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This paper deals with a thermoviscoelastic model and its analysis. The 
mechanical formulation is based on the generalization to large strain of the 
Poynting–Thomson rheological model. The heat transfers are governed by the 
classical heat equation and the Fourier law. We briefly expose the finite element 
formulation, which takes into account the quasi-incompressibility constraint 
for the mechanical approach. The influence of several parameters is examined.

1. Introduction

Nowadays, elastomers are frequently employed in

many sectors such as automobile and aeronautics in-

dustries. In their uses, these materials can undergo

strong mechanical and thermal loadings. Moreover their

mechanical properties highly depend on the temperature

and thus the prediction of the behaviour and the as-

sessment of the fatigue strength require a local analysis

based on a formulation of thermomechanical models.

The behavior of an elastomer can be very different

according to:

• the temperature,

• the degree of crosslinking,

• the incorporated particles (carbon black or silicium

filled rubbers)

• . . .

So we can distinguish several approaches in the

literature in accordance with the considered pheno-

menon:

• hyperelasticity modeling the static behaviour of the

material,

• continuum damage mechanics approaching the soft-

ening behaviour under deformation, currently call

Mullins’ effect [28],

• nonlinear viscoelasticity for the simulation of the re-

laxation phenomenon and the eventual dissipation,

• thermomechanical coupling to take temperature sen-

sitivity of mechanical characteristics into account and

to describe the temperature changes due to the me-

chanical dissipation.

More precisely, for hyperelasticity several stress

strain relationships are proposed which are based on the

expression of strain energy density in the isotropic, in-

compressible materials or very nearly so (almost in-

compressible). Among these behaviour laws, statistical

models were carried out with entropic consideration of

the molecular chains configurations [38,39], an other

way consists in a phenomenological approach deduced

from isotropy and incompressibility. These last ones

must be adjusted according to experiment [12,26,31,

32].

Rubber materials, especially carbon black-filled,

present a softening effect experimentally observed

[13]. This loss of stiffness can be micro-mechanically

described by a local separation of the carbon and rub-

ber.

* Corresponding author. Fax: +33-4-91-05-44-58.

E-mail address: meo@imtumn.esm2.imt-mrs.fr (S. Meo).

1



• Coupling the aspects of statistical mechanics and

composite material theory, Govindjee and Simo [10]

propose a first model. It is based on the relation be-

tween the free energy for a statically representative

sample volume and the polymer chains free energy

(the particles are assumed to be rigid). This last

energy is additively split into the contribution of the

chains that are crosslinked on both ends and the con-

tribution of the chains attached on both ends to car-

bon particles.

Some phenomenological considerations allow an ef-

ficient numerical implementation of this model [9].

• A complete phenomenological model is describe by

Simo [37] for a viscoelastic material. It includes soft-

ening behavior under deformation for a cyclic test

with increasing amplitude.

The last two models take only discontinuous damage

into account because the damage is related to the max-

imum stretch of the deformation history for the first and

to the maximum effective strain energy for the second.

But, experimental investigations show that the filled

polymers present a damage accumulation for all strain

cycles and not only for increasing amplitude strain cy-

cles. To take this into account, Miehe [25] uses a damage

evolution governed by the arclength of the effective

strain-energy.

Furthermore, concerning the nonlinear viscoelastic

aspects the formulations are categorized as follows:

• the integral approach principally developed for non-

linear materials with fading memory and which give

the stress tensor according to the strain history [4,

5,32].

The finite linear viscoelasticity method [6,21] is a di-

rect application. It is based on a modified linear Boltz-

mann superposition principle with a nonlinear strain

measure. It uses an asymptotic expansion of relaxation

functions. The separability principle between strain and

time is expressed by the first term of the expansion, while

the higher order terms constitute a correction. More

recently, a generalized deformation measure is proposed

in a modified finite linear viscoelasticity theory [3,27].

• the differential approach is based on the concept of

intermediate state commonly used to describe finite

elastic–plastic deformations [33,34]. It can be saw as

a generalization to large strains of classical rheologi-

cal models [17,18,20,36]. The local state method [19]

constitutes the theoretical frame of this formulation,

the internal variables being introduced by the inter-

mediate states.

These approaches are often more adapted to nuerical

developments.

The inelastic material properties of elastomers in-

volve an internal heat production and thus an increase

of the temperature. This thermomechanical coupling

phenomenon is studied by Holzapfel and Simo [15], but

this paper is only concerned with the linear viscoelas-

ticity. The theoretical framework of a fully coupled

thermomechanical behaviour for finite strains is devel-

oped in the case of elasticity in [15] by the decomposition

of transformation into a thermal one and an elastic one.

The same idea is employed by Lion [22] but instead of an

elastic part, the mechanical transformation is viscoelas-

tic. The internal variables of this models correspond to

inelastic deformations tensors. Holzapfel and Simo [16]

realized the same description but using internal variables

of stress type. All these studies give guidelines to han-

dle nonisothermal problems, taking thermomechanical

coupling into account.

Besides the mechanical (or thermomechanical) be-

haviour, on the numerical aspects, many works con-

tribute to the development of mathematical formulation

and numerical methods allowing precise simulations of

hyperelastic or viscoelastic materials. These finite ele-

ment formulations allow the large strains and take the

incompressibility constraint into account using a penalty

method [23,29] or an augmented Lagrangian method [8]

in order to solve the equilibrium problem in hyperelas-

ticity. Le Tallec and Rahier [18] use a similar approach

for the nonlinear viscoelasticity with a local treatment of

internal variables.

In this paper, we present a thermoviscoelastic model

for large deformation and finite variations of tempera-

ture. It is based on a fully phenomenological approach,

on irreversible thermodynamics and on the local state

method.

After a presentation of the mechanical, thermal

and coupling aspects, we will give an influence analysis

of different parameters taking into account in these as-

pects.

2. Model presentation

2.1. Kinematical description

Consider a body occupying the domain X in the

undeformed C0 and x in the current configuration Ct

(Fig. 1).

As usual, C defines the right Cauchy–Green tensor, E
the Euler–Almansi strain tensor, L the velocity gradient

and D the rate of deformation. They can be defined from

F the deformation gradient:

C ¼ F
T

� F ; ð1Þ
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E ¼ 1
2
ðC � 1Þ; ð2Þ

L ¼ _
FF � F

�1

; ð3Þ

D ¼ 1
2
ðLþ L

T

Þ: ð4Þ

The additive decomposition of infinitesimal strain ten-

sor (e) into an elastic part (ee) and an inelastic one

(ea):

e ¼ ee þ ea ð5Þ

can be extended to large deformation by means of the

intermediate state Ci (Fig. 1) [35]. Introducing F e and F v

respectively, the pseudo-gradients of elastic and viscous

motion, the deformation gradient can be decomposed

as:

F ¼ F e � F v: ð6Þ

It is possible to define an elastic and a viscous dilatation

tensor:

Cv ¼ F
T

v � F v; ð7Þ

Ce ¼ F
T

e � F e: ð8Þ

2.2. Thermodynamic formulation

The system transformation is governed by three

conservation laws of the classical thermodynamics, lo-

cally written in Lagrangian description.

• Mass conservation:

qðdet F Þ ¼ q0; ð9Þ

• Momentum conservation:

q0
€~uu~uu ¼ divXp þ q0

~ff ; ð10Þ

• Energy conservation:

q0 _ee ¼ p :
_
FF � divX~QQþ q0r ð11Þ

with q0 and q respectively the local density mass in C0

and Ct, p the first Piola–Kirschhoff stress tensor, ~ff the

specific forces, e the specific internal energy, ~QQ the Piola–

Kirschhoff heat flux and r the rate of heat production

per unit mass. According to the theory of the thermo-

dynamics of irreversible processes (local state method

[19]), an independent set of thermodynamics variables is

chosen (see [7]): (C,Cv,T ), where T is the absolute

temperature.

Introducing w, the specific free energy, as a function

of this variables set and (11) in the Lagrangian de-

scription of the Clausius–Duhem inequality:

Fig. 1. System configurations.
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We suppose the mechanical (often called intrinsic) and

thermal effects uncoupled in (12):

/int P 0 and /the P 0: ð13Þ

Under the assumption of normal dissipation only de-

pending on the internal variables (the material presents

an instantaneous elasticity) and T, the behaviour law

and the evolution equations of Cv and T [11] are ob-

tained:

p ¼ q0

o

oF
wðC;Cv; T Þ;

g ¼ ow
oT

;

�q0

o

oCv

wðC;Cv; T Þ ¼
o

o
_
CCv

uintð _CCvÞ;

� gradX T
T

¼ o

o~qq
utheð~qqÞ:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð14Þ

This yields for intrinsic dissipation:

/int ¼ v
ou

o
_
CCv

:
_
CCv: ð15Þ

Remark 1. The high compressibility modulus of the

considered elastomer and the range of the evolution of

the temperature (see Section 5.4) make that the dilations

induced by heating effect are very small and are thus

negligible. Consequently, our model does not include

thermal dissipation effect.

2.3. Mechanical behaviour

The mechanical constitutive equations are obtain by

the generalization to large strain of the rheological

model of Poynting–Thomson (Fig. 2). To argue from

analogy with small perturbations, the total free energy is

split into two parts we and wv. They are defined as the

free specific energies associated respectively to elasticity

and viscous responses of the material. For both these

two quantities, we choose an incompressible hyperelastic

law of Gent–Thomas for instantaneous elasticity (we)

and a Neohooke one for wv:

we ¼ c1ðT ÞðI1 � 3Þ þ c2ðT Þ ln I2
3
;

wv ¼ a1ðT ÞðI1 � 3Þ:

�
ð16Þ

The three material coefficients c1, c2, a1 are experimen-

tally determined and they are considered temperature

dependent.

The incompressibility constraint is applied to C and

Cv

detC ¼ 1; trð _CCv � C
�1

v Þ ¼ 0: ð17Þ

The total free energy is then given by:

q0wðC;C; T Þ ¼ q0ðweðC; T Þ þ wvðCv; T ÞÞ if detC ¼ 1;
1 otherwise:

�
ð18Þ

The dissipation is assumed to only depend on the in-

ternal variable. The mechanical pseudo-potential of

dissipation u is taken as a quadratic function of
_
CCv:

uð _CCv; T Þ ¼
1
2
vðT Þ _CCv :

_
CCv if trð _CCv � C

�1

v Þ ¼ 0;
1 otherwise

(
ð19Þ

with v a fourth material coefficient temperature depen-

dent. The evolution of v, c1, c2, a1 are determined at the

same time (see Sections 4 and 5.1).

We then substitute (18) and (19) in (14) for the Po-

ynting–Thomson rheological model:

p ¼ 2q0F e �
owe

oIe1
þ owe

oIe2
Ie1

� �
1� owe

oIe2
Ce

	 

� F

�T

v þ pcof F ;

�q0C
�1

v �C � owe

oIe1
þ owe

oIe2
Ie1

� �
1� owe

oIe2
C

�1

v �C
	 


�C
�1

v

þq0

owv

oIv1
1þ v

_
CCv þ qC

�1

v ¼ 0;

detC ¼ 1;

trð _CCv �C
�1

v Þ ¼ 0:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð20Þ

where p and q are Lagrange multipliers which impose

the incompressibility constraints (20c and d). Then

/0 ¼ p � ow

oF

� �
:
_
FF � q0 g þ ow

oT

� �
_TT � q0

ow

oCv

:
_
CCv|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

/int

� 1

T
~QQ � gradX T|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

/the

P 0: ð12Þ

Fig. 2. Poynting–Thomson model.
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multiplying (20b) by Cv and only considering its devia-

toric part, q is eliminated and we obtain:

q0 C � owe

oIe1
þ owe

oIe2
Ie1

� �
1� owe

oIe2
C

�1

v � C
� �

� C
�1

v

	 
D
þq0

owv

oIv1
C
D

v þ v½Cv �
_
CCv	D ¼ 0;

trð _CCv � C
�1

v Þ ¼ 0:

8>>>>>><
>>>>>>:

ð21Þ

2.4. Thermal behaviour

The Piola–Kirschhoff heat flux (~QQ) is given by the

Fourier law written in the current configuration:

~QQ ¼ �KL � ~rrX T ð~XX ; T Þ: ð22Þ

In this relation, the conductivity tensor (KL) is expressed

in the initial configuration by:

KL ¼ F
�1

� K � F
�T

; ð23Þ

K being the usual Eulerian conductivity tensor.

3. Coupling model

3.1. Constitutive equations

3.1.1. Mechanical problem

The governing equations of the mechanical problem

are given by the mass and momentum conservation

laws, under the hypothesis of incompressibility medium:

q
q0

¼ det F ¼ 1 8~XX 2 X; ð24Þ

q0
€~uu~uu ¼ divp þ q0

~ff 8~XX 2 X ð25Þ

with the boundary conditions (see Fig. 3(a)):

p � ~NN ¼ ~FF 8~XX 2 oXF ;
~uu ¼ ~UU0 8~XX 2 oXU ;
oXF \ oXU ¼ ; oXF [ oXU ¼ oX:

8<
: ð26Þ

It is pointed out that p depends on the temperature

through the coefficients c1, c2, a1 and v (see Section 2.3).

3.1.2. Thermal problem

The heat transfers are governed by the classical heat

equation written in Lagrangian description [1]:

q0Ce
_TT ¼ �div~QQþ q0r þ Ds; ð27Þ

where Ce is the heat capacity:

Ce ¼ T
os
oT

; ð28Þ

q0r the classical internal source term and

Ds ¼ v
_
CCv :

_
CCv|fflfflfflffl{zfflfflfflffl}þ q0T

o2w

oT oC
:
_
CC þ o2w

oT oCv

:
_
CCv

!
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl} ð29Þ

is the internal source term per volume unit in the initial

configuration due to the mechanical problems. It can be

split into two parts, is the intrinsic mechanical dissi-

pation and represents the dependence between the

thermal problem and mechanical one.

Remark 2.We will see later that the mechanical and the

thermal problems will be solved sequentially. During

one mechanical step (<1 s), the evolution of the tem-

perature remains imperceptible. So we can consider that

the term can be neglected ow=oT ! 0. Thus the source

term is reduced to the intrinsic dissipation.

The boundary conditions are given by (see Fig. 3(b))

~QQ ¼ ~QQs 8~XX 2 o XQ;

T ¼ h 8~XX 2 oXT ;
oXQ \ oXT ¼ ; oXQ [ oXT ¼ oX:

8<
: ð30Þ

3.2. Variational formulations

For the mechanical problem the variational formu-

lation of the quasi-static equilibrium problem is obtain

Fig. 3. Thermomechanical problem and boundary conditions.
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by a perturbed Lagrangian form. 1 The solution (~uu; p)
has to cancel the following integral form for all the test

functions d~uu and dp chosen respectively in the same

spaces as those of the trial functions ~uu and p:

Imecð~uu; pÞ ¼
Z

X
p : dF dV �

Z
oXF

~FF � d~uudS

�
Z

X
q0
~ff � d~uudV þ

Z
X

dpðJ � 1� apÞdV ;

ð31Þ

a is a perturbation term, which is equal to zero when the

solution satisfies the incompressibility constraints (20c

and d). If it is strictly positive but small, the obtained

solution satisfies the quasi-incompressibility condition.

For our problem, we take a ¼ 5� 10�4 MPa�1.

The solution of the thermal problem has to cancel for

all test functions dT :

ItheðT Þ ¼ �
Z
oXQ

~QQ � ~NNdT dS �
Z

X
ðDs þ q0rÞdT dV

þ
Z

X
ðq0Cp

_TTdT þ ~rrLðdT Þ � KL � ~rrLðT ÞÞdV :

ð32Þ

3.3. Finite element approximation

3.3.1. Mechanical problem

We choose for the mechanical problem a classical

two-dimensional triangular finite element with a qua-

dratic interpolation for the displacement and a constant

pressure. It is commonly called T6/P1. It verifies the

discrete LBB condition and yields stable pressure ap-

proximations [30]. The hydrostatic pressure is assumed

as an internal degree of freedom, which is eliminated by

a static condensation at element level.

When we use an isoparametric interpolation the

displacement is given by:

~uu ¼ ½Ne
u 	fUeg; ð33Þ

fF g ¼ ½Be	fUeg þ f1g; ð34Þ

and the constant pressure is given by:

p ¼ hNe
p ifPeg: ð35Þ

Eqs. (33)–(35) allow the discretization of (31). Then its

resolution requires the implementation of an an iterative

algorithm of Newton–Raphson giving, at each iteration,

the linear system:

PNelt
e¼1 hdUeið½ket 	fDUeg þ ½ge	fDPeg þ fregÞ ¼ 0;PNelt
e¼1 hdgeið½ge	

TfDUeg þ ½ae	fDPeg þ fiegÞ ¼ 0

(
ð36Þ

with the elementary vectors and matrix given by:

• the tangent matrix:

½ket 	 ¼
Z
ve
½Be	T op

ofueg

	 

dv; ð37Þ

• the residue vector:

freg ¼
Z
ve
½Be	Tfpgdv�

Z
ve
½Ne

u 	
Tf~ff gdv

�
Z
ve\oXF

½Ne
u 	

Tf~FF gds; ð38Þ

• the incompressibility matrix:

½ge	 ¼
Z
ve
½Be	Tfcof F ghNe

p idv; ð39Þ

• the perturbation matrix:

½aep	 ¼ a
Z
ve
fNe

pghNe
p idv; ð40Þ

• and the incompressibility residue:

fieg ¼
Z
ve
fNe

pgðJ � 1� apÞdve: ð41Þ

After the static condensation, the iterative global

system is finally obtained:

½Ktc	fDug ¼ fRcg ð42Þ

with

½Ktc	 ¼ ANelt
e¼1 ð½ket 	 þ ½ge	½aep	½ge	

TÞ;
fRcg ¼ ANelt

e¼1 ð�freg þ ½ge	½aep	
�1fiegÞ;

(
ð43Þ

where ANelt
e¼1 represents the classical assembly operator of

the finite elements method. 2

3.3.2. Thermal problem

For the thermal problem, we use the same geometric

discretization, but using a linear interpolation for tem-

perature:

T ¼ hNe
h ifT eg: ð44Þ

Using (44), the integral form (32) leads to:

½Mh	f _TTg þ ½Kh	fTg ¼ fFhg ð45Þ

1 This method is equivalent to a method of penalization with

a reduced and selective integration technique [2,24].

2 This operator allows to pass from vectors or matrix (½ket 	,
freg � � �) to the global matrix ½Ktc	 and to the global vector fRcg.
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with the mass matrix, the stiffness matrix and the body

forces given by:

½Mh	 ¼ A
Nelt

e¼1

Z
ve

q0CpfNe
hghNe

h idv
	 


; ð46Þ

½Kh	 ¼ A
Nelt

e¼1

Z
ve
½Be	T½KL	½Be	dv

	 

; ð47Þ

fFhg ¼ A
Nelt

e¼1

"Z
ve
fNe

hgðDs:þ q0rÞdve þ
Z
ve\oXQ

fNe
hg~QQ � ~NN ds

#
:

ð48Þ

Then the differential system (45) is solved by an implicit

Eulerian time integration scheme.

3.4. Local solving of complementary law

The construction of the mechanical elementary ma-

trices and vectors requires the evaluation, at each inte-

gration point, of the internal variable Cv and the

derivative term oCv=oF . The complementary law (21) is

summarized by:

_
CCv ¼ vðt; F ðtÞ;CvðtÞÞ on ½t0; t0 þ Dt	;
Cvðt0Þ ¼ C

0

v:

(
ð49Þ

By means of an implicit Eulerian scheme, (49) gives on

½tn; tn þ dt	 a sub-interval of ½t0; t0 þ Dt	:

Cvðtnþ1Þ ¼ CvðtnÞ þ dtvðtnþ1; F ðtnþ1Þ;Cvðtnþ1ÞÞ ð50Þ

which is solved by a Newton–Raphson scheme.

The term oCv=oF is given by the linear system:

d
_
CCv

dF
¼ ov

oCv

:
oCv

oF
þ ov

oF
on ½t0; t0 þ Dt	;

oCv

F

�����
t¼t0

¼ 0:

8>>>>><
>>>>>:

ð51Þ

Using the approximate solution of (51) (and thus the

same time step) (51) can be solved by a Crank–Nichol-

son scheme.

3.5. Coupling algorithm

The time scale of the mechanical problem is assumed

to be smaller than the thermal one in this algorithm.

Thus these problems can be solved separately. Consid-

ering an evolution of the mechanical parameters exper-

imentally determined, the algorithm described Fig. 4 is

adopted.

Fig. 4. Coupling algorithm.
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We first start from a mechanical computation, after

stabilization, a mechanical term source (the mechanical

dissipation or its average, see Section 5.2) and eventu-

ally the gradient transformation are transmitted to the

thermal model. We can now run a thermal simulation,

once the evolution of the temperature is sufficient, the

mechanical properties are updated, a new mechanical

computation is started, and so on.

An appropriate choice of tmec and tthe (Fig. 4) could
lead to the same time scales for the mechanical an

thermal computations.

4. Identification of the mechanical characteristics

The identification procedure consists in a least square

fitting. Cyclic loadings (broken line, Fig. 5(b)) are used.

These experimental data are decomposed in two: the

average stress of a stabilized cycle (broken line, Fig.

5(a)) and the stress difference at constant strain during

the rise and fall of the hysteresis curve (broken line, Fig.

5(c)).

Identifying the average curve to a shearing hyper-

elastic curve (Gent–Thomas model) (continuous line,

Fig. 5(a)), a first value (C1, C2) is determined. Then from

this result, a correction and a complete determination is

provided according to an heuristic method (continuous

line, Fig. 5(b)–(d)) and a set of variables (C1, C2, A1, v) is
finally obtained.

5. Numerical simulation

The different tests are realized on a two-layer elas-

tomer-steel test piece (Fig. 6(a)). The elastomer part is

made dimethyl-vinyl-siloxan vulcanized by peroxide.

This test piece is put into a thermal enclosure at a

constant temperature and subjected to a cyclic shearing

deformation, cðtÞ ¼ C sinð2pftÞ; with a frequency f of 3.1

Hz. The amplitude C defines the relative shearing dis-

placement applied to the external armatures while the

central armature is clamped.

Two thermocouples measure the temperature on one

of the elastomeric layers (Fig. 6(a)).

Fig. 5. Experimental (� � �) and identified (––) curves.
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5.1. Modelisation

Due to the symmetry of the problem, the computa-

tion of this shearing test has been carried out on a half

cross-section of the test piece.

For the thermal problem (Fig. 6(c)), linear triangu-

lar, linear quadrilateral and linear flux elements are

used to mesh respectively the elastomeric layer, the

metallic armatures and the boundaries. A zero flux

condition is applied on the symmetry axis and a con-

vective heat transfer condition is imposed on other

boundaries:

~QQ ¼ �hðT � T0Þ~NN ;

where h is convective heat coefficient and T0 the tem-

perature of the thermal enclosure. The values of the

thermal properties of the materials are declined Table 1.

For the mechanical problem (Fig. 6(b)), using the

plane strains hypothesis, the mesh is the same as the

thermal one (without the linear flux elements), but a

quadratic interpolation is used. The boundary condi-

tions are:

• no displacement on the fixed edge of the central ar-

mature,

• a sinusoidal displacement on the loaded edges of outer

armatures.

Moreover, on the symmetry axis, the normal dis-

placement is fixed to zero. The mechanical properties of

Fig. 6. Physical and numerical problems.

Table 1

Thermal properties

Elastomer Steel

K (Wm�1 K�1) 0.127 45

q0Ce (Jm
�3 K�1) 0:74� 106 3:5� 106

h (Wm�2 K�1) 17 30
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the materials are given Table 2. For the elastomer, as we

said, the parameters of the mechanical model are as-

sumed to be temperature dependent. They are deter-

mined from experimental measurements. These tests

were realized for different temperature and followed by

an interpolation law in order to obtain the evolution

according to the temperature (Fig. 7).

5.2. Algorithm influence

The problem have to be solved on 14 s, so we con-

sider two different configurations of the presented al-

gorithm (see Fig. 4):

• First configuration: the natural configuration

– Ds ¼ /0: mechanical source term,

– Tmec ¼ Tthe ¼ 0:02 s,

– the thermal computation is realized considering the

deformed geometry (i.e. computation of KL).

• Second configuration: the ‘‘simplified’’ configuration

According with Holzapfel and Simo [15] and Lion

[22], the periodicity of the mechanical loading gives

to the dissipation the same propriety (this pheno-

mena is numerically verified on our model). So we

choose a simplified configuration:

– Ds ¼ �//0ðtÞ ¼
R t

0
/0ðsÞds
t ,

– Tmec ¼ 0:93 s (i.e. after three mechanical cycles, the

dissipation is considered stabilized),

– Tthe ¼ 14 s,

– the thermal computation is realized on unde-

formed geometry.

The spatial discretization is given Fig. 9(b) and its

characteristics Table 3. We verify on Fig. 8 that the two

Table 2

Mechanical properties of steel

Young modulus E (MPa) 210 000

Poisson ratio m 0.3

Fig. 7. Elastomer parameters according to the temperature.
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configurations algorithm give quite the same results. On

the zoom, it is possible to see that the evolution obtained

by the first repartition oscillate around the temperature

obtained by the second one. More precisely, these os-

cillations have a period of two mechanical periods, be-

cause the dissipation is maximum when the mechanical

loading is maximal or minimal. The first configuration

need a CPU time fourteen time more important that the

second one. For this reason, a generalization of the

second configuration is adopted for the rest of the study,

the ith cycle of it being:

mechanical computation ðDtmec ¼ 0:888 sÞ
þthermal computation ðDtithe ¼ 2i�1 � 10 sÞ:

	

5.3. Space discretization influence

5.3.1. Mesh refinement

Three spatial discretizations are declined (Fig. 9) and

their characteristics are given in Table 3. In Fig. 10(a),

we examine the maximum of the power balance ob-

tained during the first mechanical computation, i.e. the

quantity:

q0
_ww � p :

_
FF � /int: ð52Þ

Fig. 10(b) shows the maximum of the reactions reached

during the the same mechanical time. At last, on Fig.

10(c), temperatures in the center (thermocouple 1,

Fig. 8. Temperature evolution in the middle of the elastomeric

layer. Comparison between the two configurations.

Table 3

Numbers of elements and degrees of freedom according to the problem and the refinement

Mechanical problem Thermal problem

Elements d.o.f. (displacement) d.o.f. (pressure) Elements d.o.f. (temperature)

Refinement (a) 130 742 80 171 121

Refinements (b) and (d) 400 1938 320 459 285

Rrefinement (c) 1420 6250 1280 1515 853

Fig. 9. Mesh refinement.
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Fig. 6(a)) of the elastomeric layer are compared at the

time 40 s for the three meshes.

All these investigations point that the more accurate

mesh (c) gives the best results; but it also provides the

more important CPU times. A good compromise be-

tween results validity and computational time, if the

power balance is excluded, seems to be the mesh (b).

5.3.2. Type of mechanical spatial discretization

In this paragraph, the meshes (b) and (d) (Fig. 9(b)

and (d)) are compared for a mechanical computation.

These two discretizations present the same number d.o.f.

(in displacement and pressure) and the same number of

elements. We can see Fig. 11 that the mesh (d) is less

conservative than the mesh (b).

5.4. Comparison with experiment

All the previous tests give a good idea of the space

and times discretization to adopt.

From these results, two tests are realized, considering

respectively a temperature of 25 and 60 �C for the

thermal enclosure. The numerical results are compared

on two positions ( , see Fig. 12) with the experimental

ones. This comparison gives a good agreement, and

seems to validate the adopted discretizations (space and

time) and at last the thermomechanical model.

6. Conclusion

A new model has been developed to deal with me-

chanical and thermal problems, allowing for the inter-

action of both these phenomena. This explicit coupling

has a solving algorithm adaptable to the two distinct

time-scales. For the mechanical model, an hypervisco-

elastic behavior is proposed. The thermal formulation is

Fig. 10. Mesh refinement influence.

Fig. 11. Power balance over time (MWm�3)––first mechanical

cycle.
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carried out under finite transformation hypothesis in the

Lagrangian configuration in order to fit it to the me-

chanical formulation.

A study of space discretization allows to determine

an appropriate refinement of mesh and a good pattern

for it. We also obtain the increase of stiffness experi-

mentally observed.

Finally, on a sinusoidal mechanical loading at two

different initial temperatures, a comparison between

numerical and experimental results gives some good

results.

References

[1] B�eerardi G. Mod�eelisation num�eerique du comportement

thermo-visco�eelastique dun �eelastom�eere en grandes d�eeforma-

tions, 1995.

[2] Carey GF, Oden JT. Finite elements. NJ: Prentice-Hall;

1986. vol. 2.

[3] Chang WV, Bloch R, Tschoegl NW. The behaviour of

rubber-like materials in moderately large deformations.

J Rheol 1978;22:1–32.

[4] Christensen RM. Theory of viscoelasticity, an introduc-

tion. New York: Academic Press Inc; 1971.

[5] Coleman BD. Thermodynamics of materials with memory.

Arch Rational Mech Anal 1964;17:1–46.

[6] Coleman BD, Noll W. Foundations of linear viscoelastic-

ity. Rev Mod Phys 1961;33:239–49.

[7] Germain P, M�eecanique 1 et 2. Cours de lEcole Polytech-

nique. Ellipses, 1986.

[8] Glowinski R, Le Tallec P. Numerical solution of problems

in incompressible finite elasticity by augmented Lagrangian

methods, 2. Three-dimensional problems. SIAM J Appl

Math 1984;44:710–33.

[9] Govindjee S, Simo J. Trasnsition from micro-mechanics to

computationally efficient phenomenology: carbon black

filled rubbers incorporating Mullins effect. J Mech Phys

Solids 1992;40:213–33.

[10] Govindjee S, Simo JC. A micro-mechanically based

continuum damage model for carbon black-filled rubbers

incorporating Mullins effect. J Mech Phys Solids 1991;

39:87–112.

[11] Halphen B, Son NQ. Sur les mat�eeriaux standards

g�een�eeralis�ees. J M�eech 1975;14:39–63.

[12] Hart-Smith LJ. Elasticity parameters for finite deforma-

tions of rubber-like materials. J Appl Math Phys 1966;17:

608–26.

[13] Harwood JAC, Mullins L, Payne AR. Stress softening in

rubbers: a review. J IRI 1967:17–27.

[15] Holzapfel GA, Simo J. Entropy elasticity of isotropic

rubber-like solids at finite strains. Comput Meth Appl

Mech Eng 1996;132:17–44.

[16] Holzapfel GA, Simo J. A new viscoelastic constitute model

for continuous media at finite thermomechanical changes.

Int J Struct 1996;33:3019–34.

[17] Le Tallec P. Numerical analysis of viscoelastic problems.

Paris: Masson; 1990.

[18] Le Tallec P, Rahier C. Numerical models of steady rolling

for non-linear viscoelastic structures in finite deformations.

Int J Numer Meth Eng 1994;37:1159–86.
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