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Heuristic algorithms to minimize the total tardiness in a flow shop production and outbound distribution scheduling

In this paper, we consider a production and outbound distribution scheduling problem, coming from a real life problem in a chemotherapy production center. Only one vehicle with infinite capacity is available for delivery. The production workshop is an m-machine flow shop. To each job is associated a processing time per machine, a location site and a delivery due date. The travel times are known. The problem is to define a production schedule, batches of jobs, and delivery routes for each batch, so that the sum of tardiness is minimized. Heuristic algorithms are proposed and evaluated on random data sets.

I. INTRODUCTION

We consider in this paper the permutation flow-shop scheduling problem and vehicle routing problem (VRP) integrated, also called 'production and outbound distribution scheduling problem' in the literature. The jobs have to be delivered to the customers after their production by using a single vehicle. This problem comes from a real life application in the domain of chemotherapy production ( [START_REF] Mazier | Scheduling preparation of doses for a chemotherapy service[END_REF], [START_REF] Kergosien | Planning and Tracking Chemotherapy Production for Cancer Treatment: a Performing and Integrated Solution[END_REF]). In this production environment, the coordination of production and delivery at an operational level is very important for several reasons: the patients are waiting for their treatment, and avoiding stress and useless lost of time is important, and injectable products in syringue or pouch have to be delivered without lost of time. The production process is complex [START_REF] Billaut | A complete view of the scheduling problem of chemotherapy production with expensive and perishable raw materials[END_REF], but it can be easily approximated by a flow shop process with one stage for the sterilization, one stage for the production of the pouch or syringue, and one stage for the control. In the problem that we consider (and in the case of the hospital of Tours where around 150 preparations are daily performed), there is only one delivery man, so we consider that there is only one vehicle.

More precisely, we consider that there is a set J = {J 1 , ..., J n } of n jobs to schedule on a set M = {M 1 , ..., M m } of m machines organized in a flow shop environment. We denote by p i,j the processing time of J j on machine M i and d j is the delivery due date of J j . To each job J j is associated a site j, where the job has to be delivered. The travel time matrix between sites is known and t j1,j2 denotes the travel time between site j1 and site j2 (∀j1, j2 ∈ [0, n]). It is assumed in the following that the production center is associated to site 0. Notice that in practice, if the delivery to the patients is done inside the hospital, there is not one site per job. The number of sites is limited, and several jobs can be delivered to the same site. However, if the delivery to the patients is done outside (home care services), there is potentially one site per patient with non negligible transportation times.

The problem is to define a schedule of the jobs on the machines, to define batches of jobs (one batch corresponds to one trip of the vehicle). For each batch, the vehicle routing problem consists in defining a route starting from the production site, visiting the customers associated to the jobs in the batch, and finishing at the production site. We define the variables C i,j to denote the completion time of job J j on machine

M i (∀i ∈ [1, m], ∀j ∈ [1, n]
), D j to denote the delivery completion time, T j to denote the tardiness of J j , defined by T j = max(D j -d j , 0). The objective is to minimize the total tardiness of delivery denoted by T j = n j=1 T j . This problem is clearly an N P -hard problem [START_REF] Lenstra | Complexity of vehicle routing and scheduling problems[END_REF].

The paper is organized as follows. Section II presents a survey of the literature in this domain. In Section III, a linear integer programming formulation of the problem is proposed. In Section IV we present the resolution methods. Three heuristic algorithms are proposed. In Section V some computational experiments are proposed.

II. LITERATURE SURVEY

There are few papers in the literature dealing with integrated production scheduling and vehicle routing problems at an operational level. These problems are also known under the denomination 'production and outbound distribution scheduling'. The survey paper of [START_REF] Chen | Integrated Production and Outbound Distribution Scheduling: Review and Extensions Operations Research[END_REF] introduces the problem and proposes a five-field notation α|β|π|δ|γ to describe the problem. The notation of the problem that we consider is F m||V (1, ∞), routing|n| T j , where the field α = F m means that we consider an m-machine flow-shop scheduling problem, β is empty, the field π contains V (1, ∞) meaning that there is only one vehicle with infinite capacity, and routing meaning that orders going to different customers can be transported in the same shipment. In the field δ we have n to indicate that each job belongs to one customer. Finally, γ = T j is the objective function, here the total tardiness of delivery.

Of course, a lot of papers in the literature deal with integrated production and distribution problem. The first paper is certainly the one of Hall and Potts [START_REF] Hall | Supply chain scheduling: batching and delivery[END_REF], dealing with scheduling and delivery problems in the supply chain. Then, a lot of papers deal with the integration of the scheduling and the batching problem for delivery [START_REF] Lee | Machine scheduling with transportation considerations[END_REF]. In these papers, the customers are supposed to be located in close proximity to each other, as if there was only one customer. Therefore, there is no vehicle routing problem associated to these (already) difficult problems. Notice that the problem denoted by F m → D|v = 1, c = 1|C max , where there is only one vehicle of capacity 1 is strongly NP-hard [START_REF] Lee | Machine scheduling with transportation considerations[END_REF]. In other papers, such as in [START_REF] Steiner | Approximation algorithms for minimizing the total weighted number of late jobs with late deliveries in two-level supply chains[END_REF], the production system is considered as a single machine.

We focus here on few papers, where the production and the distribution problem present some similarities with our problem. Some recent references are also reported in the review paper presented in [START_REF] Fahimnia | A review and critique on integrated productiondistribution planning models and techniques[END_REF].

In [START_REF] Li | Machine scheduling with deliveries to multiple customer locations[END_REF], the authors consider a single machine problem together with routing decisions of a delivery vehicle (with limited capacity) which serves customers at different locations. The objective function is the minimization of the sum of jobs delivery times. The authors show that the problem is strongly NP-hard and consider a particular case (single-customer), and the general case with fixed number of customer sites for which they propose a dynamic programming algorithm.

In [START_REF] Farahani | Integrated production and distribution planning for perishable food products[END_REF], the authors consider a fresh food production and distribution problem. The authors identify three stages: a stage of batch processing of raw materials into food products, a stage for packaging these products and a stage for their immediate distribution. The production environment is complex and sequence dependent setups costs are considered. For the distribution problem, tight time windows at customer location are considered. The authors propose a hierarchical approach, batching the customer orders with similar temperature and processing requirements and compatible delivery and vehicle departure times, and applying a heuristic approach to solve the distribution planning problem.

In [START_REF] Bard | A branch-and-price algorithm for an integrated production and inventory routing problem[END_REF], the authors consider an integrated production and inventory routing problem. They propose a mixed-integer programming model including a single production facility, a set of customers with time varying demand and a fleet of homogeneous vehicles. A hybrid methodology is proposed to solve the mixed-integer programming model.

In [START_REF] Virguz | Integrated production and sitribution scheduling with lifespan constraints[END_REF] the authors consider an integrated production and distribution planning problem, already studied in [START_REF] Armstrong | A zero-inventory production and distribution problem with a fixed customer sequence[END_REF]. There is a production facility, modeled as a single machine, a single transporter and a fixed sequence of customers. A single product with limited lifespan is produced. Time windows are associated to the deliveries. The authors propose a branch-and-bound algorithm for the problem and extend the original problem to the case where the production start can be delayed and to the case where the production sequence and the routing sequence may be different. The authors propose heuristic algorithms for solving the problem. This model and the constraints considered are not similar to the problem defined in this paper.

III. INTEGER LINEAR PROGRAMMING FORMULATION

In this Section, we give a linear programming formulation of the problem. The resolution of this model with commercial solvers cannot lead to performing solutions if the problem size is medium. More generally, the complexity of this model prevents the use of exact algorithms for medium size instances.

The data are given by n, m, the processing times p i,j , the delivery due dates d j , and the matrix t j1,j2 . M is a big value, set to i j p i,j . The objective function is:

Minimize T j = n j=1 T j (1) 
The variables are:

• y j1,j2 , equal to 1 if job J j1 is scheduled before job J j2 , 0 otherwise,

• x j1,j2 , equal to 1 if job J j1 is transported before job J j2 , assuming that they are transported in the same route, 0 otherwise,

• z j,k , equal to 1 if job J j is transported during route k (at most n tours k ∈ [1, n]), 0 otherwise,
• C i,j , ≥ 0, the completion time of job J j on machine M i ,

• D j , ≥ 0, the delivery time of job J j ,

• T j , ≥ 0, the tardiness of job J j ,

• S k and F k , ≥ 0, the starting time and the finishing time of route number k.

For the scheduling problem, considering two arbitrary jobs J j1 and J j2 (∀j1

∈ [1, n], ∀j2 ∈ [1, n], j1 = j2), J j1 is before J j2 or J j2 is before J j1 . y j1,j2 + y j2,j1 = 1 (2) On a given machine M i (∀i ∈ [1, m]), if J j1 is before J j2 , we have (∀j1 ∈ [1, n], ∀j2 ∈ [1, n], j1 = j2): C i,j2 ≥ C i,j1 + p i,j2 -M (1 -y j1,j2 ) (3) 
For any job J j , the job completes on machine

M i-1 before starting on M i (∀i ∈ [1, m], ∀j ∈ [1, n]): C i,j ≥ C i-1,j + p i,j (4) 
Any job J j completes on the first machine after its duration

(∀j ∈ [1, n]): C 1,j ≥ p 1,j (5) 
The expression of the tardiness of J j is (∀j ∈ [1, n]):

T j ≥ D j -d j (6) 
One job J j belongs necessarily to one tour k

(∀j ∈ [1, n], ∀k ∈ [1, n]): n k=1 z j,k = 1 (7) 
There is necessarily one job (in [0, n]) before and after any job J j in a tour (j ∈ [1, n]):

n j1=0 x j1,j = 1 (8) n j2=0 x j,j2 = 1 (9) 
In a tour, J j1 is before J j2 or J j2 is before

J j1 (∀j1 ∈ [1, n], ∀j2 ∈ [1, n], j1 = j2)
or there is no relation between them:

x j1,j2 + x j2,j1 ≤ 1

If job J j1 and job J j2 are in the same tour (∀j1

∈ [1, n], ∀j2 ∈ [1, n], j1 = j2, ∀k ∈ [1, n]), one variable x j1,j2 or x j2,j1 is equal to 1: x j1,j2 + x j2,j1 ≥ z j1,k + z j2,k -1 (11) 
Route k can only start after the end of previous routes

(∀k1 ∈ [1, n -1], ∀k2 ∈ [k1, n]): S k2 ≥ F k1 (12) 
Route k can only start after the completion of all the jobs transported (∀j

∈ [1, n], ∀k ∈ [2, n]): S k ≥ C m,j -M (1 -z j,k ) (13) 
The delivery of a job cannot be before the starting time of the route plus the transportation time from the production site to the customer (∀j

∈ [1, n], ∀k ∈ [2, n]): D j ≥ S k + t 0,j -M (1 -z j,k ) (14) 
The finishing time of route k is after the vehicle returns to the production site (∀j

∈ [1, n], ∀k ∈ [2, n]): F k ≥ D j + t j,0 -M (1 -z j,k ) (15) 
The delivery time of J j2 is after the delivery time of

J j1 if J j1 is before J j2 in the same route (∀j1 ∈ [1, n], ∀j2 ∈ [1, n], j1 = j2): D j2 ≥ D j1 + t j1,j2 -M (1 -x j1,j2 ) (16) 
Some cuts can be added in the model in order to improve its resolution. For example, if J j1 is scheduled before J j2 , then the tour of J j1 is not after the tour of

J j2 (∀j1 ∈ [1, n], j2 ∈ [1, n], j1 = j2): n k=1 k × z j1,k ≤ n k=1 k × z j2,k + M (1 -y j1,j2 ) (17) 
This model contains 3n 2 + n binary variables and 4n+ mn continuous variables and n 3 + 9n 2 + nm + 4n + 1 2 n(n -1) constraints. This model contains a lot of constraints with the 'big M ' parameter and therefore the linear relaxation of this model yields to poor lower bounds. So the solver cannot cut a lot and at then end, the model cannot be solved to optimality for medium size instances in a reasonable computation time. 0 100 200 300 400 Only decomposition methods (column generation, Benders decomposition, ...) can be used for having optimal solutions in a reasonable time and only for medium size instances.

J 4 J 4 J 1 J 1 J 6 J 6 J 3 J 3 J 5 J 5 J 2 J 2 122 
For the real-life problem that we consider, instances contain arround 150 jobs, so the use of exact approaches has not been investigated further.

Example

We illustrate the problem with the following instance. For example, let consider the 6-job 2-machine instance described in Table I. 

        
The optimal solution is given by the sequence (J 4 , J 1 , J 6 , J 3 , J 5 , J 2 ) for the flow shop scheduling problem. Then, each single job constitutes a batch of delivery, except jobs J 6 and J 3 which are transported in the same batch, J 3 first and then J 6 . The value of the objective function is equal to 86. The values of the variables C 1,j , C 2,j , D j and T j are given in Table II. The composition, the starting time and finishing time of each route are given in this Table as well. Figure 1 gives a Gantt chart representation of the optimal solution. IV. RESOLUTION METHODS Several heuristic algorithms are proposed in this section.

A. Greedy algorithm

The first algorithm proposed for finding an initial solution is the following greedy algorithm. Starting from a sorting of the jobs in EDD order, batches of equal size are defined. This solution can be coded in a 2n size vector containing for each batch the number of jobs in the batch and the list of jobs. The vector finishes with some 0 if necessary.

The EDD order is (J 4 , J 1 , J 3 , J 6 , J 5 , J 2 ). If the number of batches is equal to 3, batch 1 will contain jobs (J 4 , J 1 ), batch 2 will contain jobs (J 3 , J 6 ), and batch 3 will contain jobs (J 5 , J 2 ). Such a solution is represented by the following vector:

V = ( 2 , 4, 1, 2 , 3, 6, 2 , 5, 2, 0 , 0, 0)
The evaluation of such a vector is described by Algorithm 1. The scheduling problem is solved by using NEH algorithm [START_REF] Nawaz | A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem[END_REF] and CDS algorithm [START_REF] Campbell | A heuristic algorithm for the n job, m machine sequencing problem[END_REF], assuming that the machines are available at dates R i (i ∈ [1, m]) and the sequence with minimum makespan is kept. The objective function here is the makespan minimisation because once the batch is defined, the best solution is obtained when the vehicle starts as early as possible. The optimization of the total tardiness of delivery for this batch is taken into account in the next step. For the routing of the jobs, two heuristic algorithms are also applied. In the first one, the nearest neighbor is chosen, in the second, the EDD order is considered for the delivery, assuming that the vehicle is only available at time t. Again, the best routing sequence is kept. Machine release dates and vehicle availability are updated for the next iteration (next batch).

Algorithm 1 Vector evaluation

Input: vector V Initialise dates R i = 0, ∀i ∈ [1, m] Initialise date t = 0 for each batch k do -Compute a schedule by using NEH algorithm assuming that the machines are available at dates R i .

-Compute a schedule by using CDS algorithm assuming that the machines are available at dates R i .

-Keep the schedule with minimum makespan and update dates R i .

-Compute a routing for the vehicle using Nearest neighbor heuristic, assuming that the vehicle is available at time max(t, R m ).

-Compute a routing for the vehicle using EDD heuristic, assuming that the vehicle is available at time max(t, R m ).

-Keep the best route (total tardiness minimisation) and update t. end for Return (total tardiness) For the example under consideration, the vector has an evaluation of 131. The production schedule is given by sequence (J 4 , J 1 , J 3 , J 6 , J 5 , J 2 ), the routing is given by J 4 ≺ J 1 , then J 3 ≺ J 6 and finally J 2 ≺ J 5 .

The greedy algorithm that we propose is described in Algorithm 2. -Evaluate V with Algorithm 1 and update U B if it leads to a better solution end for Return (U B) One difficulty in this method is the intensive use of NEH algorithm. This algorithm is known for being very efficient for solving the F m||C max problem, but for large-scale problems, its running time is very long. Its complexity is in O(n 3 m), even if it can be reduced to O(n 2 m) [START_REF] Taillard | Some efficient heuristic methods for the sequencing problem[END_REF], whereas the complexity of CDS is in O(nm 2 + mn log(n)). Finally, the whole complexity of Algorithm 2 is in O(n 3 m+n 2 m 2 ), which is not negligible for instances with important values of n and m, as we will see in Section V.

B. Tabu search algorithm

Tabu search (TS) has been initially proposed by Glover [START_REF] Glover | Tabu Search -Part I[END_REF], [START_REF] Glover | Tabu Search -Part II[END_REF]. TS is a metaheuristic local search algorithm that begins with an initial solution and successively moves to the best solution in the neighborhood of the current solution. The algorithm maintains a list of forbidden solutions, to prevent the algorithm from visiting solutions already examined (these solutions are called tabu). The elements of our TS algorithm are described below.

A solution is coded by the vector V already presented, and is evaluated by Algorithm 1. The initial solution is the solution given by the Greedy Algorithm 2.

Then, several neighborhood operators are applied to this vector V :

• SWAP(V, j1, j2) operator allows to swap two jobs J j1 and J j2 , belonging to two different batches,

• EBSR(V, j1, j2) for "Extract and Backward Shift Reinsertion", extracts a job J j2 belonging to a batch b2, and re-insert this job before job J j1 , belong to a batch b1, before batch b2,

• EFSR(V, j1, j2) for "Extract and Forward Shift Reinsertion", extracts a job J j1 belonging to a batch b1, and re-insert this job after job J j2 , belong to a batch b2, after batch b1.

These basic neighborhood operators are applied for all couples of positions (k1, k2) with k1 < k2 (job J j1 is on position k1 and job J j2 is on position k2), and it is clear that J j1 and J j2 do not belong to the same batch (k2 starts with the position of the first job in the next batch).

One element of the Tabu list contains four items: (j1, j2, b1, b2), i.e. the jobs index and their batch numbers.

The Tabu search algorithm is briefly described in Algorithm 3. U B denotes the current value of the best neighbor, BN V indicates the Best Neighbor Vector. The stopping criterion is a limit of computation time.

Algorithm 3 Tabu Search algorithm T S

Input: V = the solution returned by the Greedy algorithm 2 while stopping criterion not met do -U B = ∞ for all pairs (k1, k2), k1 

C. Combined heuristic

A combined heuristic CH between the Greedy Algorithm GR and the Tabu Search T S is also proposed. This algorithm applies the Tabu Search Algorithm to the vector generated at each iteration ("for b in 1 to n/2 do") of GR, and returns the best found solution. This method is a sort of multi-start Tabu Search. This method is potentially better than GR and T S, except for the computation time. And because the computation time will be limited, we will see that it can lead, for some big instances, to worse solutions than T S and than GR. So for this method, a second version called CH2 has been tested where the neighborhood is limited (k2 cannot be greater than k1 + δ).

V. COMPUTATIONAL EXPERIMENTS

We present in this section the generation of data, and we discuss the results.

A. Generation data

Data sets have been randomly generated. Notice that there is no benchmark instance for the m-machine flowshop and vehicle routing problem integrated, although benchmarck instances do exist for the m-machine flowshop problem with total tardiness minimization ( [START_REF] Vallada | Minimising total tardiness in the m-machine flowshop problem: A review and evaluation of heuristics and metaheuristics[END_REF] where several heuristic algorithms are extensively tested). Processing times p i,j have been generated in interval [START_REF] Armstrong | A zero-inventory production and distribution problem with a fixed customer sequence[END_REF]100]. Due dates d j have been generated in [50, 50n]. The geographical coordinates of site j are generated in [0, α 100 √ 2 ] (see Fig. 2). The travel time t i,j is the classical euclidian distance:

t i,j = (x j -x i ) 2 + (y j -y i ) 2
If α is equal to 1, the maximum distance between two sites is equal to 100, i.e. traveling times and processing times are in the same order of magnitude. If α is less than 1, the site j1 site j2 l i,j

y j1 y j2 x j2 x j1 ✻ ❄ α 100 √ 2
Fig. 2. Illustration of calculation of t j1,j2

travel times are smaller than the processing times, and it is the contrary if α is greater than 1.

Thirty instances are generated for each combination of n and m, with n ∈ {20, 50, 100, 150, 200} and m ∈ {5, 10}, leading to 300 instances per value of α.

We define CLASS 0 the instances where α = 0.75, CLASS 1 the instances where α = 1.00 and CLASS 2 the instances where α = 1.25. In this paper, we only report the results obtained with CLASS 1.

B. Results

We present in this section the computational results. In Table III, columns m and n indicate the size of the instances, column 'BestH' indicates the average best value, then for each heuristic algorithm H, one column indicates the average objective function value T j (H), the average computation time (in seconds), the number of times the method gives the best solution (#best) and the average deviation to the best solution ∆.

∆ H = T j (H) -Best T j T j (H)
GR indicates the greedy algorithm, T S refer to the Tabu Search algorithm with a Tabu list of 10 elements, and CH to the combined heuristic. The computation time has been limited to 300 seconds for all algorithms.

The results show the dominance of the Tabu Search. The Combined Heuristic CH is efficient for the small instances, with up to 50 jobs, but for larger instances, the CH2 with limited neighborhood is better.

VI. CONCLUSION

We approach a problem where a m-machine permutation flow shop scheduling problem and a vehicle routing problem are integrated, and the objective is to minimize the total delivery tardiness. We present an MILP formulation of the problem, a greedy algorithm and Tabu Search based heuristics with an indirect coding for a solution. Some computational experiments are conducted and the first results show that the Tabu Search greatly improves the initial solution given by GR.

In the future, it could be interesting to propose lower bounds for this problem. The scheduling problem and the vehicle routing problem being already difficult, finding good lower bounds seems to be very challenging. The resolution of the problem to optimality seems also to be a challenging problem. For this research direction, a model with less 'big-M ' constraints can certainly be proposed, and decomposition methods seem to be research directions to investigate for such a difficult problem ( [START_REF] Kergosien | A Benders decomposition based heuristic for a combined transportation and scheduling problem in chemotherapy production[END_REF]). Some other metaheuristic methods can be developed. A Tabu Search algorithm with a direct encoding can be proposed, as well as a genetic algorithm and a simulated annealing algorithm, known for its efficency for the two-machine scheduling problem. Then, the combination of mathematical programming and local search (matheuristic in the literature or hybrid optimization, see [START_REF] Della Croce | Recovering Beam Search: enhancing the beam search approach for combinatorial optimization problems[END_REF]) can be used, in order to improve the efficiency of the resolution methods. Hybrid methods seem very efficient for such difficult problems.
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 21 Fig. 1. Gantt representation of the solution

Algorithm 2

 2 Greedy algorithm GR S = the jobs sorted in EDD order U B = ∞ for b in 1 to n/2 do -Build a vector V with b batches, i.e. each batch contains ⌈n/b⌉ jobs (except the last one that contains n -(b -1)⌈n/b⌉ jobs).

TABLE I .

 I INSTANCE WITH 6 JOBS AND 2 MACHINES

	j	1		2	3	4	5	6
	p1,j	40	49	22	58	75	29
	p2,j	17	8	12	64	85	47
	dj	203	422	241	68	359	293
				0	1	2	3	4	5	6
	(tj1,j2) =	0 1 2 3 4 5 6	        	0 32 33 42 32 33 18 23 34 38 0 42 43 53 66 50 0 21 53 57 7 18 43 21 0 32 36 23 23 53 53 32 0 15 56 34 66 57 36 15 0 58 38 50 7 23 56 58 0

TABLE II

 II 

	.	RESULT FOR THE INSTANCE WITH 10 JOBS AND 2
				MACHINES		
	j		1	2	3	4	5	6
	C1,j		58	98	127	149	224	273
	C2,j		122	139	186	198	309	317
	Dj		200	422	250	145	355	273
	Tj		0	0	9	77	0	0
	k		1	2	3		4	5
	jobs	J4	J1	J6, J3	J5	J2
	S k	122	168	232		311	389
	F k	168	232	311		389	455

TABLE III .

 III RESULTS FOR CLASS 1 INSTANCES[START_REF] Armstrong | A zero-inventory production and distribution problem with a fixed customer sequence[END_REF] 

					GR				T S		
	m	n	BestH	Tj (GR)	CPU	∆GR	#best	Tj (T S)	CPU	∆T S	#best
	5	20	4953,9	9170,2	0	0,455	0	5356,7	0	0,061	20
	5	50	15432,2	29346,2	0	0,471	0	18628,6	1,9	0,142	13
	5	100	38543	83060,1	0	0,524	0	39760	44,7	0,024	25
	5	150	65062,4	141633,5	0	0,525	0	69323,7	261,7	0,049	24
	5	200	110566,8	210017,8	0	0,465	0	119708,3	304,6	0,063	20
	10	20	12051,2	16950,9	0	0,284	0	12637,8	0,1	0,042	16
	10	50	34846,1	54884,2	0	0,361	0	38166,6	4,4	0,079	14
	10	100	83454,6	130753,6	0	0,351	0	90157,4	79,8	0,059	20
	10	150	139087,8	232448,8	0	0,392	0	145136,1	302,3	0,032	24
	10	200	258808,3	354125	0,1	0,268	0	269366,4	322,6	0,037	11

TABLE IV .

 IV RESULTS FOR CLASS 1 INSTANCES (2)

					CH				CH2		
	m	n	BestH	Tj (CH)	CPU	∆CH	#best	Tj (CH2)	CPU	∆CH2	#best
	5	20	4953,9	6006,5	1,3	0,2	10	7025,2	0,2	0,3	0
	5	50	15432,2	17348,1	191,8	0,092	17	21281,067	10,845	0,259	0
	5	100	38543	147849,9	300	0,729	0	59370,4	267,624	0,31	5
	5	150	65062,4	373769,4	300	0,826	0	100582,4	300,232	0,313	6
	5	200	110566,8	655918,3	300	0,832	0	148460,933	300,477	0,215	10
	10	20	12051,2	12969,2	2,7	0,063	14	14545,5	0,329	0,164	0
	10	50	34846,1	37792,4	299,9	0,069	16	46418,367	16,947	0,242	0
	10	100	83454,6	193939,3	300	0,562	0	105381,467	293,261	0,185	10
	10	150	139087,8	440612,5	300	0,682	0	182707,767	300,316	0,217	6
	10	200	258808,3	743212,1	300,1	0,653	0	282373,7	300,7	0,076	19
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