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Abstract

The sequential sampling of populations with unequal probabilities and
with replacement in a closed population is a recurrent problem in ecology
and evolution. Many of these questions can be reformulated as urn prob-
lems, often as special cases of the coupon collector problem, most simply
expressed as the number of coupons that must be collected to have a
complete set. We aimed to apply the coupon collector model in a compre-
hensive manner to one example - hosts (balls) being searched (draws) and
parasitized (ball color change) by parasitic wasps - to evaluate the in�u-
ence of di�erences in sampling probabilities between items on collection
speed.

Based on the model of a complete multinomial process over time, we
de�ne the distribution, distribution function, expectation and variance of
the number of hosts parasitized after a given time, as well as the inverse
problem, estimating the sampling e�ort. We develop the relationship
between the risk distribution on the set of hosts and the speed of parasiti-
zation and propose a more elegant proof of the weak stochastic dominance
among speed of parasitization, using the concept of Schur convexity and
the � Robin Hood transfer� numerical operation.

Numerical examples are provided and a conjecture about strong dom-
inance is proposed. The speed at which new items are discovered is a
function of the entire shape of the sampling probability distribution. The
sole comparison of values of variances is not su�cient to compare speeds
associated to two di�erent distributions, as generally assumed in ecological
studies.

Keywords: Coupon collector's problem; parasitoid; stochastic dominance; strong
dominance; ecology.
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1 Introduction

The description of sequential sampling of a population of individuals for which
the probability of being selected does not vary until a speci�c event, such as
the collection of all or some types of individuals or a speci�c subgroup of the
population, occurs is a common problem in ecology and evolution studies. In
probability theory, such problems are often treated as urn problems, generally
as the �coupon collector problem� (CCP). The CCP is a mathematical model
that belongs to the family of urn problems that can be formulated as follows:
A company issues coupons of di�erent types, each with a particular probability
of being issued. The object of interest is the number of coupons that must be
collected to obtain a full collection. This problem has been widely studied. The
�rst �ndings concerned the classical problem in which all coupons are equally
likely to be obtained (Feller, 1968). Rapid advances have been made in this
�eld (Boneh and Hofri, 1989; Flajolet et al., 1992; Anceaume et al., 2015), but
they have gone largely unnoticed by most scientists working in ecology and
evolution. This is partly due to di�culties in making the correct analogies,
partly due to a lack of worked examples and partly because each �eld devises
its own vocabulary, procedures and formalism. In ecological sciences, for exam-
ple, a vibrant �eld of theoretical and applied ecological statistics developed in
the 1950s from the repeated sampling of populations to estimate biodiversity
richness (McArthur, 1957; Simpson, 1949). This �eld could greatly bene�t from
the latest advances in the CCP (Fitzpatrick, 1993; Huillet and Paroissin, 2009).
Related problems deal with the relative abundance of species from a commu-
nity containing many species (Dennehy, 2009), or the sampling e�ort required
to achieve a particular level of coverage (Neal and Moriary, 2009). Increases
in the number of new hosts being infected or superinfected are a topic of great
importance in population dynamics and epidemiology (Daley et al., 2001; Lloyd-
Smith et al., 2005; Keeling and Rohani, 2008). Several of the questions posed
in capture-recapture studies relate to the coupon collector problem. Occupancy
problems and related capture-recapture techniques are, indeed, de�ned as prob-
lems in which the probability of a given species occupying a given state at a
given time must be determined (see the review Bailey et al., 2013 and the paper
Hernandez-Suarez and Hiebeler, 2011). In ethological sciences, the estimation
of a repertoire of signals in animal communication is considered as a form of the
CCP, because vocal repertoire size is a key behavioral indicator of the complex-
ity of the vocal communication system in birds and mammals (Kershenbaum
et al., 2015). In genetics and evolution, the coupon collector problem has been
recognized as such only occasionally, despite these �elds having generated some
of the most elegant theorems and uses of other urn processes (Ewens, 1972;
Donelly, 1986; Doumas, 2015). Indeed, the coupon collector problem has been
used in the context of exhaustive haplotype sampling in phylogeography, (Dixon,
2006), determining the number of bene�cial mutations as a function of sequence
lines (Tenaillon et al., 2012), and estimations of the size of the library required
to target a particular percentage of the non-essential genome displaying a given
property ( Vandewalle et al., 2015), for example.

2



Urn models have been much more widely used for modelling host-parasitoid
systems than in other topics of ecology. We therefore used the biological con-
text and formalism of parasitism by parasitic wasps, as the results obtained
with this system can easily be extended to other ecological and evolutionary
contexts. Parasitic wasps search for insects hosts, such as caterpillars, in which
they lay a single, or multiple eggs. In solitary wasp species, only a single wasp
develops fully in a given host. Parasitism can thus be formalized as a probabilis-
tic dynamic process with hosts as `balls' and parasitoids changing their `color'
by parasitizing them. In work beginning more than a century ago (Fiske, 1910;
Thompson, 1924), the pioneering population dynamicists assumed that hosts
were found and attacked on successive occasions governed by exponential laws
in continuous time. The number of draws was thus considered to be random
and the number of eggs for a given host was assumed to follow a Poisson law
(Montovan et al., 2015). If we assume that the number of draws is �xed, then
the distribution of the number of eggs for a given host is binomial, but closely
approximates a Poisson distribution in large host populations. The proportion
of the population without eggs (the zero class) is of particular interest, because
these hosts survive parasitism and produce o�spring for the next generation.
In �eld studies however, observed distributions are generally more aggregated
than would be expected under the assumed Poisson distribution (Hemerick et
al., 2002). Aggregation is interpreted as the result of heterogeneity in the risk of
being found, due to di�erences in location, accessibility, appearance, color, de-
velopmental stage or any other trait (Hassell, 2000; Murdoch et al., 2013). The
risk distribution greatly in�uences the stability of the host-parasitoid system
and has been widely studied (May, 1978; Ives et al., 1999; Singh et al., 2009).

All these models focus on the distribution of eggs over the entire population
of hosts, after a given time or a given number of draws (Figure1). However, the
use of this distribution greatly decreases the amount of information available, as
it collapses individual host histories. Parasitism is a multinomial process (Fig-
ure1), in which time corresponds to host draws. Its dynamics determines, for
example, the percentage of hosts parasitized at the end of the season, the oppor-
tunity and time at which alternative pest control methods need to be deployed
in supplement in biological control with parasitoids, and the time required to
achieve a given degree of control by parasitic wasps. In the present paper, we
aimed to model parasitism as a multinomial urn process over time and we study
the speed of parasitization (Figure1). We consider host encounters followed by
oviposition without discrimination. The parasitism process described above can
be considered as a coupon collector problem. In this case, there is a �nite pop-
ulation of hosts di�ering in appearance, location, developmental stage or other
factors. This heterogeneity results in di�erent probabilities of hosts being found
by parasitoids. These probabilities, ph for host h, do not change over time.
Our work therefore entails describing in depth the coupon collector problem,
highlighting unnoticed analogies among previous works within the probability
literature, and comparing the in�uence of the degree of heterogeneity among
hosts on the speed of infection. We give a compact and hopefully more elegant
proof than previously known of the following fact : the more the distribution p
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Figure 1. Attacks of caterpillar larvae hosts by parasitic wasps as an urn process
in discrete time n. A wasp oviposit 10 eggs among �ve hosts (n = 10) (A).
The outcome of the fundamental multinomial process (B) is summarized in the
marginal distribution of the number of eggs per individual host at a given time
S10 = (3, 1, 3, 0, 3) (C), in the frequency distribution of eggs among hosts (D)
and in the number of hosts attacked over time Yn (E)

4



on the set of hosts is heterogeneous, the more the (random) number Y of par-
asitized hosts after a given number of draws is small; in other terms, there is a
monotonic relationship between the majorization relation on the set of probabil-
ity distributions p with the stochastic dominance on the set of random numbers
Y .

This paper is structured as follows. In Section 2, we de�ne a succession Sn,
n = 1, 2, ..., of N -dimensional random variables describing the state of the host
population over time, in which time, n, is given by the number of attacks on the
set of hosts. Each marginal distribution of Sn provides us information about a
subset of hosts, including, in particular, the h-th component representing the
number of times that host h has been attacked by a parasitoid between times 1
and n. In Section 3 we de�ne the random variables Yn, n = 1, 2, ..., representing
the number of parasitized hosts after n draws. We also compute the distribution,
the distribution function, the expectation and the variance of Yn. We found no
examples of calculations of this value in previous studies and therefore believe
this aspect to be novel. We obtain the expected number of draws required for all
hosts in a given subset to be parasitized and provide upper and lower bounds for
this value in Section 4. In Section 5, we apply the results developed in previous
sections to two particular risk distributions on the set of hosts. We �rst use the
uniform distribution, and then a distribution corresponding to a host population
with two di�erent kinds of hosts. We calculate the most relevant values for
each of these cases. In Section 6, we develop the relationship between the
speed of parasitization and the risk distribution in the set of hosts. A narrower
risk distribution is associated with faster parasitization. Thus, parasitization
is fastest when the risk distribution is uniform. We highlight this �nding with
numerical examples in Section 7 and propose a conjecture on strong stochastic
dominance in Section 8.

2 Modelling parasitism as an urn process

We assume a �nite population of hosts, constant for the entire duration of
the experiment. The parasitoid population is irrelevant, but we assume that
the number of eggs that can be laid in the host population is not limiting.
The situation is developed in successive stages or draws. At each stage, a
parasitoid attacks a host, in which it lays an egg. The model is based on the
fundamental assumption that successive draws are mutually independent. The
hosts di�er in appearance due to intrinsic qualities, and these di�erences modify
their probability of being attacked by a parasitoid. If the hosts are named 1, 2,
3, . . . , N , then host h has a probability ph ≥ 0 (

∑
ph = 1) of being attacked

by a parasitoid in a draw. This probability does not change during the process.
We will say that p1,p2,...,pN or (p1, p2, ..., pN ) is the risk distribution for the set
of hosts H = {1, 2, ..., N}.

The underlying probability space of our model is (Ω,S, P ), where the ele-
ments of Ω are all the possible histories of parasitism, that is Ω = HN, equipped
with its product σ-algebra S and the probability P given by Kolmogorov´s
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Theorem: if we therefore �x i1, i2, i3, . . . , in in H, the probability of the event
{ω = i1i2i3 . . . injn+1jn+2 · · · : for some jkin H, k > n} is pi1pi2 . . . pin . When
necessary, the vector (p1, p2, ..., pN ) will be denoted by a single letter p, and the
probability P will be denoted by Pp.

We can describe this situation by de�ning a succession of random variables,

Sn = (Sn1, Sn2, ..., SnN ), n = 1, 2, ... (2.1)

where Snj denotes the number of eggs in host j after n draws.
Variable Sn represents the state of the host population after n draws, that is,

the distribution of eggs over the total population of hosts. If host i was visited
ri times between stages 1 and n, for i = 1, 2, ..., N , then Sn takes the value
(r1, r2, ..., rN ). This variable has a multinomial distribution with parameters n,
p1,p2,...,pN , that is, for every integers r1, r2,..., rN , 0 ≤ ri ≤ n, r1+r2+...+rN =
n,

P (Sn1 = r1, Sn2 = r2, ..., SnN = rN ) =
n!

r1!r2!...rN !
pr11 p

r2
2 ...p

rN
N . (2.2)

The marginal distribution of Sn, for i1, i2, ..., ih distinct elements of {1, 2, ..., N}
is given by

P (Sni1 = ri1 , Sni2 = ri2 , ..., Snih = rih) =

n!

ri1 !ri2 !...rih !(n−
∑
rij )!

p
ri1
i1
p
ri2
i2
...p

rih
ih
q
n−

∑
rij

i1i2...ih
, (2.3)

with 0 ≤ rij ≤ n, j = 1, 2, ..., h, ri1 + ri2 + ...+ rih ≤ n, qi1i2...ih = 1−
h∑

j=1

pij .

This is the probability that, after n draws host i1 has been visited ri1 times by
the parasitoids, host i2 ri2 times and host ih rih times, without considering the
rest of the hosts.

In particular, the component Snh of Sn has a binomial distribution with
parameters n, ph,

P (Snh = r) =
n!

r!(n− r)!
prhq

n−r
h , r = 0, 1, 2, ..., n (2.4)

where qh = 1− ph =
∑
i 6=h

pi.

This variable represents the state of host h after n draws. Thus, P (Snh = r) is
the probability that host h has been attaked r times during the n draws.

The expected value and variance of this random variable are

E(Snh) = nph, V ar(Snh) = nph(1− ph).

Let (e1, e2, ..., eN ) denote the canonical base of the space RN . We emphasize
that the process (Sn)n≥1 is the random walk on ZN

+ with independent increments
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obeying the following law: Sn+1 − Sn = ek with probability pk. The statistical
behavior of this process is also very well known.

Note that, in this model, the sequence of random subsets of H, describing
the set of parasitized hosts over time, is a Markov chain, and it is not di�cult
to give a precise description of its probability transitions. However, it is not
straightforward to study this Markov chain directly.

3 Number of parasitized hosts after n draws

Let Yn be the random variable representing the number of parasitized hosts
after n draws, that is Yn = k if there are exactly k parasitized hosts after n
draws. In this section we study this random variable obtaining expressions for:
its probability mass function (3.3), distribution function (3.5), expectation (3.6)
and variance (3.7).

From now on, for any integer h > 0 and real x, we write

x(h) = x(x− 1)(x− 2)...(x− h+ 1), x(0) = 1,

(
x

h

)
=
x(h)

h!
=
x(x− 1)...(x− h+ 1)

h!
, and

(
x

0

)
= 1. (3.1)

The distribution and the distribution function of Yn have been obtained in
previous studies, see Anceaume et al. (2015) .

By applying the general inclusion and exclusion principle, we �nd that, for
any distinct elements j1, j2, ..., jk of H, and denoting pj1 j2...jk = pj1 +pj2 + ...+
pjk ,

P (the set of parasitized hosts after n draws is {j1, j2, ..., jk}) =

pnj1 j2...jk −
∑

{i1,i2,...,ik−1}⊂{j1,j2,...,jk}

pni1 i2...ik−1
+

∑
{i1,i2,...,ik−2}⊂{j1,j2,...,jk}

pni1 i2...ik−2
− ...+ (−1)k−1

∑
i∈{j1,j2,...,jk}

pni ,

from which we deduce that

P (Yn = k) =∑
{j1,j2,...,jk}⊂{1,2,...,N}

pnj1 j2...jk−
(
N − k + 1
N − k

) ∑
{j1,j2,...,jk−1}⊂{1,2,...,N}

pnj1 j2...jk−1

+

(
N − k + 2
N − k

) ∑
{j1,j2,...,jk−2}⊂{1,2,...,N}

pnj1 j2...jk−2
− ...

+(−1)k−1

(
N − 1
N − k

) ∑
{j}⊂{1,2,...,N}

pnj . (3.2)
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Using the notation pA =
∑

i∈A pi for any A ⊂ H, this can be written in a
more compact form

P (Yn = k) =
∑

A⊂H,|A|≤k

(−1)k−|A|
(
N − |A|
k − |A|

)
pnA, for 0 ≤ k ≤ N, and k ≤ n.

(3.3)
where |A| denotes the number of elements of the set A.

Let us now consider the distribution function of Yn,

P (Yn ≤ k) =

k∑
j=1

P (Yn = j) =

k∑
j=1

∑
A⊂H,|A|≤j

(−1)j−|A|
(
N − |A|
j − |A|

)
pnA =

∑
A⊂H,|A|≤k

k−|A|∑
i=0

(−1)i
(
N − |A|

i

) pnA. (3.4)

As, for any integers K and k ≥ 0 the equality

k∑
i=0

(−1)i
(
K

i

)
= (−1)k

(
K − 1

k

)
holds, we obtain

P (Yn ≤ k) =
∑

A⊂H,|A|≤k

(−1)k−|A|
(
N − |A| − 1

k − |A|

)
pnA, k = 1, 2, ..., N. (3.5)

A similar expression can be seen in Anceaume et al. (2015) . From (3.5) we
can calculate the moments of Yn. Let

m
[n]
k =

∑
A⊂H,|A|=k

pnA,

for every k ≤ N

k∑
j=1

P (Yn ≤ j) =

k∑
l=1

(−1)k−l
(
N − l − 2

k − l

)
m

[n]
l ,

this gives, with k = N − 1 and k = N ,

N−1∑
j=1

P (Yn ≤ j) = m
[n]
N−1,

N∑
j=1

P (Yn ≤ j) = m
[n]
N +m

[n]
N−1 = 1 +m

[n]
N−1.
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And, bearing in mind that

E(Yn) =

N∑
j=1

P (Yn ≥ j) = 1 +

N∑
j=1

P (Yn > j) = 1 +N −
N∑
j=1

P (Yn ≤ j),

we obtain the well known formula:

E(Yn) = N −m[n]
N−1 = N −

N∑
i=1

(1− pi)n. (3.6)

We were unable to �nd any expression for E(Y 2
n ) and the variance of Yn, in

previous studies. These two quantities can be obtained as follows. We compute,
for k ≤ N

k∑
t=1

t∑
j=1

P (Yn ≤ j) =

k∑
l=1

(−1)k−l
(
N − l − 3

k − l

)
m

[n]
l ,

then, for k = N − 2, N − 1 and N we obtain

N−2∑
t=1

t∑
j=1

P (Yn ≤ j) = m
[n]
N−2,

N−1∑
t=1

t∑
j=1

P (Yn ≤ j) = m
[n]
N−2 +m

[n]
N−1,

and
N∑
t=1

t∑
j=1

P (Yn ≤ j) = m
[n]
N−2 + 2m

[n]
N−1 +m

[n]
N .

The last identity can be written:

N∑
j=1

(N − j + 1)(N − j + 2)

2
P (Yn = j) = m

[n]
N−2 + 2m

[n]
N−1 +m

[n]
N ,

this gives

(N + 1)(N + 2)

2
− 2N + 3

2
E(Yn) +

1

2
E(Y 2

n ) = m
[n]
N−2 + 2m

[n]
N−1 +m

[n]
N ,

therefore
E(Y 2

n ) = 2m
[n]
N−2 − (2N − 1)m

[n]
N−1 +N2 =

2
∑

1≤i<j≤N

(1− pi − pj)n − (2N − 1)

N∑
i=1

(1− pi)n +N2

and

V ar(Yn) = 2
∑

1≤i<j≤N

(1− pi − pj)n +

N∑
i=1

(1− pi)n
(

1−
N∑
i=1

(1− pi)n
)
. (3.7)
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4 The number of draws required to reach a given

level of parasitism

The expected number of draws required for the parasitization of k unparasitized
hosts may be of considerable interest. For example, we might want to know the
expected number of draws required for k of the hosts occupying a determined
region, or with probabilities of parasitization greater (or less) than a given value,
etc., are parasitized. We de�ne below a random variable representing the num-
ber of draws required for the event of interest to happen and we obtain its
expectation. We also describe the relationship between the random variables
de�ned here and the variables Yn de�ned in Section 3.

Let us consider that, at a given stage of the process, there is a set K ⊂ H of
unparasitized hosts, this is our set of interest, and the remaining hosts H −K
are or are not parasitized. Let us use X to denote the number of hosts in the
set H −K attacked by the parasitoids before one of the hosts in K is attacked.

As this process involves the repeating of independent trials, the random
variable X follows a geometric distribution with parameter p =

∑
i∈K pi, (or a

degenerate distribution if K = H). Thus,

E(X) =

∑
i∈H−K pi∑
i∈K pi

. (4.1)

Now, let k and N1 be integers 1 ≤ k ≤ N1 ≤ N . Let H1 be a subset
of the set of hosts, H, and H2 = H − H1, |H1| = N1. We can assume that
H1 = {1, 2, ...N1} without lost of generality.

If we consider the hosts of set H1 to be unparasitized, then we can de�ne
Tk,N1

as the random number of draws required to ensure that k hosts of set H1

have been parasitized. Its expectation is the expected number of draws required
for k hosts of set H1 be parasitized. The case H1 = H has been studied before
and di�erent expressions for E(Tk,N ) have been obtained. We include these at
the end of this section. In Boneh and Hofri (1989), an expression is proposed
for the particular case in which k = N1 = N . The expression obtained here is
more general.

Let i1, i2, ..., ik be distinct elements of H1. Let Di1i2...ik be the event de�ned
by the fact that the �rst k hosts of set H1 parasitized (i.e. attacked by a
parasitoid for �rst time) are hosts i1, i2, ..., ik and are parasitized in the precise
order i1, i2, ..., ik. In other words, some of the hosts of set H2 may be attacked
�rst, followed by host i1. Next, some hosts of H2 ∪ {i1} may be attacked,
followed by host i2, etc. Let p =

∑
i∈H1

pi, q = 1− p =
∑

i∈H2
pi. Then

P (Di1i2...ik) = P (first host of H 1 parasitized is i1)

P (second host of H 1 parasitized is i2 | first host of H 1 parasitized was i1) ...

P (k−th host of H1 parasitized isik|first (k − 1) hosts of H 1 parasitized were i1, i2, ..., ik−1).

Both in the case q = 0 (H1 = {1, 2, ..., N}) and the case q > 0
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P (first parasitized host of H 1 is i1) =
pi1

1− q
,

where
q =

∑
i∈H2

pi > 0.

For the rest of the factors

P (h − th parasitized host of H 1 is ih|first parasitized hosts of H 1 were i1, i2, ..., ih−1) =

∞∑
r=0

pih(q +

h−1∑
j=1

pij )r =
pih

1− q −
∑h−1

j=1 pij
, h = 1, 2, ..., k, where q =

∑
i∈H2

pi,

therefore,

P (Di1i2...ik) =

∏k
j=1 pij

p(p− pi1)(p− pi1 − pi2)...(p−
∑k−1

j=1 pij )
. (4.2)

Let Πk be the set of all k-permutations of 1, 2, ..., N1. Then the events
Di1i2...ik with (i1i2...ik) ∈ Πk constitute a partition of Ω, i.e. Di1i2...ik ∩
Dj1j2...jk = � if i1i2...iN1

6= j1j2...jN1
and∑

(i1i2...ik)∈Πk

P (Di1i2...ik) = 1.

We can then write E(Tk,N1
) as follows,

E(Tk,N1) =
∑

(i1i2...ik)∈Πk

E(Tk,N1 |Di1i2...ik)P (Di1i2...ik). (4.3)

To compute the conditional expectations E(Tk,N1 |Di1i2...ik), let us denote by
Xh the random variable representing the number of draws elapsed after h − 1
hosts of the set H1 being parasitized and before a new host of the set H1 is
parasitized, 1 ≤ h ≤ k. We can then write

Tk,N1
= X1 + 1 +X2 + 1 + ...+Xk + 1 = X1 +X2 + ...+Xk + k. (4.4)

and therefore

E(Tk,N1 |Di1i2...ik) =

k∑
h=1

E(Xh|Di1i2...ik) + k (4.5)

but
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E(Xh|Di1i2...ik) = E (Xh|already parasitized hosts are those of H2 and i1i2...ih−1)
(4.6)

One direct application of (4.1) would then be:

E(Xh|Di1i2...ik) =
q +

∑h−1
j=1 pij

p−
∑h−1

j=1 pij
for h = 1, 2, ..., k. (4.7)

From (4.5) and (4.7)

E(Tk,N1 |Di1i2...ik) =

(
k∑

h=1

q +
∑h−1

j=1 pij

p−
∑h−1

j=1 pij

)
+ k =

k∑
h=1

(
q +

∑h−1
j=1 pij

p−
∑h−1

j=1 pij
+ 1) =

1

p
+

1

p− pi1
+

1

p− pi1 − pi2
+ ...+

1

p−
∑k−1

j=1 pij
=

1

1− q
+

1

1− q − pi1
+ ...+

1

1− q −
∑k−1

j=1 pij
, (4.8)

where

q =
∑
i∈H2

pi =

N∑
i=N1+1

pi and p =
∑
i∈H1

pi =

N1∑
i=1

pi.

Bearing in mind (4.3), (4.2) and (4.8) we can state the following:

Proposition 4.1. The expected value of Tk,N1
is

E(Tk,N1) =
∑

(i1i2...ik)∈Πk

(
1

p
+

1

p− pi1
+

1

p− pi1 − pi2
+ ...+

1

p−
∑k−1

j=1 pij

)

∏k
j=1 pij

p(p− pi1)(p−
∑2

j=1 pij )...(p−
∑k−1

j=1 pij )
, (4.9)

where Πk is the set of all k-permutations of set {1, 2, ..., N1}, i.e. the arrange-
ments of length k of di�erent elements of {1, 2, ..., N1}.

Thus, E(Tk,N1
) given by (4.9) is the expected number of draws required

for k hosts of a set of unparasitized hosts H1 ⊂ H with cardinality N1, to be
parasitized. This value is generally di�cult to obtain because the number of
terms required for its computation is the number of k-permutations of 1, 2, ...,

N1, that is N
(k)
1 = N1(N1 − 1)...(N1 − k + 1). This value is huge when N1 and

k are large. It is therefore important to obtain upper and lower bounds for this
value.

12



Proposition 4.2. Let k be given and p1, p2, ...,pN1 be real numbers satisfy-
ing p1 ≥ p2 ≥ ... ≥ pN1

. Then, the maximum of E(Tk,N1
|Di1i2...ik) de�ned by

(4.8) over all possible choices of the k-subsets {i1, i2, ..., ik} of H1 is

E(Tk,N1
|D1,2,...,k) =

1∑N1

i=1 pi
+

1∑N1

i=2 pi
+ ...+

1∑N1

i=k pi
, (4.10)

and the minimum is

E(Tk,N1 |DN1,N1−1,...,N1−k+1) =
1∑N1

i=1 pi
+

1∑N1−1
i=1 pi

+...+
1∑N1−k+1

i=1 pi
. (4.11)

Proof . From hypothesis p1 ≥ p2 ≥ ... ≥ pN1 , it follows directly that

N1∑
i=h

pi ≤
N1∑
j=h

pij ≤
N1−h+1∑

i=1

pi, h = 1, 2..., N1, (4.12)

then

E(Tk,N1
|D1,2,...,k) =

1

p
+

1

p− p1
+

1

p−
∑2

i=1 pi
+ ...+

1

p−
∑k−1

i=1 pi
≥

1

p
+

1

p− pi1
+

1

p− pi1 − pi2
+ ...+

1

p−
∑k−1

j=1 pij
≥

1

p
+

1

p− pN1

+
1

p−
∑N1

i=N1−1 pi
+ ...+

1

p−
∑N1

i=N1−k+2 pi
=

E(Tk,N1 |DN1,N1−1,...,N1−k+1)

and the proof is complete.

Proposition 4.3. Let p1, p2, ..., pN1 be real numbers satisfying 0 ≤ pi ≤ 1,
for i = 1, 2, ..., N1 and p1 ≥ p2 ≥ ... ≥ pN1

. It is then true that

E(Tk,N1 |D1,2,...,k) ≥ E(Tk,N1) ≥ E(Tk,N1 |DN1,N1−1,...N1−k+1)

In other words, E(Tk,N1
|D1,2,...,k) and E(Tk,N1

|DN1,N1−1,...N1−k+1) are upper
and lower bounds, respectively, for the expected number of draws required for
k hosts of the set H1 to be parasitized.

Furthermore, the mode of the distribution on the eventsDi1i2...ik , (i1, i2, ..., ik) ∈
Πk, is D1,2,...,k, i.e. the order of parasitism of k hosts mostly likely to occur is
1, 2, ..., k.

Proof . The �rst part of this proposition is a straightforward consequence of
the previous proposition.
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The second part comes directly from the fact that

P (D1,2,...,k) ≥ P (Di1i2...ik) for (i1i2...ik) ∈ Πk.

which follows from (4.2) and (4.12).

Propositions 4.2 and 4.3 prove that, if p1 ≥ p2 ≥ ... ≥ pN1 , then the most
likely order of parasitization of k hosts in H1 is the preferential order 1, 2, ..., k.
Moreover the shortest scenario (in terms of expectation) for the parasitization
of k hosts of H1 is the sequence extending from the least likely host, N1, to the
most likely host, N1−k+1, in the correct order. The longest scenario (in terms
of expectation) for the parasitization of k hosts of H1 extends from the most
likely, 1, to the least likely host, k, in the correct order.

These results can be intuitively explained as follows; let us suppose that
host 1 is parasitized in the �rst place. The probability of a new host of the set
H1−{1} being parasitized is then q−p1. This value is less than any other value
q − pj with j 6= 1. It is therefore more di�cult for a host of the set H1 − {1}
to be parasitized than for a host of the set H1 − {j}, j 6= 1, to be parasitized.
The repeated application of this reasoning explains the �rst inequality of the
proposition. The second inequality can be explained in a similar manner.

For simplicity, we denote Tk,N by Tk in the particular case in which N1 = N .
Recalling the de�nitions of these random variables and the random variables Yn,
we obtain the following relations

P (Yn ≤ k − 1) = P (Tk > n),

then
P (Yn ≤ k − 1) = 1− P (Tk ≤ n)

and
P (Tk = n) = P (Yn−1 ≤ k − 1)− P (Yn ≤ k − 1).

From (3.3), (3.5) and above equalities we see that

P (Tk > n) =
∑

A⊂H,|A|≤k−1

(−1)k−1−|A|
(
N − |A| − 1

k − 1− |A|

)
pnA, (4.13)

P (Tk ≤ n) = 1−
∑

A⊂H,|A|≤k−1

(−1)k−1−|A|
(
N − |A| − 1

k − 1− |A|

)
pnA

and

P (Tk = n) =
∑

A⊂H,|A|≤k−1

(−1)k−1−|A|
(
N − |A| − 1

k − 1− |A|

)
pn−1
A −

∑
A⊂H,|A|≤k−1

(−1)k−1−|A|
(
N − |A| − 1

k − 1− |A|

)
pnA =
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∑
A⊂H,|A|≤k−1

(−1)k−1−|A|
(
N − |A| − 1

k − 1− |A|

)
pn−1
A (1− pA).

E(Tk) = E(Tk,N ) is the expected number of draws required for k hosts
are parasitized. Di�erent expressions have been described for this expectation
(Boneh and Hofri, 1989; Flajolet et al., 1992). From (4.13) it follows immediately
that

E(Tk) =

∞∑
n=0

P (Tk > n) =

∞∑
n=0

 ∑
A⊂H,|A|≤k−1

(−1)k−1−|A|
(
N − |A| − 1

k − 1− |A|

)
pnA,

 =

∑
A⊂H,|A|≤k−1

(−1)k−1−|A|
(
N − |A| − 1

k − 1− |A|

)
1

1− pA
.

This expression was obtained in Flajolet et al. (1992). In Boneh and Hofri
(1989) the following expression was obtained,

E(Tk) =

k−1∑
r=0

‖ur‖
ˆ
t≥0

N∏
i=1

(1 + u(epit − 1))e−t dt,

where ‖xr‖ f(x) is the coe�cient of xr in the power series development of f(x).

If k = N1 = N , then E(TN ) = E(TN,N ) is the expected number of draws
required to obtain complete parasitism. From (4.9)

E(TN ) =
∑

(i1i2...iN )∈ΠN

(
N−1∑
r=0

1

1−
∑r

j=1 pij

) ∏N
i=1 pi∏N

k=1

∑N
j=k pij

(4.14)

where ΠN is the group of permutations of {1, 2, ...N} . This expression for E(TN )
is proposed in Boneh and Hofri (1989). The authors provide no proof for this
formula, and we have found no proof elsewhere.

5 Applications to various risk distributions

In this section, we consider two di�erent risk distributions on the set of hosts
and compute the most relevant values for every each.

The uniform distribution. The situation in which risk is distributed uni-
formly, i.e. all the hosts have the same probability of being parasitized, with:

p1 = p2 = ... = pN =
1

N
(5.1)
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has been widely studied. In this case, the expectation and variance of the
random variable Yn representing the number of parasitized hosts after n draws
are

E(Yn) = N − (N − 1)n

Nn−1
,

V ar(Yn) =
(N − 1)(N − 2)n

Nn−1
+

(N − 1)n(Nn−1 − (N − 1)n)

N2n−3
.

and the expected number of draws for k new hosts to be parasitized (4.9) is

E(Tk,N1
) = N

(
1

N1
+

1

N1 − 1
+ ...+

1

N1 − k + 1

)
,

which, in the case in which k = N , can be written as the following well-known
formula

E(TN ) = N

(
1 +

1

2
+

1

3
...+

1

N

)
.

It is clear that in this case the upper and lower bounds for E(Tk,N1
) ob-

tained in Proposition 4.3, are both equal to E(Tk,N1
), and all the probabilities

P (Di1i2...ik) are equal to
1

N
(k)
1

.

Two kinds of hosts. The two types of host situation is an idealization of
the following cases. Hosts which are dead, either because they were previously
parasitized or because they produced artifacts such as mines and galls, remain
in the ecosystem for much longer than the existence of the host. They can make
up to 90% of the host population. They can be still attractive to parasitoids
long after the host death. Parasitoids will not lay eggs in them, but they will
be checked carefully, implying a waste of time of up to 20% (Casas, 1989; Casas
et al, 2004). In such cases, it is possible to envision two categories, living and
dead hosts, while being interested in the rate of parasitism of the living ones
only.

Let us now consider the situation in which there are two kinds of hosts and,
therefore, two di�erent probabilities of being detected by a parasitoid.

In a population of N hosts, each of the hosts 1, 2, ..., m has a probability α
of being parasitized, and each hosts m+ 1, m+ 2, ..., N has a probability β of
being parasitized, such that

p1 = p2 = ... = pm = α,
pm+1 = pm+2 = ... = pN = β.

(5.2)

The probability of host 1 being visited r1 times, host 2 r2 times, etc, for
r1 + r2 + ...+ rN = n, given by (2.2) is in this case

P (Sn1 = r1, Sn2 = r2, ..., SnN = rN ) =
n!

r1!r2!...rN !
α
∑

i≤m riβ
∑

i>m ri

0 ≤ r1 ≤ n, 0 ≤ r2 ≤ n, ..., 0 ≤ rN ≤ n, r1 + r2 + ...+ rN = n.
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The probability that, after n draws host i1 had been chosen ri1 times by the
parasitoids, host i2 ri2 times and host ih rih times, without taking the other
hosts into account, is given by (2.3). It is equal to

P (Sni1 = ri1 , Sni2 = ri2 , ..., Snih = rih) =

n!

ri1 !ri2 !...rih !(n−
∑
rij )!

α
∑

ij≤m rij β
∑

ij>m rij

1−
∑
ij≤m

α−
∑
ij>m

rijβ

n−
∑

rij

.

We will now calculate the expected number of parasitized hosts after n draws
with this risk distribution, using the results obtained in Section 2.

Let Yn be the random variable representing the number of parasitized hosts
after n draws. From (3.3) it follows that

P (Yn = k) =

k∑
j=1

(−1)k−j
(
N − j
k − j

) j∑
i=0

(
m

i

) (
N −m
j − i

)
(iα− (j − i)β)n

and the expected value of Yn, (3.6), is equal to

E(Yn) = N −m(1− α)n − (N −m)(1− β)n.

To compute the expected number of draws for k hosts of a set H1 ⊂ H
of unparasitized hosts to be parasitized, we will name the hosts of the set H1,
hosts 1, 2, ..., N1. Without any loss of generality, we can assume p1 = p2 =
... = pm1

= α and pm1+1 = pm1+2 = ... = pN1
= β. Let Πk be the set of all

k-permutations of the integers 1, 2, ..., N1. For every I = (i1, i2, ..., ik) ∈ Πk,
let AI ⊂ {1, 2, ..., k} be the set de�ned by j ∈ AI if ij ≤ m1. It is clear that the
probability P (Di1,i2,...,ik) = P (DI) given by (4.2) is, in this case,

P (DI) =
α|AI |βk−|AI |

p(p− γ1)(p−
∑2

j=1 γj)...(p−
∑k−1

j=1 γj)
,

where

γj =

{
α if j ∈ AI

β if j /∈ AI
(5.3)

Then, if AI = AI′ for I ∈ Πk and I ′ ∈ Πk, it follows directly that

P (DI) = P (DI′).

We can therefore de�ne an equivalence relation on Πk as follows: I is related
to I ′ if AI = AI′ . We denote by I the equivalence class of I, and by Πk the set
whose elements are the equivalence classes of the elements of Πk, that is

Πk =
{
I : I ∈ Πk

}
.
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There are as many equivalence classes as subsets of {1, 2, ..., k} with cardinalities
greater than or equal to max {0, k − n1}, where n1 = N1−m1, and less than or
equal to min {k,m1}, and the cardinalities of these equivalence classes are∣∣Ī∣∣ = m

(h)
1 n

(k−h)
1 if |AI | = h.

Given the above considerations, it is clear that E(Tk,N1) can be written in this
case as:

E(Tk,N1) =
∑

I∈Πk

(
1

p
+

1

(p− γ1)
+ ...+

1

(p−
∑k−1

j=1 γj)

)
=

α|AI |βk−|AI |

p(p− γ1)(p−
∑2

j=1 γj)...(p−
∑k−1

j=1 γj)
=

∑
Ī∈Π̄k

∑
I∈Ī

(
1

p
+

1

(p− γ1)
+ ...+

1

(p−
∑k−1

j=1 γj)

)

α|AI |βk−|AI |

p(p− γ1)(p−
∑2

j=1 γj)...(p−
∑k−1

j=1 γj)
=

∑
Ī∈Π̄k

m
(|AI |)
1 n

(k−|AI |)
1

(
1

p
+

1

(p− γ1)
+ ...+

1

(p−
∑k−1

j=1 γj)

)

α|AI |βk−|AI |

p(p− γ1)(p−
∑2

j=1 γj)...(p−
∑k−1

j=1 γj)
=

min{k,m1}∑
h=max{0,k−n1}

∑
|AI |=h

m
(h)
1 n

(k−h)
1

(
1

p
+

1

(p− γ1)
+ ...+

1

(p−
∑k−1

j=1 γj)

)

αhβk−h

p(p− γ1)(p−
∑2

j=1 γj)...(p−
∑k−1

j=1 γj)
.

where γj is de�ned by (5.3).
Let us suppose that

α > β.

To obtain an upper bound for E(Tk,N1), we distinguish two cases, k ≤ m1

and k > m1. If k ≤ m1 then

E(Tk,N1
|D1,2,...,k) =

1

m1α+ n1β
+

1

(m1 − 1)α+ n1β
+ ...+

1

(m1 − k + 1)α+ n1β
,

if k > m1, this upper bound is
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E(Tk,N1 |D1,2,...,k) =

1

m1α+ n1β
+

1

(m1 − 1)α+ n1β
+ ...+

1

n1β
+

1

(n1 − 1)β
+ ...+

1

(n1 +m1 − k + 1)β
.

Similarly, to obtain a lower bound for E(Tk,N1
) we distinguish the cases k ≤ n1

and k > n1. If k ≤ n1 this lower bound is

E(Tk,N1
|DN1,N1−1,...,N1−k+1) =

1

m1α+ n1β
+

1

m1α+ (n1 − 1)β
+ ...+

1

m1α+ (n1 − k + 1)β
,

and if k > n1, a lower bound for E(Tk,N1) is

E(Tk,N1 |DN1,N1−1,...,N1−k+1) =

1

m1α+ n1β
+

1

m1α+ (n1 − 1)β
+ ...+

1

m1α
+

1

(m1 − 1)α
+

1

(n1 +m1 − k + 1)α
.

The maximum of the values P (Di1,i2,...,ik) is

P (D1,2,...,k) =


αk∏k−1

h=0((m1 − h)α+ n1β)
, if k ≤ m1

αm1βk−m1∏m1

h=0((m1 − h)α+ n1β)
∏k−m1−1

l=1 (n1 − l)β
, if k > m1

In the extreme case that there is only one host with a probability α of being
parasitized and the others have probability β of being parasitized, we obtain
the following expressions for E(Tk,N1

).
If the host with probability α of being parasitized does not belong to set H1,

then

E(Tk,N1) =
1

β

k−1∑
j=0

1

N1 − h
.

If the host with probability α of being parasitized belongs to set H1, then

E(Tk,N1) = (N1−1)(k)

(
1

α+ (N1 − 1)β
+

1

α+ (N1 − 2)β
+ ...+

1

α+ (N1 − k)β

)

19



βk

(α+ (N1 − 1)β)(α+ (N1 − 2)β)...(α+ (N1 − k)β)
+

(N1 − 1)(k−1)
k−1∑
j=1

(
1

α+ (N1 − 1)β
+

1

α+ (N1 − 2)β
+ ...+

1

α+ (N1 − j)β
+

1

(N1 − j)β
+

1

(N1 − j − 1)β
+ ...+

1

(N1 − k + 1)β

)

αβk−1

(α+ (N1 − 1)β)(α+ (N1 − 2)β)...(α+ (N1 − j)β)(N1 − j)β(N1 − j − 1)β...(N1 − k + 1)β
+

(N1 − 1)(k−1)

(
1

α+ (N1 − 1)β
+

1

α+ (N1 − 2)β
+ ...+

1

α+ (N1 − k)β

)
αβk−1

(α+ (N1 − 1)β)(α+ (N1 − 2)β)...(α+ (N1 − k)β)
.

6 Relationship between the risk distribution and

the speed of parasitization

In the preceding sections, we studied the process of parasitization for a given
risk distribution in the set of hosts. In this section we compare this process
for di�erent risk distributions. We show how parasitization speed depends on
the risk distribution, and its scatter in particular. We use the concept of �ma-
jorization� to formalize the idea that risk distributions have di�erent degrees of
spread. This notion dates from the start of the 20th century. A comprehensive
review of the theory can be found in Marshall et al. (2011).

Less spread distributions are associated with faster parasitization. In other
words, the more spread out the risk distribution, the larger the number of draws
required for a given number of hosts to be parasitized. Thus the distribution
function for the �rst time parasitization of a given number of hosts, viewed as
a function of the vector p, is Schur convex (see the de�nition at the end of this
section). The mathematical community studying the coupon collector problem
seems to be largely unaware of it, but this result is not new and can be found
in Wong and Yue (1973). This result constitutes the �rst part of Theorem 6.1.
We give a proof more concise and clearer than previous proposal. Moreover,
our method provides a precise result for strict Schur convexity. This re�nement
constitutes the second part of Theorem 6.1. We make use in our proof of the
relationship between the concept of majorization and the numerical operation
known as "Robin Hood transfer", described below.
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In this section, we work with di�erent risk distributions, requiring further
notation and de�nitions. Given a risk distribution p = (p1, p2, ..., pN ), we denote
by Pp the probability distribution induced by p on the σ-�eld over the space of
the all the possible incidences of parasitization.

Given (p1, p2, ..., pN ) in RN , we denote by (p1̄, p2̄, ..., pN̄ ) the N -uple ob-
tained by permutation of pi such that p1̄ ≥ p2̄ ≥ . . . ≥ pN̄ .

The following de�nitions are given in Marshall et al. (2011).

Definition 6.1. Let p1, p2, ..., pN , q1, q2, ..., qN , be real numbers. We say
that p = (p1, p2, ..., pN ) is majorized by q = (q1, q2, ..., qN ), and we write p ≺ q,
if

k∑
i=1

pī ≤
k∑

i=1

qī for i = 1, 2, ..., N − 1

and
N∑
i=1

pī =

N∑
i=1

qī.

It is clear that when we apply this de�nition to the comparison of two risk
distributions, the last equality is trivially satis�ed.

Let q = (q1, q2, ..., qN ) ∈ RN . If qh < qk we can transfer an amount ∆,
0 < ∆ < qk − qh from qk to qh to obtain the following new risk distribution
q′ = (q′1, q

′
2, ...,q

′
N ), where q′h = qh + ∆, q′k = qk −∆ and q′i = qi for i 6= h, k.

Then, q′ is less spread out than the initial distribution, that is, q′ ≺ q. Such
operations involving the shifting of some �income� from one individual to a
poorer individual, are described, somewhat poetically, as Robin Hood transfers
(Arnold, 1987). If we de�ne α = 1 − ∆

qk−qh then we can write q′h = qh + ∆ =

αqh + (1− α)qk and q′k = qk −∆ = αqk + (1− α)qh.

Proposition 6.1. The following conditions are equivalent:
a) p ≺ q,
b) p can be derived from q by successive applications of a �nite number of

Robin Hood transfers.

It is not di�cult to prove this equivalence. It was proved for the �rst time
in Muirhead (1902) for vectors of non-negative integer components.

Lemma 6.1. Let k and N be integers satisfying 1 < k ≤ N − 1, then∑
0≤r≤k−1

(−1)k−1−r
(
N − 2

r

) (
N − 2− r
k − 1− r

)
= 0.

Proof . For x ∈ R the equality∑
0≤r≤n

(
a

r

) (
x

n− r

)
=

(
a+ x

n

)
,
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is satis�ed, where

(
x

h

)
is de�ned by (3.1) then

∑
0≤r≤n

(
a

r

) (
−b
n− r

)
=

(
a− b
n

)
,

and ∑
0≤r≤n

(−1)n−r
(
a

r

) (
b+ n− r − 1

n− r

)
=

∑
0≤r≤n

(
a

r

) (
−b
n− r

)
=

(
a− b
n

)
.

Then, we obtain, with a = N − 2, n = k − 1, b = N − k∑
0≤r≤k−1

(−1)k−1−r
(
N − 2

r

) (
N − 2− r
k − 1− r

)
=

(
k − 2

k − 1

)
= 0,

and the lemma follows.

Lemma 6.2. Let q1, q2, ...,qM be non-negative real numbers and I = {1, 2, ...,M}.
For every A ⊂ I let qA =

∑
i∈A qi. Then, for any integer m ≥ 0 ,∑

A⊂I,|A|≤r

(−1)r−|A|
(
M − |A|
r − |A|

)
qmA ≥ 0.

Moreover, if m ≥ r and at least r of the values q1, q2, ...,qM are greater than
zero, then ∑

A⊂I,|A|≤r

(−1)r−|A|
(
M − |A|
r − |A|

)
qmA > 0.

Proof . If all the qi are zero, there is nothing to prove. Let us suppose
that s =

∑M
i=1 qi > 0. Let pi = qi/s, i = 1, 2, ...,M . These values de�ne the

probability distribution p = (p1, p2, ..., pM ) on I. From (3.3) it follows that∑
A⊂I,|A|≤r

(−1)r−|A|
(
M − |A|
r − |A|

)
qmA =

sm
∑

A⊂I,|A|≤r

(−1)r−|A|
(
M − |A|
r − |A|

)
pmA = smPp(Ym = r),

which proves the lemma.

Let p = (p1, p2, ..., pN ) denote a probability distribution p over the set H.
Suppose that p is not uniform. We can assume p1 < p2 without loss of generality.
Let 0 < h ≤ p2−p1

2 , α = 1− h
p2−p1

. We then de�ne a new risk distribution p′ by
applying a Robin Hood transfer as follows

p′ = (p1 +h, p2−h, p3, p4, ..., pN ) = (αp1 +(1−α)p2, αp2 +(1−α)p1, p3, ..., pN ).
(6.1)

22



We indeed have p′ ≺ p.

Theorem 6.1. Let p be a non uniform probability distribution over H.
Without loss of generality, we can assume that p1 < p2. Let p′ be de�ned
by (6.1). Then, for all k between 1 and N − 1,

Pp(Yn ≤ k) ≥ Pp′(Yn ≤ k), (6.2)

which is equivalent to

Pp(Tk+1 ≤ n) ≤ Pp′(Tk+1 ≤ n) (6.3)

Moreover, if at least k − 1 of the values p3, p4, ..., pN are non-zero, then

Pp(Yn ≤ k) > Pp′(Yn ≤ k), n = k + 1, k + 2, k + 3... (6.4)

which is equivalent to

Pp(Tk+1 ≤ n) < Pp′(Tk+1 ≤ n), n = k + 1, k + 2, k + 3... (6.5)

where p′ is de�ned by (6.1).

Proof . Let H ′ = {3, 4, ..., N}. According to (3.5) we have:

Pp(Yn ≤ k) =
∑

A⊂H,|A|≤k

(−1)k−|A|
(
N − |A| − 1

k − |A|

)
pnA =

∑
A⊂H′,|A|≤k

(−1)k−|A|
(
N − |A| − 1

k − |A|

)
pnA+

∑
A⊂H′,|A|≤k−1

(−1)k−1−|A|
(
N − 2− |A|
k − 1− |A|

)
(pA + p1)n+

∑
A⊂H′,|A|≤k−1

(−1)k−1−|A|
(
N − 2− |A|
k − 1− |A|

)
(pA + p2)n+

∑
A⊂H′,|A|≤k−2

(−1)k−2−|A|)
(
N − 3− |A|
k − 2− |A|

)
(pA + p1 + p2)n.

Then
Pp(Yn ≤ k)− Pp′(Yn ≤ k) =∑

A⊂H′,|A|≤k−1

(−1)k−1−|A|
(
N − 2− |A|
k − 1− |A|

)
(pA + p1)n+

∑
A⊂H′,|A|≤k−1

(−1)k−1−|A|
(
N − 2− |A|
k − 1− |A|

)
(pA + p2)n−
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∑
A⊂H′,|A|≤k−1

(−1)k−1−|A|
(
N − 2− |A|
k − 1− |A|

)
(pA + p1 + h)n−

∑
A⊂H′,|A|≤k−1

(−1)k−1−|A|
(
N − 2− |A|
k − 1− |A|

)
(pA + p2 − h)n.

Let f be the real function de�ned by

f(x) =
∑

A⊂H′,|A|≤k−1

(−1)k−1−|A|
(
N − 2− |A|
k − 1− |A|

)
(pA + x)n, x ∈ R

This function is a polynomial of degree less than or equal to n. The coe�cient
of xn is equal to ∑

A⊂H′,|A|≤k−1

(−1)k−1−|A|
(
N − 2− |A|
k − 1− |A|

)
=

∑
0≤r≤k−1

(−1)k−1−r
(
N − 2

r

) (
N − 2− r
k − 1− r

)
and this is equal to 0 by Lemma 6.1. The coe�cient of xn−j for j = 1, 2, ..., n
is (

n

j

) ∑
A⊂H′,|A|≤k−1

(−1)k−1−|A|
(
N − 2− |A|
k − 1− |A|

)
pjA,

by the �rst part of Lemma 6.2 with I = H ′ = {3, 4, ..., N}, M = |I| = N − 2,
m = j and r = k − 1, it follows that these coe�cients are greater than or equal
to zero. This polynomial function is then convex on [0,+∞), so that

f(p1)+f(p2) ≥ f(αp1 +(1−α)p2)+f(αp2 +(1−α)p1) = f(p1 +h)+f(p2−h),

f(p1) + f(p2)− f(p1 + h)− f(p2 − h) ≥ 0.

However, this inequality is the same as

Pp(Yn ≤ k)− Pp′(Yn ≤ k) ≥ 0,

which gives (6.2). Recalling the relationship between the random variables Yi
and the random variables Tj , we also obtain

Pp(Tk+1 ≤ n) ≤ Pp′(Tk+1 ≤ n),

which is (6.3).
Moreover, from the second part of Lemma 6.2. it follows that if at least

k − 1 of the values p3, p4, ..., pN are greater than zero and n ≥ k + 1, then the
coe�cient of xn−k+1 is greater than zero, where n− k+ 1 ≥ 2. So, at least one
monomial of degree greater than or equal to 2 appears in the polynomial. The
convexity is then strict, and we can write

f(p1) + f(p2)− f(p1 + h)− f(p2 − h) > 0,
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and
Pp(Yn ≤ k)− Pp′(Yn ≤ k) > 0, n = k + 1, k + 2, k + 3...

which is equivalent to

Pp(Yn ≤ k) > Pp′(Yn ≤ k), n = k + 1, k + 2, k + 3...

and therefore to

Pp(Tk+1 ≤ n) < Pp′(Tk+1 ≤ n), n = k + 1, k + 2, k + 3...

This completes the proof.

We can state the following corollaries.

Corollary 6.1. Let p = (p1, p2, ..., pN ) and q = (q1, q2, ..., qN ) be risk dis-
tributions on H = {1, 2, ..., N}. If p ≺ q then, for every n ≥ 1 and every
k ≥ 1

Pp(Yn ≤ k) ≤ Pq(Yn ≤ k), (6.6)

is satis�ed and

Pp(Tk+1 ≤ n) ≥ Pq(Tk+1 ≤ n).

Furthermore, if the distributions p and q are actually di�erent, meaning that
they do not di�er only by a permutation, then the preceding inequalities are
strict, except in trivial cases. More precisely, denoting by j the number of non
zero pi values (and remarking that the number of non-zero qi values is at most
j), we have:

� If k ≥ n or k ≥ j then

Pp(Yn ≤ k) = Pq(Yn ≤ k) = 1 and Pp(Tk+1 ≤ n) = Pq(Tk+1 ≤ n) = 0;

� If n ≥ 2, k < n and k < j, then

Pp(Yn ≤ k) < Pq(Yn ≤ k) and Pp(Tk+1 ≤ n) > Pq(Tk+1 ≤ n).

Proof . As it is possible to go from vector q to vector p by a �nite sequence of
Robin Hood transfers, the corollary follows directly from Theorem 6.1, which
proves that each transfer decreases the quantity Pp(Yn ≤ k). We just have to
consider the cases in which this quantity is strictly decreased.

Remark 6.1. We can interpret the results obtained above in terms of the
theory of Schur-convex functions. A real-valued function φ de�ned on a set
A ⊂ RN is said to be Schur-convex on A if, for every x and y pair of elements
in A such that x ≺ y the inequality φ(x) ≤ φ(y) holds. The �rst part of
Corollary 6.1 states that the map p → Pp(Yn ≤ k) is Schur-convex. This was
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already proved in Wong and Yue (1973), and was stated as a conjecture in
Anceaume et al. (2015).

Corollary 6.2. Let u = (1/N, 1/N, ..., 1/N) be the uniform distribution on
H = {1, 2, ..., N} and p = (p1, p2, ..., pN ) any other risk distribution on H. Then

Pu(Yn ≤ k) < Pq(Yn ≤ k), k = 1, 2, ..., N − 1, n = k + 1, k + 2, ...

Pu(Tk+1 ≤ n) > Pq(Tk+1 ≤ n), k = 1, 2, ..., N − 1, n = k + 1, k + 2, ...

Proof . It can be clearly seen that u = (1/N, 1/N, ..., 1/N) is majorized by
any other distribution on H and the corollary follows.

Remark 6.2. The results obtained in Corollary 6.1 and Corollary 6.2 can
be expressed in terms of a comparison of probability distributions as follows.
If p ≺ q, then relation (6.6) proves that the random variable Yn de�ned on
the probability space determined by p on the space of the random sets of
H = {1, 2, ..., N} is weakly stochastically dominated by the random variable Yn
de�ned on the probability space determined by q. Corollary 6.2 proves that the
random variable Yn de�ned on the probability space determined by the uniform
distribution u = (1/N, 1/N, ..., 1/N) is always weakly stochastically dominated
by the random variable Yn de�ned on the probability space determined by any
other probability distribution on H.

Remark 6.3. After the redaction of this section, we have seen a similar
study in Anceaume et al. (2016). In particular, they prove inequalities (30) and
(31) of Theorem 6.1. However, our contribution still presents a real interest,
thanks to the quality of the argument based on use of fundamental formulas (6)
and (7) in di�erent contexts, and because we obtain cases of strict inequalities.

7 Illustrative examples

In this section we show graphically the relationships satis�ed among the distri-
bution functions of random variables Yn as well as the distribution functions of
random variables Tk, when their corresponding risk distributions are able to be
compared by majorization.

The distribution functions of �ve variables Yn are represented in graphic
A of Figure 2. They correspond to �ve di�erent risk distributions, p1, p2,
p3, p4, and p5, satisfying p1 ≺ p2 ≺ p3 ≺ p4 ≺p5. These are distributions
on the set {1, 2, ..., 12} (so N = 12), p1 is the uniform distribution, pi =
(1/10i+2, ..., 1/10i+2, 10(i−1)+1/10i+2) for i = 2 and 3, and pi = (1/45(i−3)+12, ...,
1/45(i−3)+12, 1/45(i−3)+12, 45(i−3)+1/45(i−3)+12) for i = 4 and 5. We have also used
n = 12, and it can be observed that Ppi

(Y12 ≤ k) < Ppi+1
(Y12 ≤ k), with k =

1, 2, ..., 11, i = 1, 2, 3, 4.
The distribution functions of ten variables Tk are represented in every one

of the graphics B and C in Figure 2. N = 10 and the risk distributions are the
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Figure 2. Graphic A: Distribution functions of �ve variables Y12 corresponding
to �ve di�erent risk distributions, p1, p2,..., p5, satisfying p1 ≺ p2 ≺ p3 ≺
p4 ≺p5. It can be observed that Ppi

(Y12 ≤ k) < Ppi+1
(Y12 ≤ k), for k =

1, 2, ..., 11, i = 1, 2, 3, 4. Graphic B: Distribution functions of ten variables T6

corresponding to ten risk distributions, p1, p2, ..., p10 satisfying p1 ≺ p2 ≺ ...
p9 ≺p10. Graphic C: Distribution functions of ten variables T9 corresponding
to the same previous risk distributions. In graphics B and C it can be observed
that Ppi

(Tk ≤ n) > Ppi+1
(Tk ≤ n), for n = k, k + 1, ... i = 1, 2, ...9
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same in both cases; p1 is the uniform distribution and pi = (1/5(i+1), ..., 1/5(i+1),
i/5(i+1), 4(i−1)+1/5(i+1)), for i = 2, 3, ..., 10. For these risk distributions p1 ≺
p2 ≺ ... p9 ≺p10 is satis�ed. In graphic B of Figure 2, k = 6 and the values
of n lie between 6 to 50. In graphic C of Figure 2, k = 9 and the values of
n lie from 9 to 100. It can be seen that Ppi

(Tk ≤ n) > Ppi+1
(Tk ≤ n), for

n = k, k + 1, ... i = 1, 2, ...9, in both graphics.
Figure 3 compares distribution functions of random variables Tk correspond-

ing to two unrelated risk distributions p and q, i.e. neither p ≺ q nor q ≺ p.
Thus, these distribution functions act in di�erent ways depending on the value
of k. We include three di�erent graphics, each bearing two curves. These curves
are the distribution functions of two random variables Tk. The risk distribu-
tions associated with these random variables are, in the three graphics, p =
(3/85, 3/85, 3/85, 3/85, 3/85, 12/85, 13/85, 13/85, 13/85, 19/85) and q = (3/81, 4/81, 4/81, 4/81,
4/81, 5/81, 5/81, 5/81, 15/81, 32/81). In the �rst graphic k = 5, in the second k = 8
and in the third k = 9. In the last two cases the distribution functions cross.
They do not cross in the �rst.

8 A conjecture on strong dominance

In Section 6 we used an order relationship between random variables (or more
precisely between their distributions) that can be de�ned formally as follows.

Definition 8.1. Let X and X´ be two real random variables, de�ned on
probability spaces (Ω, P ) and (Ω′, P ′), respectively. We say that the random
variableX weakly stochastically dominates the random variableX´ if the cumu-
lative distribution function ofX´dominates the cumulative distribution function
of X, that is, for any t ∈ R,

P (X ≤ t) ≤ P´ (X´ ≤ t) .

The main result of Section 6 is that if p ≺ q, then the random variable Yn
de�ned on the probability space (Ω, Pp) weakly stochastically dominates the
random variable Yn de�ned on the probability space (Ω, Pq) .

A particular case of weak dominance is that one in which inequalities apply
not only to the cumulative distribution functions, but also to the distributions
themselves. We will refer to this situation as strong dominance, and we provide
a formal de�nition of strong dominance below, for the case of discrete random
variables. (A similar de�nition can be given for continuous random variables
with densities). In short,X strongly dominatesX´ if, for any small enough value
d, P (X = d) ≤ P´ (X´ = d), and if for any other possible value e, P (X = e) ≥
P´ (X´ = e) .

Definition 8.2. Let X and X´ be two real random variables, de�ned on
probabilities spaces (Ω, P ) and (Ω′, P ′), respectively, and taking values in a
denumerable set D. We say that the random variable X strongly stochastically
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Figure 3. Comparison of distribution functions of random variables Tk corre-
sponding to two unrelated risk distributions, i.e. neither p ≺ q nor q ≺ p, to
show how these distribution functions act in di�erent ways depending on the
value of k.
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dominates the random variable X´ if there is a critical value c ∈ R such that,
for any d ∈ D
•if d ≤ c, then P (X = d) ≤ P´ (X´ = d),
•if d > c, then P (X = d) ≥ P´ (X´ = d).

It is easy to show that strong dominance implies weak dominance, but that
the converse is not true. Coming back to our CCP model, we propose the
following:

Conjecture. If p ≺ q, then the random variable Yn de�ned on the prob-
ability space (Ω, Pp) strongly stochastically dominates the random variable Yn
de�ned on the probability space (Ω, Pq) .

This conjecture has been tested on various examples, but we have been able
to prove it formally for only a few values of the pair (n,N), namely for n = 2
or 3 and any N , and for n = 4 and N ≤ 5.

In applications, strong dominance reinforces weak dominance. It gives more
precise statements concerning the relative probabilities that a given number of
hosts are parasitized after a given number of eggs laid, for two risk distributions.
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