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Abstract The wave finite element (WFE) method is inves-
tigated to describe the harmonic forced response of one-
dimensional periodic structures like those composed of com-
plex substructures and encountered in engineering applica-
tions. The dynamic behavior of these periodic structures is
analyzed over wide frequency bands where complex spa-
tial dynamics, inside the substructures, are likely to occur.
Within the WFE framework, the dynamic behavior of pe-
riodic structures is described in terms of numerical wave
modes. Their computation follows from the consideration
of the finite element model of a substructure that involves
a large number of internal degrees of freedom. Some rules
of thumb of the WFE method are highlighted and discussed
to circumvent numerical issues like ill-conditioning and in-
stabilities. It is shown for instance that an exact analyticre-
lation needs to be considered to enforce the coherence be-
tween positive-going and negative-going wave modes. Be-
sides, a strategy is proposed to interpolate the frequency re-
sponse functions of periodic structures at a reduced number
of discrete frequencies. This strategy is proposed to tackle
the problem of large CPU times involved when the wave
modes are to be computed many times. An error indicator is
formulated which provides a good estimation of the level of
accuracy of the interpolated solutions at intermediate points.
Adaptive refinement is carried out to ensure that this error
indicator remains below a certain tolerance threshold. Nu-
merical experiments highlight the relevance of the proposed
approaches.
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1 Introduction

Predicting the frequency behavior of one-dimensional pe-
riodic structures, by means of efficient and fast numerical
tools, is an open industrial challenge. Popular examples of
those structures are aircraft fuselages, consisting of cylin-
drical panels with a periodic distribution of stiffeners, or
parts of chassis frames with a periodic inclusion of holes.
Usually, the number of degrees of freedom (DOFs) used
to model each substructure — i.e., each periodic cell —
is large, which makes the conventional finite element (FE)
method time consuming to assess the dynamic behavior of a
whole periodic structure. This issue is addressed here within
the framework of the wave finite element (WFE) method.

Originally, the WFE method has been initiated to de-
scribe the wave propagation along one-dimensional periodic
waveguides, i.e. systems that are composed of identical sub-
structures along one main direction [12,23,6,9]. For any
waveguide, numerical wave modes are calculated by solving
an eigenproblem which follows from the consideration of
the FE model of one substructure. The wave modes are to be
understood as particular solutions of the displacement/rotation
and force/moment fields, at the interfaces between substruc-
tures, which travel from substructure to substructure along
the waveguide. In fact, there are twice as many wave modes
as the number of DOFs used to discretize each substructure
boundary. Increasing that number of DOFs makes the WFE
method efficient to assess the complex wave motions occur-
ring as the frequency grows.

Previous works made on the WFE topic have been car-
ried out to assess the guided wave propagation along straight
elastic waveguides [23,15], fluid-filled pipes [16,11] and
truss beams [20]. Besides, the WFE method has been ap-
plied to describe the plane wave propagation in infinite two-
dimensional structures [10]. Other wave-based numerical ap-
proaches have been developed over the past years. Among
these is the semi-analytical finite element (SAFE) method,
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which has been applied to describe the guided wave propa-
gation along elastic and elasto-acoustic straight waveguides
[5,17]. In [8], a so-called reduced Bloch mode expansion
(RBME) method has been proposed for fast band structure
calculations in infinite periodic media. The RBME method
is based on a unit cell domain extending in the direction
of the wave propagation. One of the features of the RBME
method is the utilization of a set of basis functions using unit
cell symmetry properties in order to obtain a reduced model
for a periodic medium as a whole, as represented by the unit
cell. Although elegant, the RBME method remains however
confined to the study of infinite periodic systems, while the
SAFE method appears to be limited to the study of straight
waveguides.

The issue of computing the forced response of straight
elastic waveguides, by means of the WFE method, has been
investigated in several ways [13,21,18,4]. In [13], an an-
alytical relation has been proposed (see also [6,9]) which
strictly enforces the coherence between wave modes trav-
eling in positive and negative directions. Without that rela-
tion, the accuracy of the WFE method cannot be guaranteed
as numerical dispersion and instabilities are likely to occur.
The drawback of this analytical relation, however, is that the
substructures are required to be symmetric with respect to
their mid-plane.

The remarkable feature of the WFE method is that it
enables a large decrease of the CPU times in comparison
with the conventional FE method. This is explained since
wave-based matrix systems of small size — which relates
the number of DOFs on the cross-section of waveguides
only — are considered rather than the full FE models of
the waveguides. The WFE method has proved to be rele-
vant, compared to the FE method and the component mode
synthesis technique, to describe the dynamic behavior of so-
phisticated structures (see [14]).

So far, the WFE method has not yet been applied to
the study of bounded periodic structures that involve com-
plex substructures, i.e., whose FE models contain many in-
ternal DOFs. The underlying issue is that a dynamic con-
densation procedure is to be considered prior to the com-
putation of wave modes, which may impact the condition-
ing of the wave-based matrix systems. The consideration
of substructures having large size FE models appears also
questionable because the computation of wave modes, at
many discrete frequencies, may be time consuming. Inter-
polation techniques of frequency response functions (FRFs)
seem to constitute interesting solutions to address this issue.
In this framework, the vectors of displacements/rotationsof
a structure are explicitly computed at a reduced number of
discrete frequencies — namely, the interpolation points —,
while they are approximated at several intermediate points.
Adaptive refinement of the sampling of interpolation points
is achieved when the error, between the exact and approx-

imated solutions, exceeds a specified tolerance threshold at
any intermediate point. The issue here can be viewed as for-
mulating an error indicator, given that the true error is not
explicitly known. Such an issue is not new as already treated
in various ways to address FRFs issued from matrix sys-
tems that are either linear or quadratic with respect to the
frequency [22,19,7]. However, these procedures appear in-
efficient to address the FRFs issued from complex matrix
systems like those involved by the WFE method, which are
neither linear nor quadratic. In other words, it seems that the
development of an interpolation technique, capable of han-
dling the FRFs issued from the WFE method, has not been
carried out yet.

To summarize, the motivation behind the present work
appears as follows: (i) to prove that the WFE method can
compete with the conventional FE method to describe the
wide band frequency behavior of sophisticated periodic struc-
tures; (ii) to develop, within the WFE framework, an in-
terpolation strategy that speeds up the computation of the
FRFs.

The rest of the paper is organized as follows. In Sec-
tion 2, the basics of the WFE method are recalled regarding
the computation of wave modes and the forced response of
periodic structures. Some rules of thumb of the method are
presented and discussed. One constraint, outlined here, is
that the substructures are to be symmetric with respect to
their mid-plane. It is shown, however, that the FE meshes
of the substructures do not need to be symmetric as long as
the mesh density is high enough. In Section 3, a technique
is proposed to interpolate the WFE-based FRFs at a reduced
number of discrete frequencies. The technique uses adaptive
refinement, which is achieved by assessing the accuracy of
the interpolated solutions at intermediate points. An error in-
dicator is formulated which can be evaluated quickly with-
out the need of explicitly computing the wave modes. Nu-
merical experiments are carried out in Section 4 to highlight
the relevance of the proposed WFE strategies. The follow-
ing test cases are considered: a beam with holes; a curved
stiffened panel.

2 WFE method

2.1 Concept of wave modes

2.1.1 Theory

The WFE method aims at describing the one-dimensional
wave propagation along periodic structures, i.e. elastic sys-
tems which, in the present framework, are composed of iden-
tical substructures along one straight direction (Fig. 1).Those
elastic systems are assumed to be dissipative, with a loss
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factor η, and subject to harmonic disturbances at an angu-
lar frequencyω. The proposed study is confined to the study
of linear structures undergoing small strains, small displace-
ments and small rotations; deformation modes that may de-
velop due to kinematic nonlinearities are not taken into ac-
count. The description of waves traveling along a periodic
structure is achieved by considering the FE model of one
substructure (Fig. 2). The procedure is widely explained in
the literature (see e.g. [23,15]); for the sake of clarity, it is
summarized hereafter.

Fig. 1 Illustration of a periodic structure.

Fig. 2 FE model of a substructure.

A state vector representation is considered to express the
kinematic/mechanical quantities — i.e., displacements, ro-
tations, forces and moments — on the right boundary of
the substructure from those on the left boundary (Fig. 2). In
this framework, the left and right boundaries are discretized
with a same numbern of DOFs. The substructure is mod-
eled by means of a dynamic stiffness matrix, defined asD =

−ω2M+(1+iη)K (M andK being the mass and stiffness
matrices of the substructure, respectively). The state vector
representation is given by

uR = SuL, (1)

where the subscriptsL and R denote the DOFs contained
on the left and right boundaries of the substructure, respec-
tively. Also,uR anduL are2n× 1 vectors, expressed as

uR =

[

qR

FR

]

, uL =

[

qL

−FL

]

, (2)

whereqR andFR (resp.qL andFL) aren × 1 vectors of
displacements/rotations and forces/moments, on the right(resp.
left) boundary of the substructure. In Eq. (1),S is a2n× 2n

matrix expressed as

S =

[

−D∗−1
LR D∗

LL −D∗−1
LR

D∗
RL −D∗

RRD
∗−1
LR D∗

LL −D∗
RRD

∗−1
LR

]

, (3)

whereD∗ is the dynamic stiffness matrix of the substruc-
ture, condensed on its left and right boundaries. It is ex-
pressed as

D∗ = DBB −DBID
−1
II DIB, (4)

where the subscriptsB andI refer to the boundary DOFs
(i.e., those contained on the left and right boundaries) and
the internal DOFs, respectively. In particular, the matrixDBB

is expressed as

DBB =

[

DLL DLR

DRL DRR

]

. (5)

Also, the matrixS is symplectic [23], which means that
STJS = J, where

J =

[

0 In
−In 0

]

. (6)

Besides, the coupling conditions at the interface between
two consecutive substructures, labeled ask−1 andk, are ex-
pressed asu(k−1)

R = u
(k)
L , i.e., the displacements/rotations

are continuous across the interface, while the forces/moments
satisfy the action-reaction law. As a result, Eq. (1) leads to

u
(k)
L = Su

(k−1)
L . (7)

Following the WFE framework, the so-called state vectors
u
(k−1)
L andu(k)

L are expressed asu(k−1)
L =

∑

j Q
(k−1)
j φj

andu(k)
L =

∑

j Q
(k)
j φj , where{φj}j are the right eigen-

vectors ofS, while{Qj}j play the role of amplitudes. Also,
the eigenvalues ofS are denoted as{µj}j. In fact, since the
structure is periodic, it is readily verified that each ampli-
tudeQj varies asQ(k)

j = µh
jQ

(k−h)
j , between one substruc-

ture k − h to one substructurek (0 ≤ h ≤ k − 1) [13].
The physical meaning of the eigenvectors and eigenvalues
of S follows from Bloch’s theorem, where it is stated that
φj represents a wave shape traveling along the waveguide
asµj = exp(−iβjd) (βj being the wave number,d being
the length of the substructure). Notice that the wave shapes
{φj}j represent vectors of kinematic/mechanical quantities
expressed on the substructure boundaries only, i.e., they do
not describe the motion at the internal nodes of the substruc-
tures.

The parameters{(µj,φj)}j are referred to as the wave
modes of a periodic structure. In fact, there are twice as
many wave modes as the number of DOFs contained on the
left or right boundary of a substructure, i.e.,2n wave modes.
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Finally note that the wave modes depend on the frequency,
which is explained since the matrixS depends itself on the
frequency.

2.1.2 Computation of wave modes

As pointed out in [23,13], a direct computation of the eigen-
values and eigenvectors of the matrixS can be prone to nu-
merical problems, which is explained because the matrix of
eigenvectors is usually ill-conditioned. The issue lies inthe
fact that the eigenvectors are expressed in terms of displace-
ment/rotation and force/moment components, whose values
can be largely disparate. To circumvent this, a better con-
ditioned generalized eigenproblem is usually considered as
[23]:

Nwj = µjLwj , det(N− µjL) = 0, (8)

where

L =

[

In 0

−D∗
LL −D∗

LR

]

, N =

[

0 In
D∗

RL D∗
RR

]

. (9)

In Eq. (8) the eigenvectors{wj}j relate the displacements/-
rotations of the substructure, only. The determination of the
eigenvectors of the matrixS simply follows as

φj = Lwj . (10)

It is worth recalling that the wave modes depend on the
frequency, i.e., they need to be computed for each discrete
frequency involved within the frequency bands of interest.
Also, the condensed dynamic stiffness matrixD∗ of a sub-
structure (Eq. (4)) is to be evaluated for each discrete fre-
quency, prior to the computation of wave modes. The re-
lated CPU times may be cumbersome, considering that the
number of internal DOFs of the substructure and the number
of discrete frequencies analyzed are usually large. To cir-
cumvent this issue, the Craig-Bampton (CB) method can be
used [3]. The procedure consists in making use of the static
modes of the substructure and a reduced number of fixed in-
terface modes. As a result, the computation ofD∗ can be
sped up in a drastic way. The selection of the fixed inter-
face modes is achieved by considering those whose eigen-
frequencies are below a certain frequency threshold. From
the practical point of view, the number of fixed interface
modes to be retained can be roughly estimated by perform-
ing a convergence analysis of the WFE method for express-
ing the FRF of a periodic structure in the vicinity of the max-
imum frequency of the frequency band of interest.

2.1.3 Properties of wave modes and conventions

Due to the fact that the matrixS is symplectic, its eigenval-
ues come in pairs asµj and1/µj. Besides, since the sub-
structures are damped, the magnitudes of the eigenvalues

are different from unity. Thus, the eigenvalues can be par-
titioned as{µj}j=1,...,n ∪{µ⋆

j}j=1,...,n, where|µj | < 1 and
µ⋆
j = 1/µj . In matrix notation, this is written as

µ⋆ = µ−1, (11)

whereµ = diag{µj}j=1,...,n, µ⋆ = diag{µ⋆
j}j=1,...,n and

‖µ‖2 < 1. Also, the wave shapes associated to the eigenval-
ues{µj}j and{µ⋆

j}j are denoted as{φj}j and{φ⋆
j}j. In

fact, the wave modes{(µj ,φj)}j=1,...,n may be understood
as those traveling towards the right direction of a periodic
structure, the wave modes{(µ⋆

j ,φ
⋆
j )}j=1,...,n being those

traveling in the opposite sense (Fig. 1).
In matrix notations, the matrices of wave shapes are de-

noted asΦ = [φ1 · · ·φn] andΦ⋆ = [φ⋆
1 · · ·φ

⋆
n], which can

be partitioned as

Φ =

[

Φq

ΦF

]

, Φ⋆ =

[

Φ⋆
q

Φ⋆
F

]

, (12)

where the subscriptsq andF refer to the displacement/rotation
and force/moment components, respectively. Also,Φq, Φ

⋆
q ,

ΦF andΦ⋆
F are squaren × n matrices, which are full rank

[13].
Finally note that each pair of wave shapes(φj ,φ

⋆
j ) can

be normalized with respect to the symplectic scalar product
φ⋆T

j Jφj , which is achieved in this way [23]:

φj →
φj

(φ⋆T
j Jφj)

1/2
, φ⋆

j →
φ⋆

j

(φ⋆T
j Jφj)

1/2
. (13)

2.1.4 Case of symmetric substructures

Consider a periodic structure composed of substructures that
are symmetric with respect to their mid-plane (Fig. 2). In
that case, an exact analytical relation can be derived which
links the wave shapes traveling in right and left directionsas

Φ⋆
q = RΦq , Φ⋆

F = −RΦF. (14)

Here,R is an×n diagonal symmetry transformation matrix
(with 1 or −1 as components), which is such thatRR = I.
A proof of Eq. (14) follows from the fact that the block com-
ponents of the condensed dynamic stiffness matrixD∗ (Eq.
(4)) are linked asD∗

RR = RTD∗
LLR andD∗

RL = RTD∗
LRR.

However, there’s no need to assume that the FE meshes of
the substructures are symmetric as long as the mesh density,
inside the substructures, is high enough1. The issue can be
viewed as ensuring that the FE meshes are able to accurately
capture the shapes of the fixed interface modes involved for
describingD∗ (see comments after Eq. (10)).

1 In other words, it is expected that the condensed dynamic stiffness
matrix issued from an arbitrary mesh is almost the same as theone
involved by a symmetric mesh, provided that the number of internal
nodes is large enough.
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The feature of Eq. (14), along with the consideration of
Eq. (11), is that it strictly enforces the coherence between
the right-going and left-going wave modes. This means that
each eigenvectorΦ⋆

j is to be evaluated by considering Eq.
(14), rather than considering the solution of the eigenprob-
lem (8). Also, each eigenvalueµ⋆

j is to be evaluated by means
of Eq. (11), i.e.µ⋆

j = 1/µj. It will be shown in Section 4
that the non-consideration of the analytic relations (14) and
(11) is source of numerical ill-conditioning, which appears
dramatic for describing the forced response of structures.

2.2 Forced response computation

2.2.1 Wave mode expansion

Consider a periodic structure composed ofN substructures,
and denote ask (k = 1, . . . , N + 1) a substructure bound-
ary, i.e., either a coupling interface between two substruc-
tures, or one end of the periodic structure. The key idea here
is to expand the vectors of displacements/rotationsq(k) and
forces/momentsF(k), on the substructure boundaryk, in the
wave basis{φj}j ∪{φ⋆

j}j. In matrix form, this wave expan-
sion is expressed as

q(k) = ΦqQ
(k) +Φ⋆

qQ
⋆(k), (15)

±F(k) = ΦFQ
(k) +Φ⋆

FQ
⋆(k). (16)

In Eq. (16), the sign ahead ofF results from the choice of
description considered — i.e., either the right or left bound-
aries of the substructures (cf. Eq. (2)). In Eqs. (15) and (16),
the termsQ(k) andQ⋆(k) are vectors of wave amplitudes.
By considering the properties mentioned after Eq. (7), it
turns out that

Q(k) = µk−1Q , Q⋆(k) = µN+1−kQ⋆, (17)

where

Q = Q(1) , Q⋆ = Q⋆(N+1). (18)

Here,Q andQ⋆ represent the vectors of wave amplitudes
at the left and right ends of the whole structure, respec-
tively. The convention provided by Eq. (18) is introduced
as a means to simplify the subsequent derivations made in
the paper. Thus, Eqs. (15) and (16) can be rewritten as

q(k) = Φqµ
k−1Q+Φ⋆

qµ
N+1−kQ⋆, (19)

±F(k) = ΦFµ
k−1Q+Φ⋆

Fµ
N+1−kQ⋆. (20)

2.2.2 Wave-based matrix formulation

The key idea behind the WFE strategy is to compute the vec-
tors of wave amplitudesQ andQ⋆, which ultimately pro-
vide, from Eqs. (19) and (20), the vectorsq(k) andF(k)

on any substructure boundaryk. If needed, the vector of
displacements/rotations at the internal nodes of a substruc-
ture can be obtained from those defined on its boundaries2.
The computation of the vectorsQ andQ⋆ follows from the
consideration of the boundary conditions of the structure.
The procedure has been proposed in [13] when Neumann
and Dirichlet conditions are dealt with. The same strategy
holds for arbitrary boundary conditions, e.g., surface impedances
[14]. Such boundary conditions can be formulated as

Yq
(1)
L + ZF

(1)
L = Y0q0 + Z0F0, (21)

Y⋆q
(N+1)
R + Z⋆F

(N+1)
R = Y⋆

0q
⋆
0 + Z⋆

0F
⋆
0, (22)

whereY, Y⋆, Y0, Y⋆
0 , Z, Z⋆, Z0, Z⋆

0 aren × n matrices
whose meanings actually depend on the kind of application
studied. For the sake of clarity, the matricesY, Y0, Z and
Z0 are explicitly expressed hereafter for some simple cases
(expressions ofY⋆, Y⋆

0 , Z⋆ andZ⋆
0 can be simply deduced

from this analysis):

• Prescribed vector of displacements/rotationsq0:

q
(1)
L = q0 ⇒ Y = I , Y0 = I , Z = 0 , Z0 = 0.

(23)

• Prescribed vector of forces/momentsF0:

F
(1)
L = F0 ⇒ Y = 0 , Y0 = 0 , Z = I , Z0 = I.

(24)

• Matrix of surface impedancesZ:

F
(1)
L = −iωZ(q

(1)
L − q0) (25)

⇒ Y = iωZ , Y0 = iωZ , Z = I , Z0 = 0.

Introducing the wave expansions (19) and (20) into Eqs. (21)
and (22) provides, after some algebra, the following wave-
based matrix equation:
[

I XµN

X⋆µN I

] [

Q

Q⋆

]

=

[

G

G⋆

]

, (26)

where

X = (YΦq − ZΦF)
−1(YΦ⋆

q − ZΦ⋆
F), (27)

X⋆ = (Y⋆Φ⋆
q + Z⋆Φ⋆

F)
−1(Y⋆Φq + Z⋆ΦF), (28)

2 This is achieved by considering the componentsDIB and DII

of the dynamic stiffness matrix of the substructure, i.e,qI =

−D
−1

II DIBqB. Alternatively, the Craig-Bampton procedure may be
used to circumvent the direct computation of the matrix inverseD−1

II

[3].
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G = (YΦq − ZΦF)
−1(Y0q0 + Z0F0), (29)

G⋆ = (Y⋆Φ⋆
q + Z⋆Φ⋆

F)
−1(Y⋆

0q
⋆
0 + Z⋆

0F
⋆
0). (30)

To derive Eq. (26), it has been assumed that the matrices
(YΦq − ZΦF) and (Y⋆Φ⋆

q + Z⋆Φ⋆
F) are invertible. This

can be proved when the structure boundaries are subject
to prescribed displacements/rotations or prescribed forces/-
moments (Eqs. (23) and (24)), because the matricesΦq, ΦF,
Φ⋆

q andΦ⋆
F are full rank [13]; the fact that(YΦq−ZΦF) and

(Y⋆Φ⋆
q + Z⋆Φ⋆

F) are invertible seems also to be verified in
other cases, for instance when the structure boundaries are
subject to surface impedances (Eq. (25)), except maybe on
rare occasions (e.g., wheniωZΦq − ΦF = 0) which will
not be considered here. The motivation behind the use of the
matrix inverses(YΦq − ZΦF)

−1 and(Y⋆Φ⋆
q + Z⋆Φ⋆

F)
−1

is to make the matrix occurring on the left hand side of Eq.
(26) well conditioned (this interesting feature is emphasized
in [13,14]).

In condensed form, the matrix system (26) is expressed
asAQ = F , whereQ = [QTQ⋆T ]T . The determination
of the vectors of wave amplitudesQ andQ⋆ follows as
Q = A−1F . The consideration of several waveguides, cou-
pled to each other directly, or by means of coupling ele-
ments, does not bring additional difficulties. This requires
one to consider a matrix system quite similar (but with a
larger size) to Eq. (26), i.e., of the formAQ = F where
Q = [QT

1 Q
⋆T
1 QT

2 Q
⋆T
2 · · ·QT

MQ⋆T
M ]T (Qi andQ⋆

i being
the vectors of wave amplitudes for a given waveguidei, M
being the number of waveguides involved).

2.2.3 Discussion

The relevance of the wave-based matrix formulation (Eq.
(26)) has been highlighted in past works [13,14]. It has proved
to be accurate for computing the harmonic forced response
of single and coupled straight structures over wide frequency
bands. In those works, symmetric substructures were of con-
cern, and the analytical relations (14) and (11) were con-
sidered. As explained in Section 2.1.4, the key idea behind
the use of these relations is to strictly enforce the coher-
ence between the right-going and left-going wave modes:
this means that two dual wave modes are expected to have
exactly the same velocities, while their shapes are expected
to be symmetric to each other. Should these equations not
be considered, numerical dispersion is likely to occur be-
tween these wave modes. The issue concerns the determina-
tion of the matricesX andX⋆ (Eqs. (27) and (28)) — these
can be viewed as the projections of some spaces spanned
by the left-going wave shapes onto some spaces spanned by
the right-going wave shapes, or vice versa — which become
nearly rank deficient, hence impacting the numerical condi-
tioning of the matrix system (26). This issue will be high-
lighted in Section 4.

3 Interpolation strategy

3.1 Motivation and framework

Within the WFE framework, the forced response computa-
tion of periodic structures requires one to express a matrix
equation of the formAQ = F (Eq. (26)) and its solution
Q = A−1F , for several discrete frequencies. In doing so,
the following numerical tasks need to be undertaken:

(i) Computation of the condensed dynamic stiffness matrix
D∗ of a substructure (see comments after Eq. (10));

(ii) Computation of the eigenproblem (8);
(iii) Computation of the matrixA and its inverse.

The numerical tasks (i)-(iii) may be time consuming to de-
scribe the FRFs of structures over wide frequency bands,
i.e., when these FRFs exhibit many resonance phenomena.
This is especially true when periodic structures are dealt
with, since the substructures exhibit complex local dynam-
ics that are of primary importance, even at low frequencies.
This means that the number of discrete frequencies involved
to describe these FRFs accurately is usually large (e.g., more
than one thousand).

To reduce the computational cost involved by the WFE
method, a strategy is proposed to interpolate the vector of
displacements/rotationsq(k) or the vector of forces/moments
F(k), on any substructure boundaryk, at a reduced number
of discrete frequencies — namely, the interpolation points.
A linear interpolation scheme is used, between two consecu-
tive interpolation points, to approximate these vectors atin-
termediate points where the numerical tasks (ii) and (iii) do
not need to be undertaken. The motivation behind the use of
a linear interpolation scheme is that it can be easily applied
to the solutions issued from the wave-based matrix equation
(26). The procedure is detailed hereafter.

The proposed strategy starts by considering a coarse set
of discrete angular frequencies{Ωp}p as interpolation points,
which are uniformly spread on a whole frequency band with
a constant angular frequency step∆Ω. The WFE solution
— i.e., the vectors of displacements/rotations and forces/-
moments provided by Eqs. (19) and (20) — is explicitly
computed at the interpolation points{Ωp}p by taking into
account the numerical tasks (i)-(iii). Besides, the WFE solu-
tion is approximated at each intermediate pointωs between
two consecutive interpolation pointsΩp andΩp+1, as fol-
lows:

q̃(k)(ωs) = q(k)(Ωp)+
ωs −Ωp

∆Ωp

(

q(k)(Ωp+1)− q(k)(Ωp)
)

,

(31)

where∆Ωp = Ωp+1 − Ωp. Here, the vector of forces/-
moments has been omitted for the sake of conciseness. The
strategy uses adaptive refinement, i.e., any intermediate point
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ωs is considered as a new interpolation point when the rel-
ative error, between the interpolated solutionq̃(k)(ωs) and
the exact oneq(k)(ωs), exceeds a certain tolerance thresh-
old. For those new interpolation points, the WFE solution
is explicitly computed by means of the numerical tasks (i)-
(iii). Thus, a new set of interpolation points{Ωp}p is defined
and the approximated solution is re-expressed (Eq. (31)).
The key challenge here is to provide a good indicator of the
relative error between the interpolated solutionq̃(k)(ωs) —
i.e, which results from the initial coarse set of interpolation
points — and the exact solutionq(k)(ωs), given that the lat-
ter is not explicitly known. This error indicator should be
expressed as

ǫs ≈
‖q̃(k)(ωs)− q(k)(ωs)‖

‖q(k)(ωs)‖
∀k. (32)

In order to make the procedure efficient, the CPU time in-
volved in the evaluation of the error indicatorǫs, for each
discrete angular frequencyωs, should be small compared to
the computation of the direct solutionq(k)(ωs). Also, the
expression ofǫs should be independent of the substructure
boundary numberk. This issue is addressed in Section 3.2. It
is shown that a simple expression ofǫs can be obtained. The
formulation of this error indicator uses the fact that periodic
structures are dealt with.

3.2 Error indicator

The question of how good is the interpolated solutionq̃(k)(ωs),
compared to the exact oneq(k)(ωs), is addressed in the fol-
lowing way.

Consider a periodic structure and two substructure bound-
ariesk andk+1, with the related vectors of displacements/-
rotations approximated as̃q(k)(ωs) andq̃(k+1)(ωs) (Eq. (31)).
The vector of forces/moments on the substructure bound-
ary k (k = 1, . . . , N ), which results from these vectors of
displacements/rotations, is given by

F̂(k)(ωs) = D∗
LL(ωs)q̃

(k)(ωs) +D∗
LR(ωs)q̃

(k+1)(ωs), (33)

whereD∗
LL andD∗

LR are block components of the condensed
dynamic stiffness matrix of a substructure, Eq. (4). In con-
trast, the interpolated vector of forces/moments is given by

F̃(k)(ωs) = F(k)(Ωp)+
ωs −Ωp

∆Ωp

(

F(k)(Ωp+1)− F(k)(Ωp)
)

.

(34)

The present error analysis is based on the idea to compare
F̂(k)(ωs)with F̃(k)(ωs). A large relative error between these
two quantities would mean that the interpolated solution is

not accurate. In other words, the relative error made at the
level of one substructure is expected to be

‖F̃(k)(ωs)− F̂(k)(ωs)‖

‖F̂(k)(ωs)‖
. (35)

A more accurate indicator is proposed here which takes into
account the displacement/rotation part of the WFE solution.
This is achieved by weighting the force/moment compo-
nentsF̃(k)(ωs) and F̂(k)(ωs) by the displacement/rotation
component̃q(k)(ωs). This leads to the following relative er-
ror:

|q̃(k)(ωs)
HF̃(k)(ωs)− q̃(k)(ωs)

HF̂(k)(ωs)|

|q̃(k)(ωs)HF̂(k)(ωs)|
, (36)

where q̃(k)(ωs)
H is the conjugate transpose ofq̃(k)(ωs).

Notice that the relative error (36) is to be considered for each
substructure boundaryk involved in a whole periodic struc-
ture. Regarding the whole structure, it is then proposed to
assess the error indicatorǫs as

ǫs = N×max
k

{

|q̃(k)(ωs)
HF̃(k)(ωs)− q̃(k)(ωs)

HF̂(k)(ωs)|

|q̃(k)(ωs)HF̂(k)(ωs)|

}

,

(37)

whereN is the number of substructures considered. To for-
mulate Eq. (37), the maximum of the relative errors, among
all the substructures, has been considered and multiplied by
the number of substructures.

The CPU time involved to calculate the error indicator
ǫs is mainly related to the computation of the condensed dy-
namic stiffness matrixD∗ of a substructure, i.e., the numer-
ical tasks (ii) and (iii) mentioned at the beginning of Section
3.1 are not considered. The relevance of the proposed error
indicatorǫs will be highlighted in Section 4.

3.3 Implementation

As explained previously, the proposed approach consists in
evaluating first the solution of the WFE method at a re-
duced number of discrete angular frequencies{Ωp}p that
are equally spaced by means of a constant angular frequency
step∆Ωp = ∆Ω. The WFE solution is then approximated
at each intermediate pointωs, between two consecutive in-
terpolation pointsΩp andΩp+1 (Eq. (31)). An error indica-
tor ǫs is considered to assess the accuracy of the interpolated
solution at the intermediate points (Eq. (37)). The strategy
uses adaptive refinement in the sense that any intermediate
point ωs is considered as a new interpolation point when
the error indicatorǫs exceeds a certain tolerance threshold
E . Then a new set of interpolation points{Ωp}p is defined
and a new linear interpolation is considered (Eq. (31)). At
this stage, it is assumed that the error indicatorǫs remains
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smaller than the tolerance thresholdE at the new interme-
diate points. The relevance of this assumption will be high-
lighted in Section 4. The algorithm procedure of the pro-
posed interpolation strategy is summarized as follows:

1. Set the value of the initial angular frequency step∆Ωp =
∆Ω and the value of the tolerance thresholdE ;

2. Compute explicitly the WFE solutionq(k) for each inter-
polation pointΩp: numerical tasks (i-iii) (Section 3.1),
Eq. (19);

3. Evaluate the approximated solutionq̃(k) for each inter-
mediate pointωs ∈]Ωp, Ωp+1[: Eq. (31);

4. Compute the error indicatorǫs for each intermediate point
ωs: numerical task (i) (Section 3.1), Eq. (37);

5. Compute explicitly the WFE solutionq(k) for each in-
termediate pointωs whereǫs > E , and setωs as a new
interpolation point (ωs → {Ωp}p): numerical tasks (i-
iii) (Section 3.1), Eq. (19);

6. Interpolate the WFE solution by considering the new in-
terpolation points{Ωp}p and the new angular frequency
steps{∆Ωp}p: Eq. (31).

4 Numerical experiments

4.1 Introduction

The WFE strategies proposed in Sections 2 and 3 are applied
to assess the dynamic behavior of the following periodic
structures: (i) a beam with holes (Fig. 3); (ii) a curved stiff-
ened panel (Fig. 8). The FE meshes of the related substruc-
tures, as displayed in Fig. 4 and Fig. 9, contain many internal
DOFs. Here, the COMSOL MultiphysicsR© software is used
to express the mass and stiffness matrices of each substruc-
ture. Those matrices are then post-treated using MATLABR©

with a view to computing the frequency forced response of
the structures. Among the numerical tasks, which are carried
out using MATLAB R©, is the computation of the condensed
dynamic stiffness matrixD∗ by means of the CB method, as
discussed in Section 2.1.2.

The dynamic behavior of the periodic structures is inves-
tigated over wide frequency bands where global as well as
local resonances, inside the substructures, are likely to oc-
cur. In other words, the FRFs are expected to be complex,
i.e., with a large number of resonance and anti-resonance
peaks that are not necessarily uniformly spread on the whole
frequency bands. Notice that these FRFs are not known a
priori. A modal analysis may however give a coarse indi-
cation about the number of resonance frequencies involved.
The need to describe these FRFs accurately, especially around
the resonance and anti-resonance peaks which can be sharp,
requires one to discretize the frequency bands with a suffi-
cient number of discrete frequencies.

For each test case, the norm of the velocity vector, on
a given substructure boundaryk, is computed by means of

the WFE method using MATLABR©. The norm of the veloc-
ity vector is defined as‖iωLq(k)‖, whereL is a Boolean
matrix that selects the displacement DOFs of the substruc-
ture boundary (i.e., not the rotation DOFs). The WFE solu-
tion is compared with the result of the FE method, also ob-
tained using MATLABR©, when the whole periodic structure
is considered. Within the FE framework, the CB method is
also used to calculate the condensed dynamic stiffness ma-
trix D∗ of each substructure. The FE model of the whole pe-
riodic structure hence follows from classic assembly proce-
dures of the CB-based substructure models. In other words,
both WFE and FE modelings make use of the same conden-
sation procedure to computeD∗. The comparison between
the WFE and FE solutions is achieved by assessing the fol-
lowing relative error:

‖iωLq(k) − iωLq
(k)
FE ‖

‖iωLq
(k)
FE ‖

, (38)

whereLq(k)
FE represents the displacement vector issued from

the FE method.
Besides, the WFE-based interpolation strategy is con-

sidered (Section 3). Its efficiency, in terms of CPU time sav-
ings, is highlighted. Also, the accuracy of the error indicator
ǫs (Eq. (37)) is highlighted in comparison with the true rel-
ative error, expressed as

‖iωLq̃(k) − iωLq
(k)
FE ‖

‖iωLq
(k)
FE ‖

. (39)

4.2 Beam with holes

4.2.1 Problem description

The dynamic behavior of a beam structure, with a periodic
inclusion of holes, is analyzed. The periodic structure is dis-
played in Fig. 3; it exhibits the following characteristics:
length1.5m, height0.2m, thickness2 × 10−3m; density
7800kg/m3, Young’s modulus210 × 109Pa, Poisson’s ra-
tio 0.3, loss factorη = 5 × 10−3. The periodic structure is
composed ofN = 15 similar substructures (Fig. 4), each
of these containing two vertically placed holes of diameter
0.07m. The beam is clamped over its right end, and subject
to an horizontal point force acting at the bottom side of the
left end (Fig. 3).

Each substructure is meshed using 2D plane stress trian-
gular elements of arbitrary size, with three nodes and two
translational DOFs per node (Fig. 4). The substructure is
discretized by means ofn = 82 DOFs for each left/right
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Fig. 3 Beam with holes.

Fig. 4 FE model of a substructure (beam with holes).

boundary, and1484 internal DOFs. The dynamic behavior
of the periodic structure is analyzed over the frequency band
[1Hz , 8000Hz] by considering8000 discrete frequencies
that are equally spaced with a step of1Hz. Here, the con-
densed dynamic stiffness matrixD∗ of each substructure is
expressed by considering the CB method with50 fixed in-
terface modes (Section 2.1.2). Hereafter, the conventional
WFE method and the WFE-based interpolation strategy are
applied to evaluate the norm of the velocity vector on the
left end of the structure, i.e.,‖iωq(1)‖.

4.2.2 WFE solution

The WFE solution is obtained by solving the wave-based
matrix equation (26) for each discrete frequency, and con-
sidering the wave expansion (19). Within the present frame-
work, the wave-based matrix equation is expressed as
[

I Φ−1
F Φ⋆

Fµ
N

Φ⋆
qΦqµ

N I

] [

Q

Q⋆

]

=

[

−F0

0

]

, (40)

whereF0 relates the vector of prescribed forces applied to
the left end of the structure. The expression of the wave-
based matrix equation results from Eqs. (27)-(30). The FRFs
issued from the WFE and FE methods are displayed in Fig.
5. Also, the relative error between the WFE and FE solutions
(Eq. (38)) is shown. For the sake of clarity, the maximum
values of the relative error, over small frequency bands of
length100Hz, have been plotted. As shown, the WFE so-
lution perfectly matches the reference FE solution over the
whole frequency band where the relative error remains be-
low 0.5%. In terms of CPU times, it takes868s to describe
the FRF of the periodic structure with the WFE method,
against2065s with the FE method. These CPU times are ob-
tained using MATLABR© with an IntelR© CoreTM i7-3720QM

processor. This means a reduction of58% in benefit of the
WFE method. These results give credit to the WFE method
for computing the forced response of periodic structures.
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Fig. 5 FRF of the beam with holes: (Left figure) FE solution (—–)
and WFE solution (- - -); (Right figure) relative error of the WFE
solution.

As pointed out in Sections 2.1.4 and 2.2.3, the non-consi-
deration of the analytical relations (14) and (11) can be source
of numerical problems. This issue is clearly highlighted in
Fig. 6 when the FRF issued from the WFE method, as well
as the condition numberκ(A) of the matrixA occurring on
the left hand side of Eq. (40), are plotted. As seen, the WFE
solution faces strong numerical instabilities, which is ex-
plained because the condition number appears tremendous
compared to the regularized formulation, i.e., when Eqs. (14)
and (11) are taken into account.
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Fig. 6 FRF of the beam with holes: (Left figure) WFE solution without
considering Eqs. (14) and (11); (Right figure) condition number ofA,
without considering Eqs. (14) and (11) (—–) and by considering Eqs.
(14) and (11) (—–).

4.2.3 WFE-based interpolated solution

The interpolation strategy proposed in Section 3 is applied
to describe the FRF of the periodic structure. In the present
framework, a coarse set of discrete angular frequencies{Ωp}p
is chosen so that the angular frequency step∆Ω is ten times
larger than the one used in the previous simulations (i.e.,
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∆Ω = 10Hz). Intermediate points are considered which are
equally spaced, with a step of1Hz, between two consecu-
tive interpolation pointsΩp andΩp+1. Adaptive refinement
is carried out (Section 3.3) by considering the error indicator
ǫs (Eq. (37)) and a tolerance thresholdE = 10%. The WFE-
based interpolated solution is displayed in Fig. 7 along with
the true relative error (Eq. (39)). It is seen that the WFE-
based interpolated solution perfectly matches the FE solu-
tion. As expected, the true relative error appears bounded
by the tolerance thresholdE = 10%, except for two points
where the true relative error slightly exceeds this threshold
(the values appear lower than15%, however). This means
that the error indicatorǫs can occasionally slightly underes-
timate the true relative error. The choice of a small tolerance
thresholdE appears however completely relevant for accu-
rately predicting the FRF of the structure over the whole
frequency band.

The question may arise whether the adaptive refinement
procedure is really needed. To address this question, the rel-
ative error made by simply interpolating the WFE solution at
the coarse angular frequencies{Ωp}p — i.e., without con-
sidering any adaptive refinement — is calculated (Fig. 7).
As expected, the resulting relative error presents large val-
ues over the whole frequency band. This clearly highlights
the relevance of the proposed approach.
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Fig. 7 FRF of the beam with holes: (Left figure) FE solution (—–)
and WFE-based interpolated solution (- - -); (Right figure) relative
error of the WFE-based interpolated solution, with adaptive refinement
(–•–) and without adaptive refinement (- • -).

In terms of CPU times, it takes350s to compute the
forced response of the structure by means of the WFE-based
interpolation strategy. This means a reduction of60% in
comparison with the conventional WFE method, and83%

in comparison with the FE method. Thus, it appears that
the proposed interpolation strategy constitutes an efficient
numerical tool to compute the forced response of complex
periodic structures at a very small numerical cost.

For the sake of clarity, the CPU times involved by the FE
method, the WFE method and the WFE-based interpolation
strategy are listed in Table 1.

Table 1 CPU times involved.

Approach used CPU time CPU time saving
FE method 2065s

WFE method 868s 58%

Interpolation strategy 350s 83%

4.3 Curved stiffened panel

4.3.1 Problem description

The dynamic behavior of a curved stiffened panel is ana-
lyzed. The panel has a constant curvature (radius of1m), a
length of4.5m, and contains a periodic distribution of flat
stiffeners (height of0.05m) along both longitudinal and cir-
cumferential directions (Fig. 8). The panel and the stiffeners
have the same thickness, i.e.3 × 10−3m. Also, they share
the same material characteristics, i.e.: density7800kg/m3,
Young’s modulus210×109Pa, Poisson’s ratio0.3, loss fac-
tor η = 5 × 10−3. The periodic structure is composed of
N = 15 similar substructures, each of these being made
up of seven longitudinal stiffeners and one circumferential
stiffener (Fig. 9). The periodic structure is free over its right
end, and subject to two point forces of same magnitude, in
horizontal and vertical directions, at the top corner of itsleft
end (Fig. 8).

Fig. 8 Curved stiffened panel.

Each substructure is meshed by means of 2D triangu-
lar flat shell elements with three nodes and six DOFs per
node that incorporate bending actions [2] and membrane
actions with drilling DOFs [1]. Each substructure is dis-
cretized by means ofn = 132 DOFs on each left/right
boundary, and516 internal DOFs (Fig. 9). The dynamic be-
havior of the periodic structure is analyzed over the fre-
quency band[1Hz , 200Hz] by considering3981 discrete
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Fig. 9 FE model of a substructure (curved stiffened panel).

frequencies that are equally spaced with a step of0.05Hz.
Again, the CB method is used — here,10 fixed interface
modes are considered — to compute the condensed dynamic
stiffness matrixD∗ for each discrete frequency involved (Sec-
tion 2.1.2). The WFE strategies proposed in Sections 2 and 3
are used to assess the norm of the velocity vector‖iωLq(6)‖,
i.e., on the substructure boundary6 which is1.5m far from
the left end of the panel.

4.3.2 WFE solution

The WFE solution is obtained by solving the matrix equa-
tion (26) for each discrete frequency involved in[1Hz , 200Hz].
In the present case, the wave-based matrix equation is ex-
pressed as
[

I Φ−1
F Φ⋆

Fµ
N

Φ⋆
FΦFµ

N I

] [

Q

Q⋆

]

=

[

−F0

0

]

. (41)

The FRFs issued from the WFE and FE methods are
shown in Fig. 10, along with the relative error (38). Again,
the maximum values of the relative error, over small fre-
quency bands of length5Hz, are plotted. In this case again,
the WFE solution perfectly agrees with the FE solution over
the whole frequency band. Indeed, the relative error between
the WFE and FE solutions appears very small, i.e., around
0.01%. In terms of CPU times, it takes1135s to compute
the forced response of the structure with the WFE method,
against3838s with the FE method. This yields a reduction
of 70% in benefit of the WFE method.

4.3.3 WFE-based interpolated solution

To reduce further the CPU time involved by the WFE method,
the interpolation strategy proposed in Section 3 is used. Again,
a coarse set of discrete angular frequencies{Ωp}p is cho-
sen with an angular frequency step∆Ω that is ten times
larger than the one used previously (i.e.,∆Ω = 0.5Hz). In-
termediate points are considered which are equally spaced,
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Fig. 10 FRF of the curved stiffened panel: (Left figure) FE solution
(—–) and WFE solution (- - -); (Right figure) relative error of the
WFE solution.

with a step of0.05Hz, between two consecutive interpola-
tion pointsΩp andΩp+1. The adaptive refinement proce-
dure proposed in Section 3.3 is used by considering a toler-
ance thresholdE = 10%. The WFE-based interpolated solu-
tion is displayed in Fig. 11, along with the true relative error
(Eq. (39)). In this case again, the interpolated FRF perfectly
matches the FE solution. As expected, the true relative er-
ror appears bounded byE = 10% over the whole frequency
band.

Again, the relative error made by simply considering the
coarse set of discrete angular frequencies{Ωp}p as interpo-
lation points — i.e., without considering any adaptive refine-
ment — is calculated and plotted (Fig. 11). As expected, the
predicted solution is subject to a large relative error, hence
giving credit to the proposed interpolation strategy.
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Fig. 11 FRF of the curved stiffened panel: (Left figure) FE solution
(—–) and WFE-based interpolated solution (- - -); (Right figure)
relative error of the WFE-based interpolated solution, with adaptive
refinement (–•–) and without adaptive refinement (- • -).

In terms of CPU times, it takes404s to compute the
forced response of the structure by means of the WFE-based
interpolation strategy. The related CPU time saving is64%

in comparison with the conventional WFE method, and90%

in comparison with the FE method (Table 2).

Again, the relevance of the interpolation strategy, in terms
of accuracy and CPU time savings, is clearly highlighted.
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Table 2 CPU times involved.

Approach used CPU time CPU time saving
FE method 3838s

WFE method 1135s 70%

Interpolation strategy 404s 90%

5 Conclusions

The WFE method has been applied to compute the forced
response of one-dimensional periodic structures. Some rules
of thumb of the method have been highlighted and discussed.
One requirement is that the substructures are to be symmet-
ric with respect to their mid-plane. In this sense, an analyt-
ical relation can be considered to strictly enforce the coher-
ence between the right-going and left-going wave modes.
The WFE method has proved to be accurate to describe the
FRFs of two sophisticated periodic structures over wide fre-
quency bands. To reduce further the CPU times involved by
the WFE method, an interpolation strategy has been pro-
posed. In this framework, the WFE solution is explicitly
computed at a reduced number of discrete frequencies. A
linear interpolation scheme is then considered to approxi-
mate the WFE solution between these discrete frequencies,
at several intermediate points. An error indicator has been
derived which enables a fast estimation of the accuracy of
the interpolation scheme at each intermediate point. Adap-
tive refinement of the sampling of interpolation points is
achieved when the proposed error indicator exceeds a cer-
tain tolerance threshold. The relevance of the WFE-based
interpolation strategy, in terms of accuracy and CPU time
savings, has been clearly established in comparison with the
FE method.
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