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Abstract—In this paper, we consider a production and out-
bound distribution scheduling problem, coming from a real life
problem in a chemotherapy production center. Only one vehicle
with infinite capacity is available for delivery. The production
workshop is an m-machine flow shop. To each job is associated
a processing time per machine, a location site and a delivery
due date. The travel times are known. The problem is to define
a production schedule, batches of jobs, and delivery routes for
each batch, so that the sum of tardiness is minimized. Heuristic
algorithms are proposed and evaluated on random data sets.

I. INTRODUCTION

We consider in this paper the permutation flow-shop
scheduling problem and vehicle routing problem (VRP) in-
tegrated, also called ’production and outbound distribution
scheduling problem’ in the literature. The jobs have to be
delivered to the customers after their production by using a
single vehicle. This problem comes from a real life application
in the domain of chemotherapy production ([17], [12]). In
this production environment, the coordination of production
and delivery at an operational level is very important for
several reasons: the patients are waiting for their treatment,
and avoiding stress and useless lost of time is important, and
injectable products in syringue or pouch have to be delivered
without lost of time. The production process is complex [3],
but it can be easily approximated by a flow shop process with
one stage for the sterilization, one stage for the production
of the pouch or syringue, and one stage for the control. In
the problem that we consider (and in the case of the hospital
of Tours where around 150 preparations are daily performed),
there is only one delivery man, so we consider that there is
only one vehicle.

More precisely, we consider that there is a set J =
{J1, ..., Jn} of n jobs to schedule on a setM = {M1, ...,Mm}
of m machines organized in a flow shop environment. We
denote by pi,j the processing time of Jj on machine Mi and
dj is the delivery due date of Jj . To each job Jj is associated a
site j, where the job has to be delivered. The travel time matrix
between sites is known and tj1,j2 denotes the travel time
between site j1 and site j2 (∀j1, j2 ∈ [0, n]). It is assumed in
the following that the production center is associated to site 0.
Notice that in practice, if the delivery to the patients is done

inside the hospital, there is not one site per job. The number of
sites is limited, and several jobs can be delivered to the same
site. However, if the delivery to the patients is done outside
(home care services), there is potentially one site per patient
with non negligible transportation times.

The problem is to define a schedule of the jobs on the
machines, to define batches of jobs (one batch corresponds to
one trip of the vehicle). For each batch, the vehicle routing
problem consists in defining a route starting from the pro-
duction site, visiting the customers associated to the jobs in
the batch, and finishing at the production site. We define the
variables Ci,j to denote the completion time of job Jj on
machine Mi (∀i ∈ [1,m], ∀j ∈ [1, n]), Dj to denote the
delivery completion time, Tj to denote the tardiness of Jj ,
defined by Tj = max(Dj−dj , 0). The objective is to minimize
the total tardiness of delivery denoted by

∑

Tj =
∑n

j=1 Tj .

This problem is clearly an NP -hard problem [15].

The paper is organized as follows. Section II presents
a survey of the literature in this domain. In Section III, a
linear integer programming formulation of the problem is
proposed. In Section IV we present the resolution methods.
Three heuristic algorithms are proposed. In Section V some
computational experiments are proposed.

II. LITERATURE SURVEY

There are few papers in the literature dealing with inte-
grated production scheduling and vehicle routing problems
at an operational level. These problems are also known un-
der the denomination ’production and outbound distribution
scheduling’. The survey paper of [5] introduces the problem
and proposes a five-field notation α|β|π|δ|γ to describe the
problem. The notation of the problem that we consider is
Fm||V (1,∞), routing|n|

∑

Tj , where the field α = Fm
means that we consider an m-machine flow-shop scheduling
problem, β is empty, the field π contains V (1,∞) meaning
that there is only one vehicle with infinite capacity, and
routing meaning that orders going to different customers can
be transported in the same shipment. In the field δ we have
n to indicate that each job belongs to one customer. Finally,
γ =

∑

Tj is the objective function, here the total tardiness of
delivery.



Of course, a lot of papers in the literature deal with
integrated production and distribution problem. The first paper
is certainly the one of Hall and Potts [11], dealing with
scheduling and delivery problems in the supply chain. Then,
a lot of papers deal with the integration of the scheduling
and the batching problem for delivery [14]. In these papers,
the customers are supposed to be located in close proximity
to each other, as if there was only one customer. Therefore,
there is no vehicle routing problem associated to these (al-
ready) difficult problems. Notice that the problem denoted by
Fm→ D|v = 1, c = 1|Cmax, where there is only one vehicle
of capacity 1 is strongly NP-hard [14]. In other papers, such
as in [19], the production system is considered as a single
machine.

We focus here on few papers, where the production and
the distribution problem present some similarities with our
problem. Some recent references are also reported in the
review paper presented in [7].

In [16], the authors consider a single machine problem
together with routing decisions of a delivery vehicle (with
limited capacity) which serves customers at different locations.
The objective function is the minimization of the sum of jobs
delivery times. The authors show that the problem is strongly
NP-hard and consider a particular case (single-customer), and
the general case with fixed number of customer sites for which
they propose a dynamic programming algorithm.

In [8], the authors consider a fresh food production and
distribution problem. The authors identify three stages: a stage
of batch processing of raw materials into food products, a
stage for packaging these products and a stage for their im-
mediate distribution. The production environment is complex
and sequence dependent setups costs are considered. For the
distribution problem, tight time windows at customer location
are considered. The authors propose a hierarchical approach,
batching the customer orders with similar temperature and
processing requirements and compatible delivery and vehicle
departure times, and applying a heuristic approach to solve the
distribution planning problem.

In [2], the authors consider an integrated production and
inventory routing problem. They propose a mixed-integer
programming model including a single production facility, a
set of customers with time varying demand and a fleet of
homogeneous vehicles. A hybrid methodology is proposed to
solve the mixed-integer programming model.

In [22] the authors consider an integrated production and
distribution planning problem, already studied in [1]. There
is a production facility, modeled as a single machine, a single
transporter and a fixed sequence of customers. A single product
with limited lifespan is produced. Time windows are associated
to the deliveries. The authors propose a branch-and-bound
algorithm for the problem and extend the original problem to
the case where the production start can be delayed and to the
case where the production sequence and the routing sequence
may be different. The authors propose heuristic algorithms for
solving the problem. This model and the constraints considered
are not similar to the problem defined in this paper.

III. INTEGER LINEAR PROGRAMMING FORMULATION

In this Section, we give a linear programming formulation
of the problem. The resolution of this model with commercial
solvers cannot lead to performing solutions if the problem
size is medium. More generally, the complexity of this model
prevents the use of exact algorithms for medium size instances.

The data are given by n, m, the processing times pi,j , the
delivery due dates dj , and the matrix tj1,j2. M is a big value,
set to

∑

i

∑

j pi,j . The objective function is:

Minimize
∑

Tj =

n
∑

j=1

Tj (1)

The variables are:

• yj1,j2, equal to 1 if job Jj1 is scheduled before job
Jj2, 0 otherwise,

• xj1,j2, equal to 1 if job Jj1 is transported before job
Jj2, assuming that they are transported in the same
route, 0 otherwise,

• zj,k, equal to 1 if job Jj is transported during route k
(at most n tours k ∈ [1, n]), 0 otherwise,

• Ci,j , ≥ 0, the completion time of job Jj on machine
Mi,

• Dj , ≥ 0, the delivery time of job Jj ,

• Tj , ≥ 0, the tardiness of job Jj ,

• Sk and Fk, ≥ 0, the starting time and the finishing
time of route number k.

For the scheduling problem, considering two arbitrary jobs
Jj1 and Jj2 (∀j1 ∈ [1, n], ∀j2 ∈ [1, n], j1 6= j2), Jj1 is before
Jj2 or Jj2 is before Jj1.

yj1,j2 + yj2,j1 = 1 (2)

On a given machine Mi (∀i ∈ [1,m]), if Jj1 is before Jj2,
we have (∀j1 ∈ [1, n], ∀j2 ∈ [1, n], j1 6= j2):

Ci,j2 ≥ Ci,j1 + pi,j2 −M(1− yj1,j2) (3)

For any job Jj , the job completes on machine Mi−1 before
starting on Mi (∀i ∈ [1,m], ∀j ∈ [1, n]):

Ci,j ≥ Ci−1,j + pi,j (4)

Any job Jj completes on the first machine after its duration
(∀j ∈ [1, n]):

C1,j ≥ p1,j (5)

The expression of the tardiness of Jj is (∀j ∈ [1, n]):

Tj ≥ Dj − dj (6)

One job Jj belongs necessarily to one tour k (∀j ∈ [1, n],
∀k ∈ [1, n]):

n
∑

k=1

zj,k = 1 (7)



There is necessarily one job (in [0, n]) before and after any
job Jj in a tour (j ∈ [1, n]):

n
∑

j1=0

xj1,j = 1 (8)

n
∑

j2=0

xj,j2 = 1 (9)

In a tour, Jj1 is before Jj2 or Jj2 is before Jj1 (∀j1 ∈
[1, n], ∀j2 ∈ [1, n], j1 6= j2) or there is no relation between
them:

xj1,j2 + xj2,j1 ≤ 1 (10)

If job Jj1 and job Jj2 are in the same tour (∀j1 ∈ [1, n],
∀j2 ∈ [1, n], j1 6= j2, ∀k ∈ [1, n]), one variable xj1,j2 or
xj2,j1 is equal to 1:

xj1,j2 + xj2,j1 ≥ zj1,k + zj2,k − 1 (11)

Route k can only start after the end of previous routes
(∀k1 ∈ [1, n− 1], ∀k2 ∈ [k1, n]):

Sk2 ≥ Fk1 (12)

Route k can only start after the completion of all the jobs
transported (∀j ∈ [1, n], ∀k ∈ [2, n]):

Sk ≥ Cm,j −M(1− zj,k) (13)

The delivery of a job cannot be before the starting time of
the route plus the transportation time from the production site
to the customer (∀j ∈ [1, n], ∀k ∈ [2, n]):

Dj ≥ Sk + t0,j −M(1− zj,k) (14)

The finishing time of route k is after the vehicle returns to
the production site (∀j ∈ [1, n], ∀k ∈ [2, n]):

Fk ≥ Dj + tj,0 −M(1− zj,k) (15)

The delivery time of Jj2 is after the delivery time of Jj1 if
Jj1 is before Jj2 in the same route (∀j1 ∈ [1, n], ∀j2 ∈ [1, n],
j1 6= j2):

Dj2 ≥ Dj1 + tj1,j2 −M(1− xj1,j2) (16)

Some cuts can be added in the model in order to improve
its resolution. For example, if Jj1 is scheduled before Jj2,
then the tour of Jj1 is not after the tour of Jj2 (∀j1 ∈ [1, n],
j2 ∈ [1, n], j1 6= j2):

n
∑

k=1

k × zj1,k ≤

n
∑

k=1

k × zj2,k +M(1− yj1,j2) (17)

This model contains 3n2+n binary variables and 4n+mn
continuous variables and n3 + 9n2 + nm + 4n + 1

2n(n − 1)
constraints. This model contains a lot of constraints with the
’big M ’ parameter and therefore the linear relaxation of this
model yields to poor lower bounds. So the solver cannot cut a
lot and at then end, the model cannot be solved to optimality
for medium size instances in a reasonable computation time.
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Fig. 1. Gantt representation of the solution

Only decomposition methods (column generation, Benders
decomposition, ...) can be used for having optimal solutions
in a reasonable time and only for medium size instances.
For the real-life problem that we consider, instances contain
arround 150 jobs, so the use of exact approaches has not been
investigated further.

Example

We illustrate the problem with the following instance. For
example, let consider the 6-job 2-machine instance described
in Table I.

TABLE I. INSTANCE WITH 6 JOBS AND 2 MACHINES

j 1 2 3 4 5 6

p1,j 40 49 22 58 75 29

p2,j 17 8 12 64 85 47

dj 203 422 241 68 359 293

(tj1,j2) =

0 1 2 3 4 5 6
0
1
2
3
4
5
6



















0 32 33 18 23 34 38
32 0 42 43 53 66 50
33 42 0 21 53 57 7
18 43 21 0 32 36 23
23 53 53 32 0 15 56
34 66 57 36 15 0 58
38 50 7 23 56 58 0



















The optimal solution is given by the sequence
(J4, J1, J6, J3, J5, J2) for the flow shop scheduling problem.
Then, each single job constitutes a batch of delivery, except
jobs J6 and J3 which are transported in the same batch, J3
first and then J6. The value of the objective function is equal
to 86. The values of the variables C1,j , C2,j , Dj and Tj

are given in Table II. The composition, the starting time and
finishing time of each route are given in this Table as well.
Figure 1 gives a Gantt chart representation of the optimal
solution.

TABLE II. RESULT FOR THE INSTANCE WITH 10 JOBS AND 2
MACHINES

j 1 2 3 4 5 6

C1,j 58 98 127 149 224 273

C2,j 122 139 186 198 309 317

Dj 200 422 250 145 355 273

Tj 0 0 9 77 0 0

k 1 2 3 4 5

jobs J4 J1 J6, J3 J5 J2

Sk 122 168 232 311 389

Fk 168 232 311 389 455



IV. RESOLUTION METHODS

Several heuristic algorithms are proposed in this section.

A. Greedy algorithm

The first algorithm proposed for finding an initial solution
is the following greedy algorithm. Starting from a sorting of
the jobs in EDD order, batches of equal size are defined. This
solution can be coded in a 2n size vector containing for each
batch the number of jobs in the batch and the list of jobs. The
vector finishes with some 0 if necessary.

The EDD order is (J4, J1, J3, J6, J5, J2). If the number
of batches is equal to 3, batch 1 will contain jobs (J4, J1),
batch 2 will contain jobs (J3, J6), and batch 3 will contain
jobs (J5, J2). Such a solution is represented by the following
vector:

V = ( 2 , 4, 1, 2 , 3, 6, 2 , 5, 2, 0 , 0, 0)

The evaluation of such a vector is described by Algorithm
1. The scheduling problem is solved by using NEH algorithm
[18] and CDS algorithm [4], assuming that the machines are
available at dates Ri (i ∈ [1,m]) and the sequence with
minimum makespan is kept. The objective function here is
the makespan minimisation because once the batch is defined,
the best solution is obtained when the vehicle starts as early
as possible. The optimization of the total tardiness of delivery
for this batch is taken into account in the next step. For the
routing of the jobs, two heuristic algorithms are also applied.
In the first one, the nearest neighbor is chosen, in the second,
the EDD order is considered for the delivery, assuming that
the vehicle is only available at time t. Again, the best routing
sequence is kept. Machine release dates and vehicle availability
are updated for the next iteration (next batch).

Algorithm 1 Vector evaluation

Input: vector V
Initialise dates Ri = 0, ∀i ∈ [1,m]
Initialise date t = 0
for each batch k do

– Compute a schedule by using NEH algorithm assuming
that the machines are available at dates Ri.
– Compute a schedule by using CDS algorithm assuming
that the machines are available at dates Ri.
– Keep the schedule with minimum makespan and update
dates Ri.
– Compute a routing for the vehicle using Nearest neigh-
bor heuristic, assuming that the vehicle is available at time
max(t, Rm).
– Compute a routing for the vehicle using EDD heuristic,
assuming that the vehicle is available at time max(t, Rm).
– Keep the best route (total tardiness minimisation) and
update t.

end for
Return (total tardiness)

For the example under consideration, the vector has an
evaluation of 131. The production schedule is given by se-
quence (J4, J1, J3, J6, J5, J2), the routing is given by J4 ≺ J1,
then J3 ≺ J6 and finally J2 ≺ J5.

The greedy algorithm that we propose is described in
Algorithm 2.

Algorithm 2 Greedy algorithm GR

S = the jobs sorted in EDD order
UB =∞
for b in 1 to n/2 do

– Build a vector V with b batches, i.e. each batch contains
⌈n/b⌉ jobs (except the last one that contains n − (b −
1)⌈n/b⌉ jobs).
– Evaluate V with Algorithm 1 and update UB if it leads
to a better solution

end for
Return (UB)

One difficulty in this method is the intensive use of NEH
algorithm. This algorithm is known for being very efficient for
solving the Fm||Cmax problem, but for large-scale problems,
its running time is very long. Its complexity is in O(n3m),
even if it can be reduced to O(n2m) [20], whereas the
complexity of CDS is in O(nm2 + mn log(n)). Finally, the
whole complexity of Algorithm 2 is in O(n3m+n2m2), which
is not negligible for instances with important values of n and
m, as we will see in Section V.

B. Tabu search algorithm

Tabu search (TS) has been initially proposed by Glover
[9], [10]. TS is a metaheuristic local search algorithm that
begins with an initial solution and successively moves to the
best solution in the neighborhood of the current solution. The
algorithm maintains a list of forbidden solutions, to prevent
the algorithm from visiting solutions already examined (these
solutions are called tabu). The elements of our TS algorithm
are described below.

A solution is coded by the vector V already presented, and
is evaluated by Algorithm 1. The initial solution is the solution
given by the Greedy Algorithm 2.

Then, several neighborhood operators are applied to this
vector V :

• SWAP(V, j1, j2) operator allows to swap two jobs Jj1
and Jj2, belonging to two different batches,

• EBSR(V, j1, j2) for ”Extract and Backward Shift
Reinsertion”, extracts a job Jj2 belonging to a batch
b2, and re-insert this job before job Jj1, belong to a
batch b1, before batch b2,

• EFSR(V, j1, j2) for ”Extract and Forward Shift Rein-
sertion”, extracts a job Jj1 belonging to a batch b1,
and re-insert this job after job Jj2, belong to a batch
b2, after batch b1.

These basic neighborhood operators are applied for all
couples of positions (k1, k2) with k1 < k2 (job Jj1 is on
position k1 and job Jj2 is on position k2), and it is clear that
Jj1 and Jj2 do not belong to the same batch (k2 starts with
the position of the first job in the next batch).

One element of the Tabu list contains four items:
(j1, j2, b1, b2), i.e. the jobs index and their batch numbers.



The Tabu search algorithm is briefly described in Algorithm
3. UB denotes the current value of the best neighbor, BNV
indicates the Best Neighbor Vector. The stopping criterion is
a limit of computation time.

Algorithm 3 Tabu Search algorithm TS

Input: V = the solution returned by the Greedy algorithm
2
while stopping criterion not met do

– UB =∞
for all pairs (k1, k2), k1 < k2 do

– test SWAP(V, j1, j2) if not Tabu and update BNV
and the Tabu list if necessary
– test EBSR(V, j1, j2) if not Tabu and update BNV
and the Tabu list if necessary
– test EFSR(V, j1, j2) if not Tabu and update BNV
and the Tabu list if necessary

end for
– Update the current solution V ← BNV , update UB

end while
Return (UB)

C. Combined heuristic

A combined heuristic CH between the Greedy Algorithm
GR and the Tabu Search TS is also proposed. This algorithm
applies the Tabu Search Algorithm to the vector generated at
each iteration (”for b in 1 to n/2 do”) of GR, and returns the
best found solution. This method is a sort of multi-start Tabu
Search.

This method is potentially better than GR and TS, except
for the computation time. And because the computation time
will be limited, we will see that it can lead, for some big
instances, to worse solutions than TS and than GR. So for
this method, a second version called CH2 has been tested
where the neighborhood is limited (k2 cannot be greater than
k1 + δ).

V. COMPUTATIONAL EXPERIMENTS

We present in this section the generation of data, and we
discuss the results.

A. Generation data

Data sets have been randomly generated. Notice that there
is no benchmark instance for the m-machine flowshop and
vehicle routing problem integrated, although benchmarck in-
stances do exist for the m-machine flowshop problem with
total tardiness minimization ([21] where several heuristic al-
gorithms are extensively tested). Processing times pi,j have
been generated in interval [1,100]. Due dates dj have been
generated in [50, 50n]. The geographical coordinates of site j
are generated in [0, α 100

√

2
] (see Fig. 2). The travel time ti,j is

the classical euclidian distance:

ti,j =
√

(xj − xi)2 + (yj − yi)2

If α is equal to 1, the maximum distance between two
sites is equal to 100, i.e. traveling times and processing times
are in the same order of magnitude. If α is less than 1, the

site j1

site j2

li,j

yj1

yj2

xj2xj1

✻

❄

α 100
√

2

Fig. 2. Illustration of calculation of tj1,j2

travel times are smaller than the processing times, and it is the
contrary if α is greater than 1.

Thirty instances are generated for each combination of n
and m, with n ∈ {20, 50, 100, 150, 200} and m ∈ {5, 10},
leading to 300 instances per value of α.

We define CLASS 0 the instances where α = 0.75, CLASS
1 the instances where α = 1.00 and CLASS 2 the instances
where α = 1.25. In this paper, we only report the results
obtained with CLASS 1.

B. Results

We present in this section the computational results. In
Table III, columns m and n indicate the size of the instances,
column ’BestH’ indicates the average best value, then for
each heuristic algorithm H , one column indicates the average
objective function value

∑

Tj(H), the average computation
time (in seconds), the number of times the method gives the
best solution (#best) and the average deviation to the best
solution ∆.

∆H =

∑

Tj(H)−Best
∑

Tj
∑

Tj(H)

GR indicates the greedy algorithm, TS refer to the Tabu
Search algorithm with a Tabu list of 10 elements, and CH to
the combined heuristic. The computation time has been limited
to 300 seconds for all algorithms.

The results show the dominance of the Tabu Search. The
Combined Heuristic CH is efficient for the small instances,
with up to 50 jobs, but for larger instances, the CH2 with
limited neighborhood is better.

VI. CONCLUSION

We approach a problem where a m-machine permutation
flow shop scheduling problem and a vehicle routing problem
are integrated, and the objective is to minimize the total
delivery tardiness. We present an MILP formulation of the
problem, a greedy algorithm and Tabu Search based heuristics
with an indirect coding for a solution. Some computational
experiments are conducted and the first results show that the
Tabu Search greatly improves the initial solution given by GR.

In the future, it could be interesting to propose lower
bounds for this problem. The scheduling problem and the



TABLE III. RESULTS FOR CLASS 1 INSTANCES (1)

GR TS

m n BestH
∑

Tj(GR) CPU ∆GR #best
∑

Tj(TS) CPU ∆TS #best

5 20 4953,9 9170,2 0 0,455 0 5356,7 0 0,061 20

5 50 15432,2 29346,2 0 0,471 0 18628,6 1,9 0,142 13

5 100 38543 83060,1 0 0,524 0 39760 44,7 0,024 25

5 150 65062,4 141633,5 0 0,525 0 69323,7 261,7 0,049 24

5 200 110566,8 210017,8 0 0,465 0 119708,3 304,6 0,063 20

10 20 12051,2 16950,9 0 0,284 0 12637,8 0,1 0,042 16

10 50 34846,1 54884,2 0 0,361 0 38166,6 4,4 0,079 14

10 100 83454,6 130753,6 0 0,351 0 90157,4 79,8 0,059 20

10 150 139087,8 232448,8 0 0,392 0 145136,1 302,3 0,032 24

10 200 258808,3 354125 0,1 0,268 0 269366,4 322,6 0,037 11

TABLE IV. RESULTS FOR CLASS 1 INSTANCES (2)

CH CH2
m n BestH

∑

Tj(CH) CPU ∆CH #best
∑

Tj(CH2) CPU ∆CH2 #best

5 20 4953,9 6006,5 1,3 0,2 10 7025,2 0,2 0,3 0

5 50 15432,2 17348,1 191,8 0,092 17 21281,067 10,845 0,259 0

5 100 38543 147849,9 300 0,729 0 59370,4 267,624 0,31 5

5 150 65062,4 373769,4 300 0,826 0 100582,4 300,232 0,313 6

5 200 110566,8 655918,3 300 0,832 0 148460,933 300,477 0,215 10

10 20 12051,2 12969,2 2,7 0,063 14 14545,5 0,329 0,164 0

10 50 34846,1 37792,4 299,9 0,069 16 46418,367 16,947 0,242 0

10 100 83454,6 193939,3 300 0,562 0 105381,467 293,261 0,185 10

10 150 139087,8 440612,5 300 0,682 0 182707,767 300,316 0,217 6

10 200 258808,3 743212,1 300,1 0,653 0 282373,7 300,7 0,076 19

vehicle routing problem being already difficult, finding good
lower bounds seems to be very challenging. The resolution
of the problem to optimality seems also to be a challenging
problem. For this research direction, a model with less ’big-
M ’ constraints can certainly be proposed, and decomposition
methods seem to be research directions to investigate for such
a difficult problem ([13]). Some other metaheuristic methods
can be developed. A Tabu Search algorithm with a direct
encoding can be proposed, as well as a genetic algorithm and
a simulated annealing algorithm, known for its efficency for
the two-machine scheduling problem. Then, the combination
of mathematical programming and local search (matheuristic
in the literature or hybrid optimization, see [6]) can be used,
in order to improve the efficiency of the resolution methods.
Hybrid methods seem very efficient for such difficult problems.
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