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Identification of metabolic pathway disturbances using multimodal 

metabolomics in autistic disorders in a Middle Eastern population 

 

Abstract 

We analyzed for the first time the metabolic profile of Lebanese children affected by autistic 

disorder to compare this profile to other metabolomics studies and to identify the associated 

metabolic disturbances. Urine samples of 40 patients with Autism spectrum disorder (ASD) and 

40 healthy matched controls were analyzed using nuclear magnetic resonance (NMR) and liquid 

chromatography coupled to high resolution mass spectrometry (LC-MS). Multivariate analysis on 

analytical data fusion were conducted on the training set of 50 urine samples, and then validated 

with a test set of 30 samples, the model was also evaluated using a receiver operating characteristic 

curve. Among the most significant metabolites that contributed to the discrimination between ASD 

and controls, we confirmed the perturbations of tyrosine, 2-hydroxybutyrate, creatine and 

glutamate. We found new metabolites such as trigonelline, cysteic acid and guanine. We found 

metabolic perturbations including amino acids, carbohydrates and oxidative stress pathways which 

added value for the contribution of known metabolic disturbances in ASD observed in populations 

of other geographic origins. 

Keywords: Autism Spectrum Disorders, targeted metabolomics, fingerprinting, urines, LC-MS, 

NMR. 

 

Introduction 
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According to the most recent version of the Diagnostic and Statistical Manual of Mental Disorders 

DSM-5, autism spectrum disorders (ASD) are a group of neurodevelopmental disorders, 

characterized by impaired communication and social interaction as well as restricted, repetitive 

behaviors and activities (1). The prevalence of ASD is estimated to affect about 1 per 160 children, 

according to the World Health Organization (2) and 1 per 66 children in Lebanon (Chaaya et al., 

2016).  

To date, the etiology of ASD remains largely unclear despite a huge effort mainly in genetics and 

neuroimaging. ASD is probably a multifactorial disorder with genetic and environmental factors 

(3). Several studies have shown metabolic disturbances in individuals with ASD compared to the 

general population (4,5). Imbalance in the level of certain amino acids in the plasma, platelets, 

urine or cerebrospinal fluid have been identified in autistic subjects (6). Some of the most common 

metabolic abnormalities in ASD are those of redox and mitochondrial metabolism (7,8).  

Furthermore, many neurometabolic disorders such as phenylketonuria, creatine deficiency, altered 

metabolism of purine, disorders in the metabolism of neurotransmitters and hormones including 

serotonin, catecholamines, melatonin and GABA (9) have been associated with autism. 

Metabolomics approach provides metabolic patterns useful to identify biomarkers. There are two 

approaches in metabolomics: the targeted analysis consisting of the measurement of defined 

groups of chemically characterized and biochemically annotated metabolites, and the untargeted 

analysis which is the unbiased comprehensive analysis of all the metabolites in a sample (10). Due 

to the abundance and the chemical diversity of the metabolites, no single analytical platform can 

cover the complete range of human metabolome. Analytical platforms frequently used in order to 

identify and quantify metabolites, are mass spectrometry coupled to separation techniques like gas 

chromatography (GC-MS) or liquid chromatography (LC-MS) (11) and nuclear magnetic 
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resonance (NMR). Previous researches have suggested that the study of urine metabolites profiles 

could be an effective tool for diagnosis and for understanding the physiopathology of autism (12–

14).  However, most of the studies have focused on Western autistic populations, and as far as we 

know, none of it have ever took place on a Lebanese Middle-East population.  

The aim of our work is to evaluate the metabolic profile of urine in an ASD Lebanese population 

by using the complementarity of analytical platforms, NMR 1D (1H), NMR 2D (1H-13C) and LC-

MS, in a targeted approach to compare their specific metabolic profiles to previously studied 

populations, and to identify the metabolic pathways associated with the disorder, for a better 

understanding of this pathology. 

 

Methods 

Sample collection: 

Autistic patients were diagnosed and enrolled in the study using Diagnostic and Statistical Manual 

of Mental Disorders, 4th edition (15) criteria and Childhood Autism Rating Scale (CARS). The 

average score on the CARS for the patients sample was in favor of moderate autism. The majority 

of the participants presented with moderate intellectual disability as reported in their records 

following IQ measures using standardized and validated tools (WISC, WPPSI). Patients were 

selected through specialized institutions and non-governmental organizations (NGOs) specialized 

in mental disorders in all the districts of Lebanon. Controls were selected from schools located in 

all the districts of Lebanon. All families and participants provided informed consent. First morning 

urine samples were collected from 40 autistic children (30 males and 10 females) and 40 controls 

(29 males and 11 females) matched for age, gender and geographic location (Beirut, North, South, 
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Mount Lebanon and Beqaa). All urine samples were centrifuged at 2000g for 5 minutes, the 

supernatant distributed in volumes of 5 mL and stored at -80°C. An aliquot from each sample was 

done for creatinine analysis done by the Jaffe method (Olympus AU640, France) to evaluate the 

dilution effect. 

NMR study 

Sample preparation 

Two mL of urine samples were first lyophilized (FreeZone ® 4.5 L, Labconco, USA) at -107°C, 

0.2 mbar. Then, 300 µL of phosphate buffered deuterium oxide (D2O) (pH = 7.4 ± 0.5) and 8 µL 

of an external reference [trimethylsylilpropionic acid (TSP), 0.05 wt % in D2O] were added. After 

vortexing and centrifugation for 3 minutes at 1500g, the supernatant was transferred into 3 mm 

NMR tubes for NMR analysis.  

NMR Spectroscopy Analysis 

NMR analysis was performed using a Bruker Advance III HD (BrukerSadis, Wissembourg, 

France) operating at 600 MHz. Spectra were acquired using a “noesypr 1d” pulse program with a 

relaxation delay of 20s for 1D analysis, and a “Hsqcgpphpr” pulse sequence for 2D (1H-13C) NMR. 

The region containing the water signal was removed from each spectrum.  

 

Data processing for targeted NMR 

¹H-NMR spectra were processed as previously described (16) using TopSpin version 3.2 software 

(Bruker Daltonik, Karlsruhe, Germany). Spectra were integrated within a range of 0-10 ppm using 

AMIX software (Analysis of Mixture, version 3.9.14, Bruker, Karlsruhe, Germany), excluding the 
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water region (4.67-5.00 ppm), with buckets of various width from 0.01 to 0.15 ppm. These buckets 

(28 buckets) corresponded to single metabolites. The signal intensity in each bucket was 

normalized to the total sum of peak intensities. Identification of metabolites were achieved using 

Chenomx software (Chenomx Inc, Edmonton, Canada) and in house database.  

For NMR 2D (¹H-¹³C), calibration and integration were processed as previously described (16) 

using MestRenova Software (Mestrelab research, Santiago de Compostela, Spain). The external 

reference TSP served as reference set at 0 ppm. Each region was integrated manually from several 

spectra (all cross-peaks presented in 15 controls and in 15 ASD spectra were cumulated). The final 

2D matrix contained 542 cross-peaks, then normalized by the total sum of cross-peak intensities 

and served for statistical analysis. These cross-peaks were then identified using MetaboMiner 

database (17) and in house database. 

 

LC-HRMS study 

Sample preparation 

Twenty µL of urine were diluted in water (160 µL) and 20 µL of internal standard (Imipramine) 

were also added for all urine samples. After vortexing and centrifugation at 10 000 g for 10 min, 

150 µL of the supernatant were transferred into a 96-well plate. In order to equilibrate the 

chromatographic system, twenty quality controls (QCs) [obtained by mixing an equal volume of 

all urine samples (20 µL)] were injected. The sequence of samples for analysis was randomized, 

QCs were analyzed every 10 samples and at the end of the run.  

LC-HRMS analysis 
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LC-HRMS analysis was performed as previously described (16), using a UPLC Ultimate 3000 

system (Dionex), coupled to a Q-Exactive mass spectrometer operated in positive and negative 

electrospray ionization (ESI) mode. The system was controlled by X-calibur 2.2 (Thermo Fisher 

Scientific). UPLC separations were achieved using a Phenomenex Kinetex 1.7 µm XB-C18 (150 

mm x 2.10 mm) column. Mobile phase A consisted of 0.1% formic acid in water and mobile phase 

B consisted of 0.1% formic acid in methanol. The gradient (16) operated at a flow rate of 0.4 

mL/min over a run time of 30 min. During the full-scan acquisition, which ranged from 60 to 

900 m/z, the instrument operated at 70 000 resolution (m/z = 200). 

Data processing for targeted LC-HRMS  

A library of standard compounds (Mass Spectroscopy Metabolite Library of standards MS ML®, 

IROA technologies) were analyzed with the same gradient of mobile phases and in the same 

conditions as those used to analyze urine samples. The annotation of selected features were 

validated using several criteria as previously described (18). Targeted molecules (367 molecules 

detected in ESI+, 255 in ESI-) were selected and integrated into X-calibur 2.2 (Thermo Fisher 

Scientific, San Jose, CA). Each peak area was normalized to the total peaks area of each 

chromatogram (MSTU post acquisition normalization). Coefficients of variation (CV) for QC 

samples were calculated. Only metabolites with high biological variability were selected. We kept 

metabolites with CV< 30 % in the QCs and CV >30 % in the case where the biological variability 

(CV in samples) exceeded the analytical variability (CV in QCs).  

 

Multivariate analysis 
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A data fusion model was generated by combining data tables with all features obtained from the 

four analytical methods (NMR 1D, NMR 2D, LC-MS ESI- and LC-MS ESI+). Data fusion refers 

to the process of combining data from different matrices for complementary information in order 

to achieve a global picture of biological samples (19). In this study low-level fusion strategy was 

used which refers to the concatenation of data matrices (20). Multivariate analyses were performed 

as previously described (16,21) using SIMCA P+ 13.0 software (Umetrics, Umea, Sweden) which 

included a principal component analysis (PCA) and an orthogonal partial least squares 

discriminant analysis (OPLS-DA) using unit variance scaling (UV). The quality of the model was 

described by the cumulative modeled variation in the X matrix R2X, the cumulative modeled 

variation in the Y matrix R2Y, and the cross validated predictive ability Q2 values (21,22). 

To evaluate the significance of the created model, cross-validation analysis of variance (CV-

ANOVA) was applied. The discriminant metabolites named variable importance in projection 

(VIP) obtained from OPLS-DA, were all considered as responsible for the differences between 

ASD and control urine samples [from The Human Metabolome Database (HMDB, 

http://www.hmdb.ca/), we only kept in our VIPs metabolites described for their origin as 

endogenous/microbial]. A Pearson correlation test was performed to eliminate the redundancy of 

information that correspond to the same metabolites. The redundant metabolite with the lowest p 

value was kept and the OPLS-DA was rebuilt.  

In the first place, we separated our sample based on their age (<8 years and > 9 years).  We 

conducted an OPLS-DA model in order to identify the age-dependent discriminant metabolites. 

These metabolites were then eliminated for the following analyzes. 

 

Prediction analyses 

http://www.hmdb.ca/
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We randomly split our data into two sets: a training set of 50 samples (25 ASD and 25 matched 

controls) used to build the OPLS-DA model in order to identify significant features , and a test set 

of 30 samples (15 ASD and 15 matched controls) used to evaluate the performance of the 

classification model (see Supporting Information, Table S1) (23). This process, leading to two 

randomly divided sets, was repeated 10 times, generating new training and test sets each time. 

From these 10 training sets, we built 10 OPLS-DA models. We created a last OPLS-DA model 

(model 11) from the common VIP present in at least in 8 of 10 tested models. The performance of 

this last OPLS-DA model was also evaluated using a ROC curve analysis to evaluate the sensitivity 

and specificity of the model Sensitivity is the proportion of “ASD” that were correctly classified 

as “ASD” and specificity is the proportion of “control” that were correctly classified as “control” 

(22). The positive predictive value, PPV = (sensitivity x prevalence)/ [sensitivity x prevalence + 

(1-specificity) x (1-prevalence)]; and the negative predictive value, NPV = [specificity x (1-

prevalence)]/ [(1-sensitivity) x prevalence + specificity x (1-prevalence)]. 

ROC curve was produced using free MetaboAnalyst software (24). 

 

Univariate analysis 

Student’s t-test was performed using MetaboAnalyst (24) for all the features of the total matrix 

after data fusion in order to select the metabolites which were significant. As we were in a multiple 

testing case, a non-parametric test was performed with an adjusted p-value (set at 0.05) with a 

False Discovery Rate (FDR) cutoff. The list of all the significant metabolites is given in 

supplementary material (Supplementary Material, Table S1). 

 

Metabolic pathways 
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VIP obtained from the final OPLS-DA model and significant metabolites in adjusted t-test (FDR) 

were introduced in pathways analysis module in MetaboAnalyst based on the latest version of 

KEGG (Kanehisa et al. 2014), given a metabolic pathway analysis (MetPA). Over Representation 

Analysis method was a Hypergeometric test. We have focused our interest on pathways showing 

a p-value <0.05 from the pathway enrichment analysis and deleted those with an impact=0 from 

the pathway topology analysis.  

Cytoscape software (25) was used for visualizing the interactions between the significant 

metabolic pathways (impact factor > 0 and a p value ≤ 0.05) and the metabolites.  

 (Insert Fig.1) 

 

Results 

Multivariate statistical analysis of the combined ¹H-NMR, ¹H-¹³C NMR, and ESI+/- C18 Column 

The general methodology of the study is illustrated in Fig.1. Working with urine requires a 

normalization treatment to minimize intersample variation due to dilution effect. As previously 

described (22,26), creatinine normalization did not led to the best multivariate statistical model 

and/or a better predictive power, so we used  a normalization to total peak area (normalization to 

as constant sum) before statistical analysis. The total number of metabolites from the data fusion 

was 377 and distributed as shown in the Fig. 2a (NMR1D: 20 metabolites; NMR2D: 60 

metabolites; ESI+ C18: 169 metabolites and ESI- C18: 128 metabolites). The complementarity of 

the chosen analytical platforms is illustrated in Fig.2b. 

(Insert Fig.2) 
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The OPLS-DA scatter plot showed good discrimination between ASD and controls, and the test 

set n=30 (light dots) showed good prediction (only 1 control was misclassified, see Fig. 3a). 

The OPLS-DA model gave good statistical parameters: R²X= 0.348, R²Y=0.897, Q²= 0.77 and CV-

ANOVA= 3.7 x 10-12. The performance of this model was also evaluated using the ROC curve (27) 

showing a sensitivity of 80%, specificity of 86%, positive predictive value (PPV) of 8% (taking 

into account the prevalence of 1/66 in Lebanon) (28), and a negative predictive value (NPV) of  

99.7%. Area under the curve (AUC) for the validation set was 0.88 (see Fig. 3b). 

 

(Insert Fig. 3) 

 

The 27 most highly contributing metabolites (VIP), with their fold change, in the discrimination 

of the 2 populations found in the final OPLS-DA model and the associated metabolic pathways 

are shown in Table 2. 

(Insert Table 2) 

 

To check the relevance of the results, we created from these 27 discriminants metabolites an 

unsupervised PCA analysis, where we have visualized three different scatter plots in order to 

confirm that no discrimination was caused by age and gender, compared to patient/control 

discrimination (Supplementary Material Fig. S1 a-b-c). 

To identify the metabolic pathways associated with this autistic population, we created a listing of 

the significant metabolites coming from univariate analysis (p<0.05) and all the VIP from 
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multivariate analysis. From this list, a pathway analysis (24) was done and Fig. 4 represents the 

most significant metabolic pathways having a p-value<0.05 and an impact factor>0. 

(Insert Fig. 4)  

 

Discussion 

Most of ASD urinary metabolomics studies have been achieved using 1 or 2 analytical platforms 

(13,35). In the present study, we used a complementary multiplatform analytical approach to 

improve sensitivity and specificity (16,22) (Fig. 2b, 41% of metabolites coming from NMR and 

59% from LC-MS) and to cover the metabolic profile of urine in ASD Lebanese population in 

order to increase the number of analyzed molecules. Evaluating the performance of the 

classification model with a test set is important to confirm that the selected features have the 

robustness to separate the two groups (ASD vs Controls).   

We compared our results of potential biomarkers with the findings from other studies of urine 

metabolic profiles in ASD patients originating from different geographical regions (Table 2). We 

found perturbations in the urinary metabolites of Lebanese ASD subjects compared to normal 

children, as previously shown in other studies (14,16,21,22,29–32). However, these studies have 

shown contradictions. For example, a study conducted on the urine of Italian autistic children (32) 

has shown perturbations in the metabolism of sugars in ASD subjects, whereas C. Evans et al., 

reported no significant differences in excretion of sugars between ASD and controls (30). In fact, 

there are many factors that influence the metabolome and contribute to the variations in human 

urine metabolic profiles. Some of these factors include diet, different nutritional habits, age, 

gender, gut microflora and genetics (36). One of the aim of this study is to confirm the previous 
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metabolomics studies.  Some of the biomarkers that we proposed in this study have been already 

reported in the literature and may represent more robust marker of the disorder (Table 2).  

 (Fig. 4).  

 

Oxidative stress  

Multiple studies have reported evidence of oxidative stress in individuals with ASD (35,38). We 

found perturbations in metabolites implicated in glutathione metabolism, as well as disturbances 

in the pathways of cysteine, methionine metabolism and arginine and proline metabolism (3-

sulfinoalanine, cysteic acid, creatine, N-acetylalanine) (Fig 4). We also found perturbation of 

guanidinosuccinate which is produced from oxidation of arginosuccinate by free radicals (39).  

Energy metabolism 

Creatine deficiency may have a role in the neurobiology of ASD as it plays an essential role in the 

transfer of energy in the central nervous system. Low levels of creatine have been reported in some 

regions of the brain of ASD patients (40). Furthermore, deficiency in the levels of acetyl carnitine 

was found in the Lebanese ASD group compared to controls (See supplementary material, Table 

S2). Acetyl carnitine is involved in mitochondrial metabolism and plays a role in fatty acid 

oxidation. Studies have shown that supplementation with L-carnitine improves the behavioral 

features of ASD (41). 

Carbohydrate metabolism 

Carbohydrates play an essential role as energy source for cells. Several metabolites implicated in 

the carbohydrate metabolism appear to be altered in this ASD population. We found perturbations 
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in the metabolism of propanoate (perturbation in 2-hydroxybutyrate concentration), citrate 

(perturbation in citrate) and sugars (perturbation in glucose-1-phosphate, fructose, glucuronate and 

glucosamine).   

2-Hydroxybutyrate, an organic acid involved in propanoate metabolism, was found altered in ASD 

children as previously observed (31). Butyrate is produced by bacteria in the colon and plays a role 

in the production of energy. Studies have shown that a dietary source of butyrate has a beneficial 

effects in improving patients with brain disorders (42).  

 Another metabolite whose level was altered in Lebanese ASD is citrate, already reported in 

literature (Table 1) (21,22,31,33,34). The primary energy source in the citric acid cycle is acetyl-

CoA that derives from the glycolysis of pyruvate via pyruvate dehydrogenase. Pyruvate 

dehydrogenase deficiency is a rare neurometabolic disorder which can lead to neurological 

problems associated with development of intellectual disability and seizures (43).  

Amino acid metabolism 

On the other hand, our results showed altered urinary amino acid excretion (Table 1). The 

concentration of amino acids can be affected by many factors such as age, gender, developmental 

stage, diet, food habits (44)… However, the cause of fluctuations between studies is still unclear. 

Our results showed that several amino acids such as serine, glutamate, tyrosine, threonine were 

altered in Lebanese ASD, as previously described (5). For example, N-acetyl-L-phenylalanine, a 

metabolite of phenylalanine, and tyrosine, a product of the hydroxylation of phenylalanine, were 

found to be different in urines of Lebanese ASD. These pathways are greatly impaired in several 

metabolic diseases. L-glutamate is the major excitatory neurotransmitter in the brain, having 

functions in learning, memory and synaptic plasticity. Studies have shown an important role of 
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this amino acid in the pathophysiology of ASD (5,45,46). Levels of glutamate have been described 

to be higher in the brain and plasma of ASD (5,44). The increase in the excretion of glutamate is 

not clearly understood but it could be due to drugs, diet, vitamin B6 involvement or impairments 

in glutamate transporters or receptors (44). 

Purine metabolism 

Our results also showed an alteration in the purine metabolism. 5-Aminoimidazole-4-

carboxamide, an intermediate metabolite in purine synthesis, and guanine were found altered in 

the urines of ASD. It is noteworthy that adenylosuccinase deficiency is an inborn error of purine 

metabolism, that results in accumulation of aminoimidazole carboxamide and succinyladenosine 

in body fluids (47). Symptoms include developmental delay, epilepsy and autism (47).  

Deficiency in purine nucleoside phosphorylase (PNP), the enzyme responsible for the metabolism 

of purine such as guanine, could lead to neurological problems including developmental delay and 

intellectual disability (48).   

 

In this work, we conducted a metabolomics study of urine on a Middle Eastern ASD population, 

using a training set, confirmed by a validation test set. Even if this study was realized on a small 

group (but similar to the literature (44)), we confirmed that several metabolites were modified in 

the same direction in all studies such as serine, creatine, threonine, hydroxybenzoate, glucoronate, 

hydroxyproline and guanidinosuccinate. These metabolites should be validated as biomarkers by 

further studies (developing and validating quantitative assays on other cohorts) to be potentially 

used in the future for improving the diagnosis of ASD. On the other hand, the other metabolites 

we found, none yet cited in the literature, could open perspective in identifying specific 
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pathophysiological pathways. We confirmed in a robust way that several metabolic profiles 

associated with amino acids, purine metabolism, creatine metabolism, intestinal microbiote, 

energy metabolism and oxidative stress could be involved in ASD. These findings led us conclude 

that it might be a common metabolic profile between Lebanese ASD and other studied population 

despite the differences in the nutritional habits and the environmental factors between countries. 

 

 

 

 

 

 

 

Figure legends 

Figure 1: Workflow showing the methodology of discriminant metabolites and metabolic 

pathways identifications. 

Figure 2 a) Venn diagram showing the number of common metabolites between NMR and LC-

MS analyses, and the number of specific metabolites for each platform. b) Repartition of the 27 

discriminants metabolites present in 80% of the 10 permutated OPLS-DA models. 

Figure 3 a) Scatter plot of the final OPLS-DA showing the training and the validation set. For the 

training set: dark blue dots= patients with ASD (n=25) and dark yellow dots= control patients 
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(n=25). For the validation set: light blue dots= patients ASD (n=15) and light yellow dots= controls 

patients (n=15). b) Validation set ROC curve. 

Figure 4: Metabolites interaction and pathway analysis (Impact factor > 0 and p ≤ 0.05) based on 

VIP and significant metabolites between autistic and non- autistic Lebanese children. Green color 

= metabolites with higher level in ASD urines; blue color= metabolites with lower level in ASD 

urine.  

 

 

 

 

 

Table 1. Training and test set characteristics (median age and number of males and females) 

Training set Test set 

ASD (n=25) Control (n=25) ASD (n=15) Control (n=15) 

Age (years) 8.44 [3-14] 8.2 [3-15] 9.13 [4-15] 9.6 [3-15] 

no. of males 16 19 12 12 

no. of females 9 6 3 3 
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Table 1. Metabolites of data fusion OPLS-DA with the corresponding metabolic pathway and 

comparison with published urine metabolomics studies. 

 Differentiation for ASD samples 

Metabolic 

pathways 
Metabolites 

Analytical 

platform 

Our 

findings(Fold 

change) 

Published results 

Glycine, serine 

and threonine 

metabolism 

Threonine 

Phosphoserine* 

Creatine* 

Serine* 

NMR2D 

ESI- C18 

NMR2D 

NMR2D 

↓ (0.6) 

↑ (2.1) 

↓ (0.7) 

↓ (0.8)                                        

↓(29) ; ↓(30). 

 

↓(21); ↓(14); ↓(22), ↑(13)                                                                      

↓(29); ↓(31); ↓(30) 

Phenylalanine 

metabolism 

N-Acetylphenylalanine* 

Tyrosine* 

Hydroxybenzoic acid* 

ESI+ C18 

NMR1D 

NMR1D 

↓ (0.7)  

↓ (0.9)  

↓ (0.8) 

 

↓(21) ; ↑(31) ; ↑(32); ↓(30) 

↓(33) 

Glutamate, 

Arginine and 

proline 

metabolism 

Glutamic acid* 

Creatine* 

Hydroxyproline* 

ESI- C18 

NMR2D 

ESI- C18 

↑ (1.3) 

↓ (0.7) 

↓ (0.9) 

↓(21); ↓(14); ↓(22); ↓(30), ↓(13)  

↓(21); ↓(14); ↓(22); ↑(13) 

↓(30) 

Histidine 

metabolism 

Urocanic acid* 

Glutamic acid* 

ESI- C18 

ESI- C18 

↓ (0.8) 

↑ (1.3) 

↑(29) 

↓(21); ↓(14); ↓(22); ↓(30); ↓(13) 

Cysteine and 

methionine 

metabolism 

Phosphoserine* 

Cysteic acid* 

Serine* 

ESI- C19 

ESI+ C18 

NMR2D 

↑ (2.1) 

↓ (0.2) 

↓ (0.8) 

 

 

↓(29); ↓(31); ↓(30) 

Propanoate 

metabolism 

2-Hydroxybutyric acid* NMR2D ↓ (0.6) ↑(31) 

Nicotinate and 

nicotinamide 

metabolism 

Nicotinamide ribotide* 

Trigonelline* 

ESI+ C18 

NMR1D 

↑ (1.8) 

↑ (1.4) 

 

Citrate cycle 

(TCA cycle) 

Citric acid* NMR1D ↓ (0.7) ↑(21) ;↑(22) ;↑(31); ↑(34) ; ↑(33) 

Purine 

metabolism 

Guanine* 

5-AminoImidazole-4-

carboxamide 

ESI+ C18 

ESI- C18 

↓ (0.3) 

↑ (2.5) 

 

http://www.metaboanalyst.ca/faces/Secure/pathway/ResultView.xhtml
http://www.metaboanalyst.ca/faces/Secure/pathway/ResultView.xhtml
http://www.metaboanalyst.ca/faces/Secure/pathway/ResultView.xhtml
http://www.metaboanalyst.ca/faces/Secure/pathway/ResultView.xhtml
http://www.metaboanalyst.ca/faces/Secure/pathway/ResultView.xhtml
http://www.metaboanalyst.ca/faces/Secure/pathway/ResultView.xhtml
http://www.metaboanalyst.ca/faces/Secure/pathway/ResultView.xhtml
http://www.metaboanalyst.ca/faces/Secure/pathway/ResultView.xhtml
http://www.metaboanalyst.ca/faces/Secure/pathway/ResultView.xhtml
http://www.metaboanalyst.ca/faces/Secure/pathway/ResultView.xhtml
http://www.metaboanalyst.ca/faces/Secure/pathway/ResultView.xhtml
http://www.metaboanalyst.ca/faces/Secure/pathway/ResultView.xhtml
http://www.metaboanalyst.ca/faces/Secure/pathway/ResultView.xhtml
http://www.metaboanalyst.ca/faces/Secure/pathway/ResultView.xhtml
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Vitamin B6 

metabolism 

Riboflavin 

 

NMR2D ↑ (1.7) ↑(12) 

Others N-Amidino aspartic 

acid*   

(guanidinosuccinic acid) 

Acetylcarnitine 

Methyl acetoacetic acid* 

Glycerol-3-phosphate* 

Cholic acid* 

ESI- C18 

 

NMR2D 

ESI- C18 

ESI- C18 

ESI- C18 

↓ (0.6) 

 

↓ (0.7) 

↓ (0.6) 

↑ (1.7) 

↑ (4.9) 

↓(16) 

a p-value* of univariate analysis indicates significant value < 0.05. b↑ indicates higher level in ASD 

urines, ↓ indicates lower level in ASD urines. Fold change in brackets: [ASD]/ [control]  
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