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Abstract The wave finite element (WFE) method is inves-1 Introduction

tigated to describe the harmonic forced response of one-

dimensional periodic structures like those composed ofconPredicting the frequency behavior of one-dimensional pe-
plex substructures and encountered in engineering applicaiodic structures, by means of efficient and fast numerical
tions. The dynamic behavior of these periodic structures itools, is an open industrial challenge. Popular examples of
analyzed over wide frequency bands where complex spdhose structures are aircraft fuselages, consisting df-cyl
tial dynamics, inside the substructures, are likely to occu drical panels with a periodic distribution of stiffeners, o
Within the WFE framework, the dynamic behavior of pe- parts of chassis frames with a periodic inclusion of holes.
riodic structures is described in terms of numerical wavdJsually, the number of degrees of freedom (DOFs) used
modes. Their computation follows from the considerationto model each substructure — i.e., each periodic cell —
of the finite element model of a substructure that involvess large, which makes the conventional finite element (FE)
a large number of internal degrees of freedom. Some rulemethod time consuming to assess the dynamic behavior of a
of thumb of the WFE method are highlighted and discusse@hole periodic structure. This issue is addressed hererwith
to circumvent numerical issues like ill-conditioning amd i  the framework of the wave finite element (WFE) method.
stabilities. It is shown for instance that an exact anahgic Originally, the WFE method has been initiated to de-
lation needs to be considered to enforce the coherence bseribe the wave propagation along one-dimensional periodi
tween positive-going and negative-going wave modes. Bewaveguides, i.e. systems that are composed of identical sub
sides, a strategy is proposed to interpolate the frequenicy rstructures along one main direction [12,23,6,9]. For any
sponse functions of periodic structures at a reduced numberaveguide, numerical wave modes are calculated by solving
of discrete frequencies. This strategy is proposed to ¢acklan eigenproblem which follows from the consideration of
the problem of large CPU times involved when the wavethe FE model of one substructure. The wave modes are to be
modes are to be computed many times. An error indicator ianderstood as particular solutions of the displacementiom
formulated which provides a good estimation of the level ofand force/moment fields, at the interfaces between substruc
accuracy of the interpolated solutions at intermediatatsoi tures, which travel from substructure to substructure glon
Adaptive refinement is carried out to ensure that this errothe waveguide. In fact, there are twice as many wave modes
indicator remains below a certain tolerance threshold. Nuas the number of DOFs used to discretize each substructure
merical experiments highlight the relevance of the progoseboundary. Increasing that number of DOFs makes the WFE
approaches. method efficient to assess the complex wave motions occur-
ring as the frequency grows.

Previous works made on the WFE topic have been car-
ried out to assess the guided wave propagation along straigh
elastic waveguides [23,15], fluid-filled pipes [16,11] and

: truss beams [20]. Besides, the WFE method has been ap-
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which has been applied to describe the guided wave prop@mated solutions, exceeds a specified tolerance threshold a
gation along elastic and elasto-acoustic straight wawksgui any intermediate point. The issue here can be viewed as for-
[5,17]. In [8], a so-called reduced Bloch mode expansiormulating an error indicator, given that the true error is not
(RBME) method has been proposed for fast band structurexplicitly known. Such an issue is not new as already treated
calculations in infinite periodic media. The RBME methodin various ways to address FRFs issued from matrix sys-
is based on a unit cell domain extending in the directiortems that are either linear or quadratic with respect to the
of the wave propagation. One of the features of the RBMHrequency [22,19,7]. However, these procedures appear in-
method is the utilization of a set of basis functions usinig un efficient to address the FRFs issued from complex matrix
cell symmetry properties in order to obtain a reduced modedystems like those involved by the WFE method, which are
for a periodic medium as a whole, as represented by the uniteither linear nor quadratic. In other words, it seems that t
cell. Although elegant, the RBME method remains howevedevelopment of an interpolation technique, capable of han-
confined to the study of infinite periodic systems, while thedling the FRFs issued from the WFE method, has not been
SAFE method appears to be limited to the study of straightarried out yet.
waveguides. To summarize, the motivation behind the present work
The issue of computing the forced response of straighappears as follows: (i) to prove that the WFE method can
elastic waveguides, by means of the WFE method, has be@empete with the conventional FE method to describe the
investigated in several ways [13,21,18,4]. In [13], an anwide band frequency behavior of sophisticated periodigstr
alytical relation has been proposed (see also [6,9]) whickures; (ii) to develop, within the WFE framework, an in-
strictly enforces the coherence between wave modes traterpolation strategy that speeds up the computation of the
eling in positive and negative directions. Without thatrel FRFs.
tion, the accuracy of the WFE method cannot be guaranteed The rest of the paper is organized as follows. In Sec-
as numerical dispersion and instabilities are likely touscc tion 2, the basics of the WFE method are recalled regarding
The drawback of this analytical relation, however, is thatt the computation of wave modes and the forced response of
substructures are required to be symmetric with respect tperiodic structures. Some rules of thumb of the method are
their mid-plane. presented and discussed. One constraint, outlined here, is

The remarkable feature of the WFE method is that ithat the substructures are to be symmetric with respect to
enables a large decrease of the CPU times in comparisdfeir mid-plane. It is shown, however, that the FE meshes
with the conventional FE method. This is explained sinceof the substructures do not need to be symmetric as long as
wave-based matrix systems of small size — which relate$he mesh density is high enough. In Section 3, a technique
the number of DOFs on the cross-section of waveguide$ Proposed to interpolate the WFE-based FRFs at a reduced
only — are considered rather than the full FE models oftumber of discrete frequencies. The technique uses adaptiv
the waveguides. The WFE method has proved to be reldefinement, which is achieved by assessing the accuracy of
vant, compared to the FE method and the component modge interpolated solutions at intermediate points. Anrarro

synthesis technique, to describe the dynamic behavior-of s@licator is formulated which can be evaluated quickly with-
phisticated structures (see [14]). out the need of explicitly computing the wave modes. Nu-

dnerical experiments are carried out in Section 4 to highligh

So far, the WFE method has not yet been applied t ’
the study of bounded periodic structures that involve comthe relevance of the proposed WFE strategies. The follow-

plex substructures, i.e., whose FE models contain many if9 test cases are considered: a beam with holes; a curved
ternal DOFs. The underlying issue is that a dynamic conStiffened panel.

densation procedure is to be considered prior to the com-

putation of wave modes, which may impact the condition-

ing of the wave-based matrix systems. The consideration

of substructures having large size FE models appears alSoWFE method

questionable because the computation of wave modes, at

many discrete frequencies, may be time consuming. Inte2.1 Concept of wave modes

polation techniques of frequency response functions (FRFs

seem to constitute interesting solutions to address thiis 2.1.1 Theory

In this framework, the vectors of displacements/rotatioins

a structure are explicitly computed at a reduced number ofhe WFE method aims at describing the one-dimensional
discrete frequencies — namely, the interpolation points —wave propagation along periodic structures, i.e. elagge s
while they are approximated at several intermediate pointéems which, in the present framework, are composed of iden-
Adaptive refinement of the sampling of interpolation pointstical substructures along one straight direction (FigThpse

is achieved when the error, between the exact and approgiastic systems are assumed to be dissipative, with a loss
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factorn, and subject to harmonic disturbances at an anguahereqz andFy (resp.q. andFp) aren x 1 vectors of
lar frequencyw. The proposed study is confined to the studydisplacements/rotations and forces/moments, on the(rigy.
of linear structures undergoing small strains, small dispt  left) boundary of the substructure. In Eq. ($)is a2n x 2n
ments and small rotations; deformation modes that may denatrix expressed as

velop due to kinematic nonlinearities are not taken into ac- De-lps Di-1
count. The description of waves traveling along a periodis = . — e — | _* k|, (3)
structure is achieved by considering the FE model of one Dir — DpaDrg DLL|_DRRDLR

substructure (Fig. 2). The procedure is widely explained inyhereD* is the dynamic stiffness matrix of the substruc-
the literature (see e.g. [23,15]); for the sake of claritysi ture, condensed on its left and right boundaries. It is ex-

summarized hereatfter. pressed as
D* = Dg; — Dp: D' D, 4)
g g Wi prapaRatm where the subscript8 and I refer to the boundary DOFs
{1, @)} Substructures {5, ®7)}

—)p /\ <= (i.e., those contained on the left and right boundaries) and

_______ the internal DOFs, respectively. In particular, the maig
QOO0 OO0 sexpressedas

Fig. 1 lllustration of a periodic structure.
DLL DLR:|

5
Dyt Dix ©®)

DBB = |:
Also, the matrixS is symplectic [23], which means that
STJS = J, where

Plane o, symmetry — 0 In
fl» ry J—[_Ino]. (6)
Besides, the coupling conditions at the interface between
two consecutive substructures, labeled ad andk, are ex-
Left Right pressed aa(k D= uﬁk), i.e., the displacements/rotations
boundary boundary are continuous across the interface, while the forces/mesne
satisfy the action-reaction law. As a result, Eq. (1) leads t

(k) _ (k—1)
Fig. 2 FE model of a substructure. u; = Sug : (7)

Following the WFE framework, the so-called state vectors
uék_l) anduék) are expressed ast D= =2 Q (ke 1)¢
andu (k) Z Q(k)qu, where{¢,}; are the right eigen-
A state vector representation is considered to express thﬁéctors ofS, while {Q,}; play the role of amplitudes. Also,
kinematic/mechanical quantities — i.e., displacemertts, r the eigenvalues & are denoted abu;};. In fact, since the

tations, forces and moments — on the right boundary oktructure is periodic, it is readily verified that each ampli
the substructure from those on the left boundary (Fig. 2). Ifude(; varies asQ(k) hQ(’C ") between one substruc-
this framework, the left and right boundaries are disceetiz e & — % to one Substructuré (0 < h < k-1)[13]

with a same number of D_OFS_- The subs?ructur_e is mod- The physical meaning of the eigenvectors and eigenvalues
eleg by means of a dynamic stiffness matrix, defineBas  of 5 follows from Bloch's theorem, where it is stated that
—w*M+ (1 +in)K (M andK being the mass and stiffness ¢ represents a wave shape traveling along the waveguide
matrices of the substructure, respectively). The statéovec asy; = exp(—1if;d) (3; being the wave numbet, being
representation is given by the length of the substructure). Notice that the wave shapes
{¢,}; represent vectors of kinematic/mechanical quantities
expressed on the substructure boundaries only, i.e., they d
where the subscripts and & denote the DOFs contained ;ot describe the motion at the internal nodes of the substruc
ures.
The parameter§(y.;, ¢;)}; are referred to as the wave
modes of a periodic structure. In fact, there are twice as
q q many wave modes as the number of DOFs contained on the
Ur = R u = L (2) . .
R v L ’ left or right boundary of a substructure, i.2n, wave modes.

Ugp = Sl,l.L7 (1)

on the left and right boundaries of the substructure, respe
tively. Also, ug andu;, are2n x 1 vectors, expressed as
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Finally note that the wave modes depend on the frequencgre different from unity. Thus, the eigenvalues can be par-
which is explained since the matrsdepends itself on the titioned as{y;}j=1,.. .U {u;}jzly.“_’n, where|y;| < 1 and
frequency. w; = 1/p;. In matrix notation, this is written as

2.1.2 Computation of wave modes p=pt (11)

3 . * __ 3= * .
As pointed out in [23,13], a direct computation of the eigen—Where“ = diagipjtj=1,..,n, u* = diag{yj}j=1,.» and
values and eigenvectors of the mat8ixan be prone to nu- l##]]2 < 1. Also, the wave shapes associated to the eigenval-
merical problems, which is explained because the matrix o:fes{ﬁf]ﬂ}ﬂ and {Nj(}j’a are denoted ag¢; } at?d {‘75& }i-In .
eigenvectors is usually ill-conditioned. The issue liegia  2Cch the wave mo €81, b;)}j=1....» may be understood
fact that the eigenvectors are expressed in terms of db&placas those traveling towards the right direction of a periodic

* * X H
ment/rotation and force/moment components, whose valugyUcture. the wave modeg/j, ¢;)};=1....» being those

can be largely disparate. To circumvent this, a better Cont_ravehng m_the opposne sense (F|g. 1).
In matrix notations, the matrices of wave shapes are de-

ditioned generalized eigenproblem is usually considesed a

[23]: noted ash = [¢, - - - ¢,,] andP* = [¢] - - - ¢},], which can
' be partitioned as
Nw; = p;Lw; ,  det(N—p;L) =0, (8) & &
— q *
where ®= inF] , &= Lp;*i]’ (12)
L= { I”* 0* ] , N= [ 0* IZ ] i (9) where the subscriptsandF refer to the displacement/rotation
_DLL _DLR DRL DRR

and force/moment components, respectively. Aiég,dig,

In Eq. (8) the eigenvectorisw; }, relate the displacements/- ¢ and®; are square: x n matrices, which are full rank

rotations of the substructure, only. The determinatiorhef t [13].

. . N
eigenvectors of the matri& simply follows as Finally note that each pair of wave shaigs, ¢;) can
be normalized with respect to the symplectic scalar product

¢, = Lw;. (10)  ¢%"J¢,, which is achieved in this way [23]:
_ %
(9" Jg;)1/2

It is worth recalling that the wave modes depend on the o,
. . J
frequency, i.e., they need to be computed for each discre®@; — m
frequency involved within the frequency bands of interest. J J
Also, the condensed dynamic stiffness maibx of a sub-
structure (Eqg. (4)) is to be evaluated for each discrete fre=
quency, prior o the computation of wave m.Ode.S' The re'Consideraperiodic structure composed of substructuags th
lated CPU times may be cumbersome, considering that the S S .
. are symmetric with respect to their mid-plane (Fig. 2). In

number of internal DOFs of the substructure and the numb% . . . .
. . .that case, an exact analytical relation can be derived which
of discrete frequencies analyzed are usually large. To ClrI_inks the wave shapes traveling in right and left directiags
cumvent this issue, the Craig-Bampton (CB) method can be P ginng
used [3]. The procedure consists in making use of th(_a staf[@(*l RS, , P =-Rd:. (14)
modes of the substructure and a reduced number of fixed in-
terface modes. As a result, the computatiorddf can be  Here, R is an x n diagonal symmetry transformation matrix
sped up in a drastic way. The selection of the fixed inter{with 1 or —1 as components), which is such tfaR = L.
face modes is achieved by considering those whose eigeA-proof of Eq. (14) follows from the fact that the block com-
frequencies are below a certain frequency threshold. Fromponents of the condensed dynamic stiffness maxixEq.
the practical point of view, the number of fixed interface (4)) are linked adD;; = RTD;; R andD;; = RTDjR.
modes to be retained can be roughly estimated by perfornHowever, there’s no need to assume that the FE meshes of
ing a convergence analysis of the WFE method for expresshe substructures are symmetric as long as the mesh density,

ing the FRF of a periodic structure in the vicinity of the max-inside the substructures, is high enodgfihe issue can be

e (13)

.1.4 Case of symmetric substructures

imum frequency of the frequency band of interest. viewed as ensuring that the FE meshes are able to accurately
capture the shapes of the fixed interface modes involved for
2.1.3 Properties of wave modes and conventions describingD* (see comments after Eq. (10)).

Due to the fact that the matri is symplectic, its eigenval- In ather words, it is expected that the condensed dynandinesis
matrix issued from an arbitrary mesh is almost the same asribe

ues come in pairs gg; and1/yu;. Besides, since the sub- jnyolved by a symmetric mesh, provided that the number arive
structures are damped, the magnitudes of the eigenvaluesdes is large enough.
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The feature of Eq. (14), along with the consideration 0f2.2.2 Wave-based matrix formulation
Eq. (11), is that it strictly enforces the coherence between
the right-going and left-going wave modes. This means thathe key idea behind the WFE strategy is to compute the vec-
each eigenvectad; is to be evaluated by considering Eq. tors of wave amplitude® and Q*, which ultimately pro-
(14), rather than considering the solution of the eigenprobvide, from Egs. (19) and (20), the vectoys®) and F(*)
lem (8). Also, each eigenvalyg is to be evaluated by means on any substructure boundaty If needed, the vector of
of Eq. (11), i.e.u} = 1/p;. It will be shown in Section 4 displacements/rotations at the internal nodes of a substru
that the non-consideration of the analytic relations (1) a ture can be obtained from those defined on its boundaries
(11) is source of numerical ill-conditioning, which appgar The computation of the vecto§ andQ* follows from the

dramatic for describing the forced response of structures. consideration of the boundary conditions of the structure.
The procedure has been proposed in [13] when Neumann

and Dirichlet conditions are dealt with. The same strategy
holds for arbitrary boundary conditions, e.g., surfacegdgnces

2.2 Forced response computation [14]. Such boundary conditions can be formulated as

2.2.1 Wave mode expansion Yo't + ZFY = Yoqo + ZoFo, (21)

Consider a periodic structure composed\bsubstructures, Y*q}({NH) + Z*FF({NH) =Yjqp + ZyFg, (22)

and denote a8 (kK = 1,..., N + 1) a substructure bound- whereY, Y*, Y,
ary, i.e., either a coupling interface between two substrucwhose meanings
tures, or one end of the periodic structure. The key idea he
is to expand the vectors of displacements/rotatighis and
forces/momentB(*) | on the substructure boundaryin the
wave basig¢;}; U {¢}};. In matrix form, this wave expan-
sion is expressed as

Y§, Z, 2", Zy, Z§ aren x n matrices
actually depend on the kind of application
'Studied. For the sake of clarity, the matricés Y, Z and

Z, are explicitly expressed hereafter for some simple cases
(expressions o¥*, Y, Z* andZj can be simply deduced
from this analysis):

e Prescribed vector of displacements/rotatiqgs
®) — @ Mk *r(k)
q'"” =2,Q" + P, Q" 15
4 e (13) adV=q = Y=1,Y,=1,Z=0,Z,=0.
(23)

+F® = $.Q") + d: Q). (16)

e Prescribed vector of forces/momeikis:
In Eq. (16), the sign ahead &f results from the choice of

description considered — i.e., either the right or left bdvun Fﬁl) =Fy = Y=0,Y,=0,Z=1,7Zy=1.
aries of the substructures (cf. Eq. (2)). In Egs. (15) and, (16 (24)
the termsQ*) and Q*(*) are vectors of wave amplitudes.

By considering the properties mentioned after Eq. (7), it ® Matrix of surface impedances:

turns out that FO — _iwz(ql) — qo) (25)
Q(k) _ Nk—lQ , Q*(k) _ uN+l_kQ*7 (17) = Y = 1wza Yo = 1wza Z= Ia Zy=0.
Introducing the wave expansions (19) and (20) into Egs. (21)
where and (22) provides, after some algebra, the following wave-
based matrix equation:
Q=qQ" |, Q@ =qQW. (18) I XV [Q G
][] - (8]
Here,Q and Q* represent the vectors of wave amplitudes
at the left and right ends of the whole structure, respecwhere
tively. The convention provided by Eq. (18) is introduced —1 * *
= (YD, — ZP Y, — 7P 27
as a means to simplify the subsequent derivations made |>r$ (Y2, P (Y, £): 27)
the paper. Thus, Egs. (15) and (16) can be rewrittenas  xX* — (Y*@: 4 z*gs;)—l(y*gpq + Z*®y), (28)
B . s PR : -
q(k) _ quﬂk 1Q + d;qHN-H kQ ’ (19) This is achieved by considering the componebtg and D1t

of the dynamic stiffness matrix of the substructure, g, =
—D;'Dizqg. Alternatively, the Craig-Bampton procedure may be

used to circumvent the direct computation of the matrix isgd '
+F®) = Seph1Q + Srp Q. (20) g "’
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G = (Y®, — Z&:) ' (Yoaqo + ZoFy), (29) 3 Interpolation strategy

G* = (Y'®, + 2" ®;) ' (Y55 + Z5Fp). (30) 3.1 Motivation and framework
To derive Eq. (26), it has been assumed that the matrices . hin th ‘ K the f q
(ngq — Z&#;) and (Y*slig + Z*®7) are invertible. This Within the WFE framework, the forced response computa-

can be proved when the structure boundaries are subjeté?n of periodic structures requires one to express a matrix

to prescribed displacements/rotations or prescribeckefsc eq“a“oﬂlo“ the form.Q = 7 (Ea. (26)) ar_1d Its solt_mon
moments (Egs. (23) and (24)), because the matdgeds, Q=A _]—', for sev_eral discrete frequencies. In d0|.ng S0,
@ and®; are full rank [13]; the fact thefy @, — Z&) and the following numerical tasks need to be undertaken:
(Y*®; + Z*Pr) are invertible seems also to be verified in (i) Computation of the condensed dynamic stiffness matrix
other cases, for instance when the structure boundaries are D* of a substructure (see comments after Eq. (10));
subject to surface impedances (Eqg. (25)), except maybe @y Computation of the eigenproblem (8);

rare occasions (e.g., whew Z®, — $r = 0) which will  (jii) Computation of the matrixA and its inverse.

not be considered here. The motivation behind the use of the ] o ) )

matrix inverseg Y&, — Z&:) ! and (Y*&! + Z*&;) L The numerical tasks (i)-(iii) may be time consuming to de-
is to make the matrix occurring on the left hand side of EqgScribe the FRFs of structures over wide frequency bands,
(26) well conditioned (this interesting feature is emphedi - When these FRFs exhibit many resonance phenomena.
in [13, 14]). This is especially true when periodic structures are dealt

In condensed form, the matrix system (26) is expressewith’ since the substructures exhibit complex local dynam-
asAQ = F, whereQ = [Q7Q*T]T. The determination ics that are of primary importance, even at low frequencies.
’ ' This means that the number of discrete frequencies involved

to describe these FRFs accurately is usually large (e.ge mo
than one thousand).

of the vectors of wave amplitude and Q* follows as
Q = A~L1F. The consideration of several waveguides, cou

pled to each other directly, or by means of coupling ele . _
To reduce the computational cost involved by the WFE

ments, does not bring additional difficulties. This regsire . :
one to consider a matrix system quite similar (but with amethod, a strategy is proposed to interpolate the vector of

larger size) to Eq. (26), i.e., of the formQ — F where displacements/rotatiorg" or the vector of forces/moments
Q = [QTQTQIQY ---QL,Q:T]” (Q: and QF being F(’“)_, on any substructure boundakyat a reduced number
the vectors of wave amplitudes for a given waveguide/ of @scrgte freque_nues — namely, the interpolation points
being the number of waveguides involved). A I|n_ear |nterp.olat|or.1 schemeis usgd, between two consecu-
tive interpolation points, to approximate these vectoiis-at
termediate points where the numerical tasks (ii) and (oi) d
not need to be undertaken. The motivation behind the use of

h |  th based o lati E a linear interpolation scheme is that it can be easily agplie
e relevance of the wave-based matrix formulation ( Yo the solutions issued from the wave-based matrix equation

(26)) has been highlighted in past works [13, 14]. It has acbng)_ The procedure is detailed hereafter.

t(; b.e a}ccur:te forlcgmtpu.t '?}? t?e r;armonlc for%edf reSponse e proposed strategy starts by considering a coarse set
ofsingle and coupied straight SWUCIUres overwide Irequen o yisqote angular frequenciég), }, as interpolation points,

Which are uniformly spread on a whole frequency band with
cern, and the analytical relations (14) and (11) were con: ysp a y

. . . . g . g constant angular frequency steys?. The WFE solution
sidered. As explained n Se.ctlon 2'.1'4’ the key idea behmg_ i.e., the vectors of displacements/rotations and forces/
the use of these relations is to strictly enforce the cohe

I- . . ..
. . _ moments provided by Egs. (19) and (20) — is explicitly
ence between the right-going and left-going wave mOdeScomputed at the interpolation poing€2,}, by taking into

this means that two du_a_l wave .mode.s are expected to h"’“é%countthe numerical tasks (i)-(iii). Besides, the WFEkisol
exactly the same velocities, while their shapes are exdectqion is approximated at each intermediate painbetween

to be symmetric to each other. Should these equations n%o consecutive interpolation point3, and 2,1, as fol-
be considered, numerical dispersion is likely to occur beTOWS_ P

tween these wave modes. The issue concerns the determina-

tion of the matriceX andX* (Eqgs. (27) and (28)) — these _
4 (ws) = a® (2,)+

2.2.3 Discussion

ws — 2
= (aP(2) —aM(92,).

can be viewed as the projections of some spaces spanned A,

by the left-going wave shapes onto some spaces spanned by (31)
the right-going wave shapes, or vice versa — which become

nearly rank deficient, hence impacting the numerical condiwhere Af2, = 2,1 — {2,. Here, the vector of forces/-

tioning of the matrix system (26). This issue will be high- moments has been omitted for the sake of conciseness. The
lighted in Section 4. strategy uses adaptive refinement, i.e., any intermediété p
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ws is considered as a new interpolation point when the relhot accurate. In other words, the relative error made at the
ative error, between the interpolated solut@f) (w,) and  level of one substructure is expected to be

the exact ong;® (w,), exceeds a certain tolerance thresh- _ B
old. For those new interpolation points, the WFE solution”F(k) (‘{S) — F® (w,)]| )
is explicitly computed by means of the numerical tasks (i)- [ F ) (ws) |

(ii). Thus, a new set of interpolation points?, }, is defined  » ore accurate indicator is proposed here which takes into

and the approximated splution is_ re-expres.sec.i (Eq. (Sl)éccountthe displacement/rotation part of the WFE solution
The key challenge here is to provide a good indicator of thel-his is achieved by weighting the force/moment compo-

relative error between the interpolated solutigh) (w;) — L onteF(*) (ws) andF® (w,) by the displacement/rotation

e, which results from the |n|_t|alkc0arse §et of interplat componeng® (w, ). This leads to the following relative er-
points — and the exact solutiefi*) (w,), given that the lat-

ter is not explicitly known. This error indicator should be ~ A
expressed as 6% (o) TF® (ws) — ¥ (ws) TER) (w,)|
1™ (wo) HE® (w, )|

(35)

; (36)

1@ (ws) = a® (w)||
€s [a® (wy)]] Vk. (32)  whereq® (w,)¥ is the conjugate transpose &f*) (ws).

Notice that the relative error (36) is to be considered fahea
In order to make the procedure efficient, the CPU time in-Substructure boundafyinvolved in a whole periodic struc-
volved in the evaluation of the error indicatey, for each ture. Regarding the whole structure, it is then proposed to
discrete angular frequency;, should be small compared to assess the error indicataras
the computation of the direct solutiagi®) (w,). Also, the 3 .
expression of, should be independent of the substructure, _ Nxmax{ 105 (we) TE® (w,) — ¥ (wo) TR (w,)| } 7

boundary numbek. This issue is addressed in Section 3.2. It ° 14 (we ) HE ) (w,)|

is shown that a simple expressionegican be obtained. The (37)
formulation of this error indicator uses the fact that pdito
structures are dealt with. whereN is the number of substructures considered. To for-

mulate Eq. (37), the maximum of the relative errors, among
all the substructures, has been considered and multipjied b
the number of substructures.

The CPU time involved to calculate the error indicator
€5 IS mainly related to the computation of the condensed dy-

compared to the exact org®) (w, ), is addressed in the fol- namic stiffness matri* of a substructure, i.e., the numer-
lowing way. ical tasks (ii) and (iii) mentioned at the beginning of Senti

Consider a periodic structure and two substructure boun,%l'—l_ are not c.onS|de.red: The r?'e"a”‘?e of the proposed error
ariesk andk + 1, with the related vectors of displacements/-md'catores will be highlighted in Section 4.
rotations approximated @g* (w,) andg*+1) (w,) (Eq. (31)).
The vector of forces/moments on the substructure bouno‘l{3 Implementation
aryk (k = 1,...,N), which results from these vectors of

displacements/rotations, is given by As explained previously, the proposed approach consists in
. evaluating first the solution of the WFE method at a re-
F®(w,) = Dip (ws)a@™ (ws) + Dia(ws)a* ™ (ws), (33)  duced number of discrete angular frequendi€s }, that
are equally spaced by means of a constant angular frequency
whereDy; andDy; are block components of the condensedstep A2, = A(2. The WFE solution is then approximated
dynamic stiffness matrix of a substructure, Eq. (4). In cOnxt each intermediate point,, between two consecutive in-
trast, the interpolated vector of forces/moments is given b terpolation points2, and (2, (Eq. (31)). An error indica-
tore, is considered to assess the accuracy of the interpolated
P (ws) = F(k)(QP)ers -2, (F(k)(QpH) _ F(k)(gp)) _ solution at f[he int_ermediat_e points (Eg. (37)). The str;ateg
AL, uses adaptive refinement in the sense that any intermediate
(34) pointws is considered as a new interpolation point when
the error indicatoe, exceeds a certain tolerance threshold
The present error analysis is based on the idea to compafe Then a new set of interpolation point$2,}, is defined
F®) (w,) with F*®) (w,). A large relative error between these and a new linear interpolation is considered (Eq. (31)). At
two quantities would mean that the interpolated solution ighis stage, it is assumed that the error indicatoremains

3.2 Error indicator

The question of how good is the interpolated solutéf (w.),
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smaller than the tolerance threshd@ldat the new interme- the WFE method using MATLA® . The norm of the veloc-

diate points. The relevance of this assumption will be highity vector is defined agiwLq*)||, where. is a Boolean

lighted in Section 4. The algorithm procedure of the pro-matrix that selects the displacement DOFs of the substruc-

posed interpolation strategy is summarized as follows: ture boundary (i.e., not the rotation DOFs). The WFE solu-

1. Setthe value of the initial angular frequency stef3, = tion is compared with the result of the FE method, also ob-
A and the value of the tolerance threshéld tained using MATLAB®, when the whole periodic structure

2. Compute explicitly the WFE solutiagf*) for eachinter-  is considered. Within the FE framework, the CB method is
polation pointf2,: numerical tasks (i-iii) (Section 3.1), also used to calculate the condensed dynamic stiffness ma-

Eq. (19); trix D* of each substructure. The FE model of the whole pe-
3. Evaluate the approximated solutigff”) for each inter- riodic structure hence follows from classic assembly proce

mediate pointv, €]92,, 2,.1[: Eq. (31); dures of the CB-based substructure models. In other words,
4. Compute the error indicatey for each intermediate point both WFE and FE modelings make use of the same conden-

ws: numerical task (i) (Section 3.1), Eq. (37); sation procedure to compul®*. The comparison between

5. Compute explicitly the WFE solutiog*) for each in- the WFE and FE solutions is achieved by assessing the fol-

termediate point; wheree, > &, and setv; as a new lowing relative error:
interpolation pointg, — {f2,},): numerical tasks (i-

: k : (k)
iii) (Section 3.1), Eq. (19); liwlq™ — oL | (38)
6. Interpolate the WFE solution by considering the new in- liwlaly|
terpolation pointg (2, }, and the new angular frequency *) _ _
steps{ A2, },: Eq. (31). whereLqgy’ represents the displacement vector issued from

the FE method.
. _ Besides, the WFE-based interpolation strategy is con-
4 Numerical experiments sidered (Section 3). Its efficiency, in terms of CPU time sav-
ings, is highlighted. Also, the accuracy of the error inttica
es (EQ. (37)) is highlighted in comparison with the true rel-

. . . . ative error, expressed as
The WFE strategies proposed in Sections 2 and 3 are appheélv P

to assess tr_le dynamic.behavior qf the fg_llowing perio_dic”iwﬁq(k) —iwlg®|
structures: (i) a beam with holes (Fig. 3); (ii) a curvedfstif
ened panel (Fig. 8). The FE meshes of the related substruc-
tures, as displayed in Fig. 4 and Fig. 9, contain many interna
DOFs. Here, the COMSOL Multiphysi€ssoftware is used 4 2 Beam with holes
to express the mass and stiffness matrices of each substruc-
ture. Those matrices are then post-treated using MATEAB 4.2.1 Problem description
with a view to computing the frequency forced response of
the structures. Among the numerical tasks, which are chrrieThe dynamic behavior of a beam structure, with a periodic
out using MATLAB®, is the computation of the condensed inclusion of holes, is analyzed. The periodic structurdss d
dynamic stiffness matril>* by means of the CB method, as played in Fig. 3; it exhibits the following characteristics
discussed in Section 2.1.2. length 1.5m, height0.2m, thickness2 x 10~3m; density
The dynamic behavior of the periodic structures is inves7800kg/m3, Young’s modulu210 x 10° Pa, Poisson’s ra-
tigated over wide frequency bands where global as well ato 0.3, loss factom = 5 x 10~3. The periodic structure is
local resonances, inside the substructures, are likelyto ocomposed ofV = 15 similar substructures (Fig. 4), each
cur. In other words, the FRFs are expected to be complexf these containing two vertically placed holes of diameter
i.e., with a large number of resonance and anti-resonan@07m. The beam is clamped over its right end, and subject
peaks that are not necessarily uniformly spread on the whol® an horizontal point force acting at the bottom side of the
frequency bands. Notice that these FRFs are not known laft end (Fig. 3).
priori. A modal analysis may however give a coarse indi-
cation about the number of resonance frequencies involved.
The need to describe these FRFs accurately, especiallgérou
the resonance and anti-resonance peaks which can be sharp,
requires one to discretize the frequency bands with a suffi- Each substructure is meshed using 2D plane stress trian-
cient number of discrete frequencies. gular elements of arbitrary size, with three nodes and two
For each test case, the norm of the velocity vector, ottranslational DOFs per node (Fig. 4). The substructure is
a given substructure boundakyis computed by means of discretized by means of = 82 DOFs for each left/right

4.1 Introduction

(39)
liwLlald|
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n wave modes n wave modes processor. This means a reductiorb8% in benefit of the

WFE method. These results give credit to the WFE method
0/0/00)0[0[0/[0/00|0)0e)® O% for computing the forced response of periodic structures.
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Fig. 3 Beam with holes.
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Fig. 5 FRF of the beam with holes: (Left figure) FE solutioh<—)
and WFE solution { - -); (Right figure) relative error of the WFE
solution.

Fig. 4 FE model of a substructure (beam with holes).

boundary, and 484 internal DOFs. The dynamic behavior As pointed outin Sections 2.1.4 and 2.2.3, the non-consi-
of the periodic structure is analyzed over the frequencylbanderation of the analytical relations (14) and (11) can bes®u
[1Hz, 8000Hz] by considering3000 discrete frequencies Of numerical problems. This issue is clearly highlighted in
that are equally spaced with a stepldf z. Here, the con- Fig. 6 when the FRF issued from the WFE method, as well
densed dynamic stiffness matiiX* of each substructure is as the condition number(A ) of the matrixA occurring on
expressed by considering the CB method viithfixed in-  the left hand side of Eqg. (40), are plotted. As seen, the WFE
terface modes (Section 2.1.2). Hereafter, the converitiongolution faces strong numerical instabilities, which is ex
WFE method and the WFE-based interpolation strategy arelained because the condition number appears tremendous
applied to evaluate the norm of the velocity vector on thecompared to the regularized formulation, i.e., when Eg#) (1

left end of the structure, i.eliwg™||. and (11) are taken into account.
4.2.2 WFE solution =
T 2 2

The WFE solution is obtained by solving the wave—based% o
matrix equation (26) for each discrete frequency, and con-Z =

sidering the wave expansion (19). Within the present frame-38 .., Qmﬁ
. . . [ =
work, the wave-based matrix equation is expressed as o €
c
= g 10°
I & 'opu” ~F £
. F PrH Q| _ ol (40) £ . o MAUMA M et
@ @ IJ/N I Q* O 2 0 2000 4000 6000 8000 0 2000 4000 6000 8000
q™a Frequency (Hz) Frequency (Hz)

whereF relates the vector of prescribed forces applied tcFig. 6 FRF of the beam with holes: (Left figure) WFE solution without
the left end of the structure. The expression of the waveconsidering Egs. (14) and (11); (Right figure) condition iemof A,
based matrix equation results from Egs. (27)-(30). The FRF 'g;cgjnt dc?fls)'iﬂ? Egs. (14) and (13){—) and by considering Eqs.
issued from the WFE and FE methods are displayed in Fig. '

5. Also, the relative error between the WFE and FE solutions

(Eq. (38)) is shown. For the sake of clarity, the maximum

values of the relative error, over small frequency bands of

length100H z, have been plotted. As shown, the WFE s0-4.2.3 WFE-based inter polated solution

lution perfectly matches the reference FE solution over the

whole frequency band where the relative error remains beFhe interpolation strategy proposed in Section 3 is applied
low 0.5%. In terms of CPU times, it takes68s to describe to describe the FRF of the periodic structure. In the present
the FRF of the periodic structure with the WFE method framework, a coarse set of discrete angular frequercig$,
against065s with the FE method. These CPU times are ob-is chosen so that the angular frequency stepis ten times
tained using MATLAB® with an Intef® Core™ i7-3720QM larger than the one used in the previous simulations (i.e.,
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A2 = 10H z). Intermediate points are considered which areTable 1 CPU times involved.

equally spaced, with a step of z, between two consecu- Approach used CPUtime  CPU time saving

tive interpolation points?2, and (2, . Adaptive refinement FE method 2065s

is carried out (Section 3.3) by considering the error inttica WFE method 868s 58%
Interpolation strategy ~ 350s 83%

es (Eq. (37)) and a tolerance threshdld= 10%. The WFE-
based interpolated solution is displayed in Fig. 7 alondpwit
the true relative error (Eqg. (39)). It is seen that the WFE-4.3 Curved stiffened panel

based interpolated solution perfectly matches the FE solu-

tion. As expected, the true relative error appears boundetl3.1 Problem description

by the tolerance thresholti = 10%, except for two points

where the true relative error slightly exceeds this thrisho The dynamic behavior of a curved stiffened panel is ana-
(the values appear lower thdn%, however). This means lyzed. The panel has a constant curvature (radiusof, a
that the error indicator, can occasionally slightly underes- length of4.5m, and contains a periodic distribution of flat
timate the true relative error. The choice of a small toleean stiffeners (height 06.05m) along both longitudinal and cir-
thresholds appears however completely relevant for accu-cumferential directions (Fig. 8). The panel and the stifesn
rately predicting the FRF of the structure over the wholehave the same thickness, ix 10~3m. Also, they share
frequency band. the same material characteristics, i.e.: den&#y0kg/m?,

The question may arise whether the adaptive refinemenfoung’s modulug10 x 10° Pa, Poisson’s ratid.3, loss fac-
procedure is really needed. To address this question, khe réor = 5 x 10~2. The periodic structure is composed of
ative error made by simply interpolating the WFE solutionatN = 15 similar substructures, each of these being made
the coarse angular frequencig®, }, — i.e., without con-  up of seven longitudinal stiffeners and one circumferéntia
sidering any adaptive refinement — is calculated (Fig. 7)stiffener (Fig. 9). The periodic structure is free over ight
As expected, the resulting relative error presents largre vaend, and subject to two point forces of same magnitude, in
ues over the whole frequency band. This clearly highlightdorizontal and vertical directions, at the top corner ofefs
the relevance of the proposed approach. end (Fig. 8).

-40)

-60)

Relative error %)

-80|

2
8000 0 8000

Norm of the velocity vector (dB)

200Igrev:qué";;mcy (Hzﬁ)000 200Igrev:qué";;mcy (Hzﬁ)000
Fig. 7 FRF of the beam with holes: (Left figure) FE solutier<{—)
and WFE-based interpolated solution- -); (Right figure) relative
error of the WFE-based interpolated solution, with adaptefinement
(—e—) and without adaptive refinement @ -).

Fig. 8 Curved stiffened panel.

In terms of CPU times, it take850s to compute the
forced response of the structure by means of the WFE-based
interpolation strategy. This means a reduction66f in
comparison with the conventional WFE method, &3, Each substructure is meshed by means of 2D triangu-
in comparison with the FE method. Thus, it appears thalkar flat shell elements with three nodes and six DOFs per
the proposed interpolation strategy constitutes an efficie node that incorporate bending actions [2] and membrane
numerical tool to compute the forced response of compleactions with drilling DOFs [1]. Each substructure is dis-
periodic structures at a very small numerical cost. cretized by means ofi = 132 DOFs on each left/right
For the sake of clarity, the CPU times involved by the FEboundary, an@16 internal DOFs (Fig. 9). The dynamic be-
method, the WFE method and the WFE-based interpolatiohavior of the periodic structure is analyzed over the fre-
strategy are listed in Table 1. quency band1Hz, 200H z] by considering3981 discrete
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Fig. 10 FRF of the curved stiffened panel: (Left figure) FE solution
(—) and WFE solution< - -); (Right figure) relative error of the
WFE solution.

Fig. 9 FE model of a substructure (curved stiffened panel).

with a step of0.05H z, between two consecutive interpola-
frequencies that are equally spaced with a step.@¥H~.  tion points, and {2,,,. The adaptive refinement proce-
Again, the CB method is used — herH) fixed interface  dure proposed in Section 3.3 is used by considering a toler-
modes are considered — to compute the condensed dynandigce threshold = 10%. The WFE-based interpolated solu-
stiffness matriXD* for each discrete frequency involved (Section is displayed in Fig. 11, along with the true relativeogrr
tion 2.1.2). The WFE strategies proposed in Sections 2 and@&Q. (39)). In this case again, the interpolated FRF pelfect

are used to assess the norm of the velocity veaterCq(®)||, ~ matches the FE solution. As expected, the true relative er-
i.e., on the substructure bounddryhich is1.5m far from  ror appears bounded Iy= 10% over the whole frequency
the left end of the panel. band.

Again, the relative error made by simply considering the
4.3.2 WFE solution coarse set of discrete angular frequen¢i€s}, as interpo-

lation points —i.e., without considering any adaptive refin
The WFE solution is obtained by solving the matrix equa-ment — is calculated and plotted (Fig. 11). As expected, the
tion (26) for each discrete frequency involved il z , 200 H z]. predicted solution is subject to a large relative error,deen
In the present case, the wave-based matrix equation is egiving credit to the proposed interpolation strategy.
pressed as

I & 'ouN[ Q] [-Fo
R Ir R @

The FRFs issued from the WFE and FE methods are
shown in Fig. 10, along with the relative error (38). Again,
the maximum values of the relative error, over small fre-
guency bands of lengthH z, are plotted. In this case again,
the WFE solution perfectly agrees with the FE solution over s -
the whole frequency band. Indeed, the relative error betwee E.
the WFE and FE solutions appears very small, i.e., around”
0.01%. In terms of CPU times, it takekl35s to compute Fig. 11 FRF of the curved stiffened panel: (Left figure) FE solution
the forced response of the structure with the WFE method;——) and WFE-based interpolated solution+-); (Right figure)

against3838s with the FE method. This yields a reduction relative error of the WFE-based interpolated solutionhvétiaptive
. . ' y refinement{-0—) and without adaptive refinement @ -).
of 70% in benefit of the WFE method.

the velocity vector (dB)

3
Relative error §)

2|
0 200 0

50, 100 150 50 100 150
Frequency (Hz) Frequency (Hz)

4.3.3 WFE-based interpolated solution
In terms of CPU times, it take$04s to compute the

To reduce further the CPU time involved by the WFE methodorced response of the structure by means of the WFE-based
the interpolation strategy proposed in Section 3 is usedimg interpolation strategy. The related CPU time saving4%

a coarse set of discrete angular frequen¢i€s}, is cho- in comparison with the conventional WFE method, a6

sen with an angular frequency stefy? that is ten times in comparison with the FE method (Table 2).

larger than the one used previously (i42 = 0.5Hz2). In- Again, the relevance of the interpolation strategy, in ®rm
termediate points are considered which are equally spacedf accuracy and CPU time savings, is clearly highlighted.
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Table 2 CPU times involved. 8.

Approach used CPUtime CPU time saving
FE method 3838s
WFE method 1135s 70% 9
Interpolation strategy ~ 404s 90%

10.

5 Conclusions

11.

The WFE method has been applied to compute the forced
response of one-dimensional periodic structures. Soras rul

of thumb of the method have been highlighted and discusse%lz.'

One requirement is that the substructures are to be symmet-

ric with respect to their mid-plane. In this sense, an analyt13.

ical relation can be considered to strictly enforce the cohe
ence between the right-going and left-going wave modes.

The WFE method has proved to be accurate to describe tha.

FRFs of two sophisticated periodic structures over wide fre
quency bands. To reduce further the CPU times involved by
the WFE method, an interpolation strategy has been prog
posed. In this framework, the WFE solution is explicitly
computed at a reduced number of discrete frequencies. A

linear interpolation scheme is then considered to approxilG'

mate the WFE solution between these discrete frequencies,

at several intermediate points. An error indicator has beeny.

derived which enables a fast estimation of the accuracy of
the interpolation scheme at each intermediate point. Adapl-
tive refinement of the sampling of interpolation points is
achieved when the proposed error indicator exceeds a cer-

tain tolerance threshold. The relevance of the WFE-basetP-

interpolation strategy, in terms of accuracy and CPU time
savings, has been clearly established in comparison wéth th,
FE method.

21.
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