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SUMMARY: This study deals with the modeling by finite elements of an elastomeric
composite structure. The main difficulties lie in the heterogeneity of the piece and in the
geometrical non-linearity due to the centrifugal forces. We use the combination of two
different methods of level sub-structuring. The first one is a multi-level sub-structuring
method [1] and the second is a more classical sub-structuring [2]. After computation, the
complete solution in displacement, the complete stress field and the global dumping of the
structure (by an energetic method) are obtained.

KEYWORDS: finite elements method, sub-structure method, dumping, large number of
degrees of freedom, heterogeneity, geometric non linearity, elastomer, composite material.

INTRODUCTION

The Elastomeric Flex Beam (E.F.B.) is developed in aeronautics industry by the Eurocopter
Company. This part is made of one hundred sticks of composite materials  (unidirectional
carbon or unidirectional glass) put into different elastomeric matrices. It has to ensure the
liaison between the rotor and the blade. It is substituted to the three articulations of the
classical rotor, in order to decrease the aerodynamic stress. Due to the differences between the
characteristics of each part, many mechanical problems appear like cracking, fatigue and
stress concentration, which involve an accurate knowledge of mechanical results like the
stress field, the displacements solution or the global dumping of the structure.
Numerically, the insufficient number of sticks and the heterogeneity of the different materials
make it difficult to run a homogenization computation. The complete 3D problem can be
solved, using different sub-structuring methods taking the geometrical non-linearity due to the
centrifugal forces, into account.



Fig. 1: Elastomeric Flex Beam.

1. Substructuring methods
Actually, the sub-structuring methods are more and more applied, because of their advantages:

-They allow the division of the construction and the verification of large structures.
-Once the complete model is defined, each sub-structure can be modified
independently of the other one.
-Sub-structure methods are often the solution for the large problems (several millions
of degrees of freedom).

1.1. Classical Method [1] [2]
Considering a structure which are subdivided in one level of sub-structures (Fig. 2).

Fig. 2: Example of level one substructuring.
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The condensed stiffness matrix is defined by:
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and so:
sss
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 (4) can be written for each substructure:
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Then, if sβ  is the matrix of localization for the substructure s:
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The global condensed stiffness matrix is given by:
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to get the global system:
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Finally, the complete solution is obtained by:
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The method can be subdivided into three phases and represented in Fig. 3.



Fig. 3: Classical sub-structure method.

1.2. Multi-levels substructuring method [3]
This method is applied to all the structures invariant in one direction. In general terms the idea
is to assemble two identical layers, and to eliminate the middle nodes. The first level layer has
just one element in the invariant direction. After n steps of this method, the stiffness matrix
condensed on the extremity of 2n starting sub-structures (Fig. 4) is obtained.

Fig. 4: multi-level substructuring method
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It is established by recurrence that at the step i, the stiffness matrix [ ]Ki  condensed on the
extremities, could be decomposed as shown in (12):
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We can consider that after n steps in the sense of [4] a “superelement” (2nL0 in length) is
obtained. It contains only nodes on its extremities with a stiffness matrix Kn .
The complete solution can be obtained recursively  if the n matrices Ki  for { }ni ,...,1∈  are
stored by

Fig. 5: Deduction of the middle dof.
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To take the geometric non-linearity into account, and according with [4] the stiffness matrix
can be decomposed in:

L
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So, globally this treatment does not modify the method previously exposed

1.3. Combination of classical and multi-level substructuring methods
The E.F.B. can be divided in three parts (Fig. 1): they are composed of composite sticks put
into three kinds of matrices, the first is an elastomeric matrix, the second one is a more rigid
elastomeric matrix and the last one is an assembly of elastomer and composite materials.
All these parts are invariant in one direction (z-axis). They will be substituted by their
equivalent “superelements” determinated by the multi-level sub-structuring method. From this
phase the three stiffness matrices 321 321 ,, KKK nnn  are deduced, where n1, n2, n3 are the
number of steps of the multi-level sub-structuring. Consistent with the notation of (12), we
have:
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So considering the complete structure as a new assembling of three “superelements”, the three
phases of the classical sub-structuring method can be used, s
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{ }3;2;1∈s  are determined on each sub-structures during the first phase. The solution in
displacement is obtained on the three “superelements”. Then if sn K  with { }3;2;1∈s  and

{ }snn ...1∈  are stored, the complete solution is determined on all the E.F.B.
Clearly, this method consists in adding one phase before and one after the three ones of a
classical sub-structuring method, see Fig. 6.

Fig. 6: Combination of the two sub-structuring methods.
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2. Results and conclusions
Different loading are applied all under centrifugal forces on the E.F.B, as illustrated in
Fig. 1: - tensile,

- drag,
- twisting
- and bending.

As said previously, an accurate mesh must be used. Its description is given Fig. 7; using
symmetric and antisymmetric boundary conditions just one quarter of the structures is
considerated. So a layer for the current and the intermediate parts presents 10406 dof and for
the fixation 14754 dof. Respectively 64, 16 and 256 layers are adopted. The meshes are
realized with iso-parametric 3D elements. All the numerical implementations are made on SIC
(system Interactif de Conception) [5]. If the complete 3D problem is solved this leads to a size
of approximately two millions of degree of freedom for the numerical problem. So to
overcome this difficulty, the combination of the two sub-structuring methods seems to be a
good solution.

Fig. 7: Mesh description of the current part and the fixation section.

As illustration, different mechanical results are given on the boundaries of the different parts
i.e.: the more sensible zones. We impose a unitary displacement on the right extremity of the
third substructure, and the left extremity of the first one is fixed.

left boundary

right boundary

fixed section

unitary
displacement
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Fig. 8: Stress field on the right boundary under tensile.

Fig. 9: Stress field on the left boundary under tensile.

Fig. 10: Second deformations invariant on the right boundary in the elastomer.

σzz in the glass sticks (MPa).

σzz in the carbon sticks (MPa).

σzz in the glass sticks
(MPa).

σzz in the carbon sticks (MPa).
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On Fig. 8 and Fig. 9, we note that under a tensile loading, the right extremity sticks are the
more constrained ones. It is in accordance with experimental results [3].
 Furthermore, we can see important concentration of the second deformations invariant
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2
1 εε TrTrI  (Fig. 10) in this zone. This involves important

deformations in the elastomer.
These phenomena prove the heterogeneous comportment of our structure, and hence the
necessity of a complete simulation.

To sum-up, we developed a method enable to simulate some large problems taking
geometrical non-linearity into account. The complete structure must be an assembly of
structures invariant in one direction (a beam, a plate...). This method uses a combination of
different substructuring methods, and leads to the classical results of finite elements
calculation like the stress field or the solution in displacement.
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