffness remains quite underestimated at the lowest
amplitudes.

Futhermore, the ”Zener with Payne” model and the
Linder model seem to be somehow equivalent with
one another concerning the frequency-dependence of
the dissipation, as shown in Fig.9. But, only our
model presents the right monotony of this depen-
dence.

If we simulate a traction test with the three mod-
els, we can see Fig.10 that our model and the Lin-
der model present a stiffness very closed to the
experiment, the third model (not represented) is
not appropriate in this loading case. Moreover, our
model slightly underestimates the dissipation per cy-
cle whereas the Linder model too much dissipative.

5 CONCLUSION

In this study, a phenomenological model is presented.
This is a multi-branch generalization of the Zener
model in which internal variables have been included.
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Figure 10: Stabilized cycle on a traction test at 3Hz (pre-
deformation: 25% ; amplitude: 25%)

Those internal variables represent time-dependent ef-
fects at the origin of the Payne effect.

The model is wanted to reproduce the influence of
the frequency and the strain amplitude on the stiff-
ness and the dissipation. Moreover, it must be valid
for multi-axial loadings. The model is though identi-
fied on static and cyclic tests in both shear and trac-
tion.

The identified model is then compared with two
other models: the first one is the model developped
in (Martinez, Boukamel, Méo, & Lejeunes 2011), the
second one is the Linder model. The Martinez model,
developped to model a silicone elastomer behavior,
seem not to be suitable to describe all the phenomena
experimentally observed on our material. The Linder
model neither can match all the effects we want to
take into account, and more specifically the Payne ef-
fect.

Moreover, the model presented in this paper has the
advantage to include only scalar internal variables,
contrary to the Linder model in which the internal
variables are second-order tensors. In a computational
point of view, this can constitute a non negligible gain.

The results show that the model properly repro-
duces the several phenomena observed in the range
of frequencies and amplitudes eligible for our appli-
cations. Now it must be validated for multi-axial load-
ings. Tests will be carried out on a laminated device
submitted to a combination of shear and compression

load. In addition, the model will be extended to a wide
range of temperature.
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Heinrich, G. & M. Klüppel (2002). Recent advances in the the-
ory of filler networking in elastomers. Advances in Polymer
Science 160, 1–44.
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