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Abstract 

 

While tumours arise from acquired mutations in oncogenes or tumour-suppressor genes, it is 

now clearly established that cancers are metabolic diseases, characterized by metabolic 

alterations in both tumour cells and non-tumour cells of the host organism (resulting in 

tumour cachexia and patients weakness). This review aims at delineating details by which 

metabolic alterations in cancer cells, characterized by mitochondrial bioenergetics 

deregulations and the preference for aerobic glycolysis, are critical parameters controlling the 

aggressive progression of tumours. In particular, metabolic alteration in cancer cells are 

coupled to the modulation of intracellular and extracellular pH, epithelial-to-mesenchymal 

transition and associated increased invasiveness, autophagy and the development of 

anticancer treatment resistance. Finally, based on mechanistic, pre-clinical and clinical 

studies, we wish to propose the adjuvant supplementation of dietary n-3 polyunsaturated fatty 

acids for a complementary global treatment of the cancer disease.  
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Abbreviations:  

α-SMA: α-smooth muscle actin; AMPK : AMP-activated protein kinase; bHLH : basic Helix-

Loop-Helix; DHA : docosahexaenoic acid (22:6n-3); Drp1 :dynamin-related protein 1 ; 

ECM : extracellular matrix ; EMT : epithelial-to-mesenchymal transition ; EPA: 

eicosapentaenoic acid (20:5n-6); ERK1/2: extracellular signal-regulated kinase ; 
18

FdG: 18-

fluorodeoxyglucose; HIF : Hypoxia-Inducible Factor ; IFP : interstitial fluid pressure; LDH: 

lactate dehydrogenase; MAPK : mitogen-activated protein kinase; mCAT: mitochondrial 

catalase; MCT : monocarboxylate-H
+
 co-transporter; MDR : multidrug resistance ; MMP : 

matrix metalloproteinases; n-3 PUFA: n-3 polyunsaturated fatty acid; NaV: voltage-gated 

sodium channels; NHE : sodium-proton exchanger; NMU : N-nitroso-N-methylurea; 

OXPHOS : oxidative phosphorylation; PDH: pyruvate dehydrogenase; PET: positron 

emission tomography; P-gp: P-glycoprotein; PPAR : peroxisome proliferator activated 

receptor; PPI : proton pump inhibitor ; ROS : reactive oxygen species; TCA: tricarboxylic 

acid cycle; TMZ : temozolomide; UCP-2: mitochondrial uncoupling protein 2 
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1. Introduction 

Cancer is a leading cause of death, and in 2012, it was estimated that 14.1 million 

new cancer cases and 8.2 million cancer deaths occurred in the world (1). These numbers are 

expected to increase rapidly in the next few years because of the growth and aging of 

populations, the changes in lifestyle and dietary behaviours, and/or the exposure to 

environmental conditions that are known or supposed to increase cancer risk. Cancer is often 

reduced as being a genetic disease. Indeed, the tumour mainly takes its origin in the 

occurrence of sporadic mutations leading to the amplification, or activation, of oncogenes 

(such as SRC, AKT) (2,3), the increased expression (or gain-of-function mutations) of proto-

oncogenes (such a RAS, MYC, WNT) (4-6), or the acquisition of loss-of-function mutations in 

tumour-suppressor genes (such a RB1, TP53, PTEN, APC) (7-9). A small proportion of 

cancers, 5 to 15% of cases depending on cancer types, are hereditary due to the transmission 

of germline mutations in tumour-suppressor genes, such as the breast-ovarian hereditary 

cancers associated with mutations in BRCA1/2 genes encoding for DNA repair enzymes (10).  

These initial mutations, along with the stochastic accumulation of multiple others, lead to the 

selection of some cancer cell clones, generating a heterogeneous primary tumour, 

characterised by six minimal parameters identified as being the hallmarks of cancer: a 

sustained signalling promoting proliferation, a replicative immortality, the independence 

towards growth suppressors, the resistance to cell death, the induction of tumour 

angiogenesis, and the activation of invasive and pro-metastatic properties (11). 

 

Cancer progression 
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The growth of this primary tumour, and its progression towards an aggressive 

phenotype result from mutual interactions between cancer cells and their microenvironment in 

the host organism. This microenvironment comprises stromal, endothelial and immune cells, 

extracellular matrices, and also soluble factors, such as cytokines, growth factors, and can be 

submitted to fluctuations in ionic composition, nutrients availability and oxygen tension. At 

the cellular level, the acquisition of extensive migration and extracellular matrix invasion 

potencies by cancer cells are critical steps in cancer progression, in the metastatic cascade 

(12,13) and eventually in patient death (14). Over the last decade, important knowledge on 

cancer cell migration and invasiveness has emerged, leading to the classification of different 

types of migrations, individual versus collective, and different migrating cell phenotypes, 

mesenchymal versus amoeboid (15,16). These specific phenotypes are not absolutely strict, 

but versatile as a function of changes in the microenvironment. It is generally accepted, that 

the acquisition of pro-invasive capacities is associated with the epithelial-to-mesenchymal 

transition (EMT), which is a reversible phenotypical and functional programme, reminiscent 

of physiological mechanisms involved in embryonic development or tissue repairing (17). 

During the EMT, cancer cells of epithelial origin dedifferentiate, they lose their apico-basal 

polarity to the profit of a rear-to-front cell polarity, lose intercellular junctions (especially 

tight and adherens junctions), remodel their intracellular cytoskeleton and gain mobility and 

resistance to apoptosis (Figure 1). They also overexpress and secrete ECM-degrading 

proteases, and express mesenchymal markers (vimentin, N-cadherin, α-smooth muscle actin 

(α-SMA), etc.) (18). The EMT is proposed to favour the acquisition of stemness 

characteristics in cancer cells (19,20), to support their survival in the bloodstream and their 

extravasation in metastatic sites (21,22). Increasing evidence suggests that the EMT, and the 

reverse process called mesenchymal-to-epithelial transition (MET), may be better described 
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as a spectrum of intermediate states that might depend on the physical and chemical nature of 

the microenvironment. The initiation of the EMT programme is driven by several signalling 

pathways including those mediated by transforming growth factor β (TGF-β) (23), bone 

morphogenetic protein (BMP) (24) or integrin signalling (25), that stimulate EMT-inducing 

transcription factors (Snail1/2, Zeb1/2, Twist) which bind to the promoter region of critical 

genes such as those regulating cell-cell adhesions (26-29). In a primary tumour, the induction 

of EMT is generally visualized in areas of hypoxia (30). In fact, low oxygen tension induces 

transcriptional, metabolic and phenotypic changes that directly induce, or synergize with 

signalling pathways inducing EMT (see paragraph 2.1 – “Aerobic glycolysis, pH regulation 

and consequences on cancer cell invasiveness and resistance to treatments”), thus linking this 

phenotypical switch to metabolic parameters. In the mesenchymal mode of invasion, cancer 

cells harbour an elongated fibroblast-like morphology, with a rear-to-front lamellopodial cell 

polarity. Their motility is dependent on the interaction of integrins, at focal sites, with 

components of the substratum. In this mode of invasion, cancer cells self-generate a path 

through the participation of invadosomal structures that perform the proteolytic remodelling 

of the ECM by both membrane-associated and extracellularly-released soluble proteases, such 

as MMP2, MMP9 or cysteine cathepsins, which extracellular release and activation are 

promoted by extracellular acidification (31-34). In the “amoeboid” mode of invasion, cancer 

cells generally present a rounded morphology, but their shape changes in order to move into 

small gaps of the ECM, with no need to degrade it, and they display a high speed of migration 

due to strong actomyosin contractions (35). While different cancer cell types may 

preferentially engage into one mode or the other, the most aggressive cancer cells show high 

plasticity, with transitions  called MAT, for mesenchymal-to-amoeboid transition, or AMT for 

amoeboid-to-mesenchymal transition (35). These transitions, orchestrated by RhoGTPases 
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family members (such as Rac1/2, RhoA/B, cdc42) (36-38), offer selective advantages and 

compensatory mechanisms to invading cancer cells, by counteracting and adapting to changes 

in the microenvironment (matrix composition and stiffness, accessibility to oxygen and 

nutrients), and are also proposed to abrogate the efficacy of some anticancer treatments (39-

41). Recently, some reports describe a very aggressive hybrid mesenchymal-amoeboid 

phenotype in some cancer cell types (42,43). The selection of drug resistant cancer cells is 

another critical step in the progression of the disease leading to a decrease in the efficacy of 

chemotherapies. The multidrug resistance (MDR) phenotype is the result of a multicomponent 

process, among which is the over-expression of ATP-binding cassettes (ABC) transporters, 

such as the P-glycoprotein (P-gp, also known as ABCB1 or MDR1), which are highly energy-

demanding for their activity of anticancer drug efflux. Drug resistance is also characterized by 

the capacity of cancer cells to counteract the oxidative stress generated by some 

chemotherapeutic agents, through a modulated Redox status, or to resist to apoptotic inducers. 

Recent studies suggest that EMT is importantly involved in the selection of chemotherapy-

resistant cancer cells (44,45). 

 

Cancer as a metabolic disease 

Cancer progression relies on bioenergetics parameters (46), and the metabolic 

reprogramming of cancer cells was added to the initial hallmarks of cancer (47). This 

reprogramming of the entire metabolism has consequences on protons dynamics in all cellular 

compartments (mitochondria, cytosol, lysosomes and autophagolysosomes), and extracellular 

compartments leading to a deregulated pH homeostasis, which, in adapted cancer cells, offers 

supplementary aggressive features to create a “perfect storm for cancer progression” (48). 

While the metabolic reprogramming is a general feature of tumours, it is not static and not 
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similarly applicable to all tumour cells. Furthermore, the nature of the metabolic 

reprogramming is highly dynamic, and might differ as a function of time and conditions (such 

as episodic deprivations of oxygen and nutrients, distance from blood vessels, stimulation by 

paracrine factors), as a function of cell types (cancer cells, cancer-associated fibroblasts, 

tumour-associated macrophages, endothelial cells, …) and populations (cancer cell clones). 

Therefore, the metabolic reprogramming should not only be considered as a simple and 

permanent state in a cancer cell, but should rather take into consideration tumour spatio-

temporal heterogeneity (49). These versatile metabolic adaptations not only allow cancer cells 

to survive to the pressure of environmental conditions by providing energy demand required 

to support the maintenance of their high anabolic activity for uncontrolled proliferation, but 

also exacerbate their migrative, invasive activities and metastatic properties (50,51).  

It should be mentionned that metabolic reprogramming does not solely concern cancer and 

non-cancer cells from the tumour (metabolic interplay between cancer and non-cancer cells 

from the tumour, and also between oxygenated and hypoxic tumour cells), but also operates, 

most probably through the participation of an inflammatory component, in distant non-cancer 

tissues from the host organism, such as in liver, adipose tissue and skeletal muscles, leading to 

an overall deregulation of the energetic balance (52-54). A severe state of tumour-induced 

metabolic reprogramming, known as cancer cachexia, is a complex syndrome characterized 

by the loss of adipose and muscle mass, anorexia, and a general weakening of patients, 

impeding their quality of life and preventing the application of an effective anti-cancer 

treatment (55,56).  

Therefore, it is proposed that the cancer disease, considering not only the tumour and its 

aggressive progression but also the response of the host organism to the presence of a tumour, 

is a metabolic disease. This review, focused on cancer cells, is intended to highlight how 
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cancer cell metabolic reprogramming couples with completely deregulated protons 

homeostasis and dynamics, promoting some aspects of cancer cell aggressiveness and tumour 

progression, such as the gain in invasive potential, the development of metastases and the 

resistance to anticancer treatments.  

 

2. Metabolic switches in cancer cells and consequences on cancer cell properties 

Cancer cells in a tumour are selected under stringent environmental conditions of 

low oxygen levels, nutrients deprivation, acidic extracellular pH (pHe), exposure to anticancer 

treatments, and on their ability to fulfil intensive energetics needs required for their high 

proliferative, invasive and detoxifying activities. Under these stringent conditions, only cancer 

cells with an adaptative metabolism can survive, leading to the self-selection of the most 

aggressive cells. 

 

2.1 - Hypoxia and the selection of cancer cells with high glycolytic activity 

In rapidly growing primary tumours, areas located away from blood capillaries (distance 

generally estimated as being > 150 µm) reach the limit of oxygen diffusion and cancers cells 

in these regions are under temporary or sustained hypoxic conditions (57,58). The majority of 

cells, mostly relying on the oxygen-dependent mitochondrial oxidative phosphorylation 

(OXPHOS) to generate ATP, die in these conditions, in turn generating necrotic cores of 

tumours. In this scenario, only cells that are be able to cope with hypoxic conditions because 

of their metabolic preference for glycolysis, will survive. The principal cellular mechanism 

for the biological adaptation in response to hypoxia is the stabilisation of the Hypoxia-

Inducible Factor (HIF), a transcription factor belonging to the basic Helix-Loop-Helix 

(bHLH) family. The HIF-1 is a heterodimeric factor composed of a stable HIF-1β subunit and 
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an unstable HIF-1α subunit, the half-life of which is controlled by the level of oxygen. Indeed, 

in normoxic conditions, HIF-1α is degraded by the successive action of oxygen-dependent 

prolyl hydroxylases (PHD) and Von Hippel-Lindau (VHL) ubiquitin ligases, while it is 

maintained under hypoxia (59). Stabilized HIF-1 factor inhibits mitochondrial biogenesis (60) 

and functionally cooperates with the MYC oncogene to promote the glycolytic metabolism 

(61). This includes the up-regulation of glucose transporters, particularly studied is the 

isoform 1 (GLUT1, gene SLC2A1), which allows an increase in glucose uptake, and the 

expression of glycolytic enzymes, such as hexokinases 1 and 2 (HK1 and HK2), which are the 

primary enzymes needed for the entry of glucose in glycolysis, aldolase A (ALDA), which 

catalyses the reversible conversion of fructose-1,6-bisphosphate to glyceraldehyde 3-

phosphate and dihydroxyacetone phosphate, phosphoglycerate kinase 1 (PGK1), which 

catalyses the reversible transfer of a phosphate group from 1,3-bisphosphoglycerate to ADP 

producing 3-phosphoglycerate, pyruvate kinase (PK), which catalyses the transfer of a 

phosphate group from phosphoenolpyruvate to ADP, thus giving one pyruvate and one ATP, 

and lactate dehydrogenase A (LDHA), which catalyses the inter-conversion of pyruvate and 

L-lactate with concomitant inter-conversion of NADH,H
+
 and NAD+ (62-64). An increasing 

number of studies also reports that hypoxia promotes the EMT in cancer cells (18). This can 

be mediated, not exclusively, through the HIF-1α-dependent induction of EMT-promoting 

genes such as TGF-β (100), ZEB2 (101), TWIST (102), and the loss of E-cadherin (103). 

The resistance to hypoxia is therefore an important parameter leading to the selection of 

adapted cancer cells, and initial studies led to the observation that aggressive cancer cells 

display a highly increased glycolytic activity. Quite surprisingly, this metabolic pathway, in 

selected cancer cells, is still observed under normoxic conditions. This is contradictory to the 

“Pasteur effect”, generally observed in normal cells, characterizing the fact that the presence 
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of oxygen results in the activation of OXPHOS and the relative inhibition of glycolysis, since 

OXPHOS is 18 times more efficient than glycolysis in generating ATP from one molecule of 

glucose. This particular metabolism was called “aerobic glycolysis”, which might be 

confusing since glycolysis does not require oxygen. This is also often referred as being the 

“Warburg effect” (65,66). Since the initial description by Otto Warburg, the “aerobic 

glycolysis” was demonstrated in different cancer types (67) and the study of tumour 

metabolism became an important research field, for both basic and translational research. For 

example, the detection and imaging of tumours, displaying a high consumption of glucose, 

can be performed with the analogue 
18

fluorodeoxyglucose (
18

FdG) as a tracer in positron-

emission tomography (PET) (68,69). While “aerobic glycolysis” might be a general 

mechanism associated with cancer progression, the hypothesis proposed by Otto Warburg that 

this might be the consequence of a defective mitochondrial activity (70) was not verified, and 

it is know that mitochondria are fully functional in cancer cells and contribute to cancer 

progression (51). In this context, it is proposed that the aerobic glycolysis is a supplementary 

and regulatory metabolic pathway fulfilling the high energy demand of cancer cells.  

It should be stated that within a tumour, there is a metabolic cooperation between cancer and 

non-cancer cells. As such, the understanding for a tumour metabolism with metabolic 

coupling between cancer cells and stromal cells from the tumour had been previously 

proposed by Lisanti and collaborators and was termed “The reverse Warburg effect” (71). In 

the tumour, cancer cells generate oxidative stress in neighbouring stromal fibroblasts or 

mesenchymal stem cells, thus leading to the onset of “aerobic glycolysis” in those non-cancer 

cells. In turn, the excess of lactate and pyruvate, the energy metabolites resulting from aerobic 

glycolysis from non-cancer cells, is transferred to adjacent cancer cells where they enter in the 
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tricarboxylic acid cycle (TCA), resulting in increased OXPHOS and efficient ATP production 

(71,72). 

A metabolic cooperation has also been identified between cancer cells themselves and 

between cancer cells and non-cancer cells from the tumour microenvironment. In the case of 

ovarian cancers, adipocytes provide free fatty acids to cancer cells, after the hydrolysis of 

triacylglycerids (lipolysis) to fuel mitochondrial β-oxidation and promote tumour growth (73). 

In addition, a metabolic symbiosis between glycolytic and oxidative cancer cells was 

demonstrated through the exchange of lactate. In this model, lactate produced and excreted by 

glycolytic cancer cells, whether being in hypoxic conditions or not, is transported through 

monocarboxylate-H
+
 co-transporters (MCT) in oxidative cancer cells. These later use LDHB 

to convert lactate into pyruvate and fuel the TCA cycle and promote tumour growth (74,75).  

 

2.2 - Roles of mitochondrial bioenergetics in cancer progression  

- Mitochondrial activity, cancer cell invasiveness and metastases - 

Cancer cell migration and invasiveness are two critical aspects of the metastatic 

potential that may require a boost in energy and in this scenario, mitochondrial energy 

metabolism would be important. Therefore, several studies suggest that the regulation of the 

mitochondrial metabolic activity is an important determinant of the metastatic process. This 

has been elegantly shown in vivo by Tan and collaborators (76). In this study, the intravenous 

injection of tumour cells bearing no mitochondrial DNA (mtDNA), and therefore showing 

compromised mitochondrial energy metabolism, presented a delayed tumour growth in mice. 

Interestingly, metastastic cells were deriving from mtDNA-deficient carcinoma cells that 

obtained mtDNA from host murine cells, and exhibited full restoration of mitochondrial 

energy metabolism. These data indicate that “horizontal transfer” of mitochondria from host 
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cells to cancer cells in the tumour microenvironment play a role in metastases (76). Moreover, 

it has been shown that migratory/invasive cancer cells specifically favour mitochondrial 

oxygen consumption and have an increased ATP production (77). Invasive cancer cells use 

the transcription co-activator peroxisome proliferator-activated receptor gamma, co-activator 

1 alpha (PPARGC1A, also known as PGC-1α) to enhance mitochondrial biogenesis and 

mitochondrial OXPHOS. Silencing of PGC-1α in cancer cells inhibited their invasive 

potential and attenuated metastasis (77). Correlatively, the increased expression of genes 

known to be involved in the mitochondrial energy metabolism, accompanied by a gain in 

mitochondrial biogenesis, was also observed in breast cancer cells originating from brain 

metastases (78). It has been shown that mitochondrial complex I activity was critical in 

defining the metastatic phenotype of breast cancer cells (79). Thus enhancing complex I 

activity inhibited metastasis, partly through the regulation of the tumour cell 

NAD
+
/NADH,H

+
 redox balance (79). 

Mitochondria are high dynamic organelles with frequent fission and fusion that impact 

mitochondrial and cellular activities. It has been reported that hypoxia stimulated 

mitochondrial fusion and migration in metastatic breast cancer MDA-MB 231 cells, by 

increasing the expression of dynamin-related protein 1 (Drp1) (80). Moreover, inhibition of 

Drp1-dependent mitochondrial fission by Mdivi-1, an inhibitor of fission, or silencing Drp1 

attenuated hypoxia-induced migration in MDA-MB 231 cells (80). Furthermore, it has been 

shown that EGF induced the translocation of its receptor EGFR to mitochondria that in turn 

induced mitochondrial fission, cellular redistribution of mitochondria to the lamellipodia, 

upregulated cellular ATP production, and enhanced cancer cell motility both in vitro and in 

vivo (81). In addition, the overexpression of Mitofusin 1, an actor of mitochondrial fusion, 

significantly alleviated the mitochondrial EGFR-mediated higher ATP production and cell 



14 

 

migration (81). Therefore, one could consider that the inhibition of mitochondrial fusion may 

be an important mechanism to prevent metastasis.  

Mitochondria are major sites of reactive oxygen species (ROS) production, mostly occurring 

during the process of electron transfer through mitochondrial electron-transport chain 

enzymes at complex I and complex III (82,83). It has been shown that ROS induced by 

mitochondrial dysfunction enhances gastric cancer metastasis (84). By replacing the 

endogenous mtDNA of a poorly metastatic mouse tumour cell line, by the mtDNA derived 

from a highly metastatic mouse tumour cell line (cytoplasmic hybrid (cybrid) technology), it 

has been shown, both in vitro and in vivo, that mutations in mtDNA can enhance the 

metastatic potential of tumour cells by inducing defects in complex I, thus resulting in the 

increase of mitochondrial ROS production (85). Additional evidence implicating the role of 

the oxidative stress generated by mitochondrial activity in cancer metastasis comes from the 

study of Goh and colleagues (86). In their study, transgenic mice expressing a human 

mitochondrial catalase (mCAT) were crossed with MMTV-PyMT transgenic mice that 

spontaneously develop metastatic mammary cancer. Data showed that PyMT mice expressing 

mCAT had a lower incidence of metastasis compared to controlled PyMT mice not expressing 

mCAT. Moreover, PyMT tumour cells expressing mCAT had lower mitochondrial ROS 

levels than wild type tumour cells (86). A critical role for mitochondrial ROS in metastasis 

has also been reported by Porporato and collaborators (87). Indeed, they demonstrated that 

cancer cell migration, invasiveness and spontaneous metastasis in mice were promoted by the 

natural selection of two mitochondrial phenotypes leading to an enhanced mitochondrial ROS 

production: i.e. overload of the mitochondrial electron transport chain vs. partial 

mitochondrial electron transport chain inhibition. In addition, in this study, the specific 

scavenging of mitochondrial ROS with MitoTEMPO blocked tumour cell migration and 
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prevented spontaneous metastasis in both murine and human tumour models (87). In contrast, 

it has been shown that metastatic cancer cells can release mitochondrial ROS, induce 

oxidative stress and aerobic glycolysis in the non-cancer cells of the tumour 

microenvironment, which in turn generate L-lactate and ketone bodies that fuel mitochondrial 

energy metabolism in cancer cells, as a part of the reverse Warburg effect (88-90).  

  

-Mitochondrial activity in the resistance to anticancer treatments- 

Several studies have focused on the role of mitochondria and intracellular ATP in the 

development of anticancer drug resistance by cancer cells. For instance, this has been shown 

in CD44+/MyD88+ ovarian cancer stem cells that are resistant to apoptotic cell death induced 

by conventional chemotherapy agents. Indeed, in these extremely chemoresistant cells, the 

isoflavone derivative, NV-128, significantly depressed the mitochondrial function, as 

confirmed by a decrease in ATP synthesis, and by the increase in mitochondrial superoxide 

and hydrogen peroxide, and in turn activated cell death (91). On one hand, by comparing 

oxaliplatin-sensitive to –resistant cancer cells, it has been demonstrated that exogenous ATP 

delivery to sensitive cells partially blocked the cytotoxic effect of oxaliplatin (92). On the 

other hand, ATP depletion in resistant cells partially re-sensitized resistant cell lines to 

oxaliplatin, indicating the prominent role of intracellular ATP level in mediating the drug-

resistant phenotype (92).  Differently, by comparing several 5-fluorouracil (5-FU)-sensitive to 

–resistant colon cancer cells, the authors reported a down-regulation of mitochondrial ATP 

synthase subunits, a lower mitochondrial ATP synthase activity and a decreased intracellular 

ATP content in chemoresistant cells compared with parent cells (93). In addition to this, it 

was found that 5-FU sensitivity positively correlated with mitochondrial ATP synthase 

expression and activity. Finally, knocking-down the mitochondrial ATP synthase expression, 
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by using siRNA, induced a higher viability of sensitive cells under the treatment with 

different concentrations of 5-FU (93). One obstacle of chemotherapy efficacy is the 

overexpression of a superfamily of energy-dependent ATP binding cassette transporters that 

extrude anticancer drugs out of the cell. It has been suggested that the modulation of 

mitochondrial energy metabolism could reduce drug resistance by restoring the capacity to 

accumulate and retain drug in the cells. Thus, it has been showed that oligomycin could 

suppress the activity of the P-gp expressed at the plasma membrane, at an extent similar to the 

P-gp inhibitor verapamil, and increased accumulation of doxorubicin in doxorubicin-resistant 

HepG2 cells (94). Although ATP-dependent efflux pumps are generally considered to be 

localized at the plasma membrane, it has been showed that BCRP (breast cancer resistant 

protein), MRP1 (multidrug resistance protein 1) or P-gp could also be expressed in 

mitochondria from leukaemia, ovarian carcinoma, sarcoma and hepatocellular doxorubicin-

resistant cancer cells (95-98). It has been described that BCRP and MRP1 pumps, expressed 

in the mitochondrial membrane, maintain the direction of transport similarly to that in the 

plasma membrane (inside towards outside). Therefore, it is proposed that mitochondrial ATP-

dependent efflux pumps could be involved in the protection of mitochondria from damage due 

to anticancer drugs (Figure 2). Since functionally active mitochondrial pumps require ATP for 

their efflux activity, one could argue that mitochondrial energy production in chemoresistant 

cells participates to the ATP used for the functioning of mitochondrial efflux pumps.  

It has been suggested that the toxicity level of drugs towards cancer cells was dependent on 

the mitochondrial mass. For example, the introduction of normal mitochondria from 

immortalized, untransformed MCF-12A cells in breast cancer cells MCF-7 increased their 

sensitivity to doxorubicin, abraxane, and carboplatin (99). In this context, it has been shown 

that the treatment of breast cancer cells with the thyroid hormone (T3) increased 
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mitochondrial mass, modulated the bioenergetics profile and enhanced doxorubicin-induced 

cell death (100). Such a link between mitochondrial mass and chemoresistance has also been 

found in oxygen-deficient conditions. Thus, it has been observed, in lung cancer cell lines, 

that hypoxia-induced resistance to cisplatin and doxorubicin were associated with a decrease 

in number and size of mitochondria (101).  

 Several studies have used dichloroacetate, a pyruvate dehydrogenase kinase inhibitor 

that activate mitochondrial OXPHOS, to target metabolism in cancer cells. Using this 

methodology, it has been suggested that the activation of mitochondrial OXPHOS was more 

effective than the suppression of glycolysis in overcoming sorafenib resistance in highly 

glycolytic hepatocellular carcinoma (HCC) cells (102). Indeed, although enhanced glycolysis 

was positively correlated with sorafenib resistance of HCC cells, dichloroacetate, by 

activating mitochondrial OXPHOS, markedly sensitised sorafenib-resistant cells to sorafenib-

induced apoptosis. By contrast, the inhibition of glycolysis, by silencing the expression of 

hexokinase 2, was ineffective (102). In addition, it has been shown that combination of 

dichloroacetate and cisplatin exhibited a significant synergistic activity in reducing the 

viability of HeLa cells (103). Furthermore, it has been showed that the use of dichloroacetate, 

in combination with doxorubicin or cisplatin, reduced the cytotoxicity of these two drugs in 

vitro, on a range of human cancer cell lines (104). Even if the precise mechanisms still need to 

be clarified, these studies suggest that mitochondrial energy metabolism is involved in the 

chemoresistance of cancer cells and tumours (Figure 2). 

Multiple anticancer drugs induce cell death through the generation of ROS, and even agents 

that  have been characterized to generate cancer cell apoptosis through the interaction with 

DNA (such as cisplatin, bleomycin, doxorubicin, methotrexate, busulfan and fluorouracil) are 

known to generate mitochondrial ROS (105). The role of mitochondria in the interplay 
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between ROS production and chemoresistance has been studied by Alakhova and 

collaborators (106). In their study, they showed that part of the sensitizing effects of pluronic, 

a synthetic amphiphilic copolymer, in multidrug resistant cancer cells was associated with an 

increased production of mitochondrial ROS and the release of cytochrome c, induced by the 

impairment of the mitochondrial oxygen consumption (106). To test the hypothesis that 

chemoresistance arises from decreased production of ROS, mitochondrial function has been 

assessed in temozolomide (TMZ)-sensitive (U251) or -resistant (UTMZ) glioma cells and in 

TMZ-resistant glioblastoma xenografts (107). Firstly, data showed that mitochondrial 

coupling (an indicator of ATP synthesis efficiency) was higher, and consequently 

mitochondrial ROS production was significantly lower, in TMZ-resistant cells. Secondly, it 

has been found that mitochondrial DNA-depleted cells (U251ρ0), a model of non-functional 

mitochondria, became resistant to TMZ and had lower intracellular ROS levels after TMZ 

exposure compared with parental sensitive cells. Finally, restoration of ρ0 cells with 

mitochondria restored ROS production and sensitivity to TMZ (107). Taken together, these 

data indicate that chemoresistance to could be due to low mitochondrial ROS production. In 

another study, it has been showed that basal level of ROS production is lower or identical in 

chemoresistant cancer cells However, radiations increased levels of ROS in drug-sensitive 

cells and not, or even a slight reduction, in drug-resistant cells (108). Interestingly, this 

phenomenon was associated to a higher expression of the mitochondrial uncoupling protein 2 

(UCP2) in drug-resistant cancer cells, suggesting that mitochondrial ROS production was 

lower (108). Although the exact role of UCP2 needs to be determined, various studies have 

shown that it could prevent mitochondrial oxidative stress generation by increasing the flow 

of protons into the mitochondrial matrix (increased proton leak), thus rendering electron flow 

through the mitochondrial respiratory complexes more elevated (109-111). By using drug-
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sensitive HL-60 human acute promyelocytic leukemia cells and the drug-resistant HL-

60/MX2 cells as models, it has been showed that genipin, by inhibiting UCP2, sensitized 

drug-resistant cells to cytotoxic agents (menadione, doxorubicin, and epirubicin) and that 

sensitization of drug-resistant cells was accompanied by increased levels of cellular ROS 

(112). In addition, the drug-induced increase in mitochondrial ROS was linked to genipin-

mediated inhibition of mitochondrial proton leak (112). Pons and collaborators have recently 

conducted a study in which ROS production and sensitivity to cisplatin or tamoxifen were 

tested in two breast cell lines (MCF-7 and T47D) as a function of UCP2 expression and 

function (using siRNA and genipin, respectively) (113). Data showed that inhibition of UCP2 

improved the efficacy of each drug to decrease cell viability, and increased the production of 

mitochondrial ROS in both cell lines (113). Similarly, a role for mitochondrial oxidative 

stress in chemoresistance was also identified in the case of the anticancer drug gemcitabine 

(GEM). It has been demonstrated that mitochondrial uncoupling, induced by the chemical 

uncoupler carbonilcyanide p-triflouromethoxyphenylhydrazone (FCCP), or by the over-

expression of UCP2, strongly decreased GEM-induced mitochondrial ROS and protected 

cancer cells (pancreatic adenocarcinoma, non-small cell lung adenocarcinoma and bladder 

carcinoma) to GEM-induced apoptosis (114). In addition, GEM treatment and UCP2 

inhibition (by genipin) strongly induced mitochondrial superoxide production and ROS-

mediated apoptosis in cancer cells (114). A role for mitochondrial ROS in chemoresistance 

has also been demonstrated by Okon and collaborators (115). However, in this study, ROS 

levels were higher and catalase (antioxidant enzyme) levels were lower in gefitinib (a tyrosine 

kinase inhibitor)-resistant lung H1650G adenocarcinoma cell line than in the sensitive H1650 

counterpart. This stress oxidative phenotype was associated with a lower mitochondrial 

oxygen consumption. In addition, when H1650 cells were grown over several weeks in the 
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presence of gefitinib (as carried out to generate gefitinib-resistant H1650 Clones) and the 

mitochondria-specific ROS scavenger MitoTEMPO, mitochondrial oxygen consumption was 

not decreased and ROS levels were not increased (115). This demonstrated a direct link 

between mitochondrial ROS production, mitochondrial dysfunction and resistance to 

gefitinib. 

Interestingly, recent studies pointed out the role of mitochondrial dynamics in 

chemoresistance. Thus, it was showed that piceatannol, a natural metabolite of the stilbene 

resveratrol, was a potent enhancer of cisplatin sensitivity in different human ovarian cancer 

cell lines (sensitive or not to the drug) (116). Interestingly, this effect was associated, among 

other things, with an increase in mitochondrial fission. Indeed, the number of cells showing 

signs of apoptosis and fragmented mitochondria were increased by the co-treatment of 

piceatannol with cisplatin, while they were lower when mDivi-1, an inhibitor of fission, was 

added (116). Differently, the study conducted by Santin and collaborators suggested that the 

increased fusion of mitochondria, to the detriment of fission, may be the mechanism 

responsible for drug resistance. In B50 neuroblastoma rat cells, an expected apoptosis was 

induced after a 48h-long exposure to cisplatin, but under a long-term exposure to the drug, the 

elongation of mitochondria was associated with a reduction of the apoptosis rate (117). 

 

2.3. pH regulation as a consequence of metabolic reprogramming, effect on cancer 

progression and resistance to anticancer treatments 

One consequence of this complete metabolic reprogramming, and high activity is the 

increased production of acid equivalents that are exported in the extracellular space leading to 

an acidic pHe (Figure 2). While there might be some metabolic heterogeneity within the 

tumour (118), there is a good correlation between glucose consumption in tumours, as 
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monitored by PET using 
18

FdG-Glucose uptake, and acidic regions as monitored using pH-

sensitive fluorescent probes or Magnetic Resonance Imaging (119,120). This would involve 

the glycolytic metabolism in the production of protons. However, the production of lactate 

from glucose, by the glycolysis does not produce any proton. Therefore, the majority of the 

production of acid equivalents associated with the glycolytic activity might be produced at the 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH) step, or even consecutive to the 

correlative high energetic demand, leading to the hydrolysis of ATP to ADP. While some 

authors argue for the dissociation of lactic acid into lactate and H
+
 (pKa 3.9), the conversion 

reaction of pyruvate into lactate by the LDHA consumes protons. Because LDHA- and 

glycolysis-deficient tumours are still producing extracellular acidification, it is proposed that 

the glycolysis is not the only source of H
+
 in cancer cells (121-123). Additional sources of 

protons could come from the CO2 produced during the pentose phosphate pathway in the 

cytosol and the tricarboxylic acid (TCA) cycle in mitochondria (Figure 2). 

In any case, excessively produced H
+
 are extruded in order to maintain the intracellular pH 

(pHi) and permit cancer cells to survive (124-126). This is allowed by overexpression of 

proton-extruding plasma membrane transporters, such as the electroneutral Na
+
/H

+
 exchanger 

type 1 (NHE1), MCT  monocarboxylate-H
+
 co-transporters (particularly the MCT-4 isoform, 

which is mediated by hypoxia through HIF-1α), bicarbonate transporters (such as the 

electroneutral or electrogenic Na
+
/HCO3

-
 co-transporters NBCs, electrogenic Na

+
-dependent 

Cl
-
/HCO3

- 
exchangers NDCBE) and proton pumps (such as the electrogenic vacuolar-type H

+
-

ATPase V-ATPase), and for inducible transmembrane carbonic anhydrase isoforms 9 and 12 

(CA-9 and CA-12) (127-129). In vitro, the expression and activity of these acid-extruding 

transporters were demonstrated to control the 3-dimensional growth of human breast cancer 

cells spheroids (130). These numerous plasma membrane proteins are essential for 
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maintaining pHi and their activities result in the decrease of pHe. It is interesting to point out 

that some of these are active transporters (ATPases) hydrolysing high amounts of ATP to 

export protons produced by the glycolytic energetic pathway, and allow cancer cell survival. 

This could appear as being an aberrant situation, if we did not consider the fact that this 

extrusion of H
+
 in the extracellular space also provides selective advantages to cancer cells by 

conferring them with enhanced proliferative (131), migratory and invasive activities (32,132-

134), while reducing the anticancer immune response (124,135).  

While there might be some differences depending on the considered tissue, pHi is generally 

comprised between 6.9 and 7.2, and is slightly more acidic than pHe, which is comprised 

between 7.2 and 7.4 under physiological conditions (125,136). It is also noticeable that the 

activities of H
+
 transporters and pumps cited above, not only maintain pHi to values 

compatible with cell survival, but further enhance the extrusion of protons, thus reversing the 

proton gradient in cancer cells with a pHi > 7.2 and a pHe < 7.0 (48). Far from being 

deleterious to cancer cells, this extracellular acidification in solid tumours (57) triggers the 

apoptotic cell death of non-cancer cells (137). In cancer cells, the acidic pHe further 

participates to genomic instability by reducing DNA repair and promoting the acquisition of 

further mutations (138).  

 

-pH regulation, cancer cell invasiveness and metastases - 

Among all pH regulators, NHE1 was functionally associated with cancer cell survival, 

migration and metastatic progression (32,125). NHE1 uses the inwardly directed 

electrochemical Na
+
 gradient to exchange H

+
 for Na

+
 ions with a stoichiometry of 1:1 (139). 

This plasma membrane exchanger is ubiquitously expressed. It is quiescent at physiological 

pHi ~7.2, but activates rapidly upon intracellular acidification (140) and is therefore involved 
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in the protection of normal cells upon intracellular acidification bursts (128) while acidifying 

the extracellular environment. Its activity is tightly regulated by multiple hormonal and 

mitogenic pathways (141). In cancer cells, NHE1 is both overexpressed and overactivated 

(142), and is involved in cancer cell motility and matrix degradation (33,143). The increased 

NHE1 expression and activity are considered to constitute an unfavourable prognostic factor, 

such as in the case of ovarian cancers (144). 

NHE1 overexpression in cancer cells is also suggested to be a part of the EMT. Indeed, in 

prostate cancer cells, the expression of NHE1 is strongly correlated with the expression of 

Zeb1, a crucial transcription factor activating the mesenchymal gene expression program 

(145). Furthermore, Zeb1 was found to bind to the promoter of NHE1 gene (SLC9A1) and 

support its expression. NHE1 up-regulation was even proposed to drive carcinogenesis (142). 

Importantly, it was demonstrated that low levels of intracellular ROS, which confer cells with 

resistance capacities to death stimuli, could up-regulate the expression of NHE1 during 

carcinogenesis (146). 

NHE1 was subsequently involved in the trafficking of lysosomes to the plasma membrane 

and the secretion of proteases involved in cancer cell invasion (145). Of interest is the recent 

publication from D. Lagadic-Gossmann’s group showing that the genotoxic and carcinogenic 

agent, benzo[a]pyrene, a polycyclic aromatic hydrocarbon pollutant from exhaust fumes and 

cigarette smoke, found in food and drinking water, also promotes metabolic reprogramming 

in hepatic cancer cells and EMT through NHE1 regulation (147). Benzo[a]pyrene treatment 

was responsible for a reduction of mitochondrial respiration, and correlative increases in 

glucose oxidation, lactate release and extracellular acidification, which recapitulated a switch 

towards an aerobic glycolysis. These changes were prevented by the use of the NHE1 

inhibitor cariporide (147). 
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NHE1 is known to support the ECM degradative activity that is associated with the 

mesenchymal phenotype. Indeed, it has a predominant role in extracellular acidification, the 

activity of invadopodia and in the invasiveness of cancer cells (33,125,134,148) (Figure 1). 

NHE1 has also been identified as a key regulator of oriented actin polymerisation for 

invadopodia initiation. This occurs both through scaffolding properties, as it interacts with 

actin-binding proteins of the ERM (ezrin, radixin and moesin) family, and through its activity, 

as the resulting intracellular alkalinisation allows the release of the actin-severing factor 

cofilin and disrupts its inhibitory interaction with cortactin (125,149,150). Furthermore, the 

activation of focal adhesion kinase (FAK), which is an important parameter of cancer cell 

migration and survival, was found to be sensitive to pHi. Alkaline pHi was demonstrated to 

induce FAK conformational changes allowing its autophosphorylation on tyrosine residue 

397. This was prevented by knocking-down NHE1 expression and resulted in the impairment 

of focal adhesions and cell spreading (151). 

It is worth noticing that, in cancer cells, not only the expression is increased, but most 

importantly the activity of NHE1 is enhanced, despite the relatively alkalinized pHi of cancer 

cells (125), a condition for which it would be inactive in normal cells. Signalling pathways 

that are often overactivated in cancer cells are also known to upregulate the activity of NHE1. 

This is the case for some growth factor (141), extracellular signal-regulated kinase (ERK1/2) 

(152,153), or B-Raf kinase (154) signalling pathways that would enhance the extrusion of H
+ 

through NHE1 activity in alkaline pHi. Therefore it seems that several signalling pathways, 

such as mitogenic pathways, up-regulate the expression of several proton extruders, including 

NHE1, thus responsible for intracellular alkalinisation, but also sustain their activity in 

alkaline pHi. 
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Further to the regulations previously mentioned, it was demonstrated that voltage-gated 

sodium channels (NaV), overexpressed in carcinoma cells (155-157), and known to participate 

to the mesenchymal invasion of cancer cells, further enhance NHE1 activity in cancer cells. 

NaV channels were initially proposed to be characteristics of excitable cells, such as skeletal 

and cardiac muscle cells, while their expression is generally repressed in non-excitable cells, 

such as epithelial cells.  NaV activity, through a transient entry of sodium charges, leads to the 

depolarization of the membrane responsible for the initiation and propagation of action 

potentials (158-163). More recently, NaV were found to be expressed in carcinoma, such as in 

prostate, breast, lung, colon, cervix, ovary cancers, while they are not expressed in non-cancer 

tissues (164). It was proposed that their expression and activity are associated with cancer 

progression (155,156,165), metastases development and patients’ death (166,167). In highly 

aggressive human breast cancer cells, the activity of the NaV1.5 pore-forming subunit 

participated to the acquisition of a mesenchymal phenotype by controlling Src kinase activity 

and the phosphorylation of the actin-nucleation promoting factor cortactin (168). 

Furthermore, NaV1.5 enhanced extracellular matrix (ECM) degradation and cancer cell 

invasiveness in 2 and 3-dimension matrices, by increasing the activity of extracellular 

cysteine cathepsins B and S (168-170) which have a maximal activity in acidic conditions 

(171) (Figure 1). While the activity of NaV is transient (generating rapidly-inactivating, 

inward currents), NaV1.5 was proposed to promote cancer cell invasiveness through a 

persistent window current at the membrane potential of cancer cells. This current, through a 

not yet described signalling pathway, was responsible for the allosteric activation of NHE1, 

rendering it more sensitive to intracellular H
+
, thus increasing its H

+
 efflux activity and the 

activation of extracellular cathepsins (168,172). While it is demonstrated that NaV1.5 activity 

supports mesenchymal invasiveness of breast cancer cells, i.e. invasion that require ECM 
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proteolysis, the participation of NaV channels to the EMT have not been fully characterized. A 

recent study from Nelson and collaborators indicated that the down-regulation of NaV1.5 

expression, using specific shRNA, resulted in an increase in MDA-MB-231 cell circularity 

and favoured a more rounded epithelial-like phenotype (173), thus corroborating previous 

findings (168,174). However, this was not associated with any alteration in E-cadherin, N-

cadherin, vimentin, slug or snail expression. In contrast, the protein level of CD44, known to 

promote invasiveness and metastasis of breast cancer cells, was significantly reduced (173). 

Further supporting the critical role of NaV-NHE1 complexes in cancer progression, the 

NaV1.7 pore-forming subunit was recently identified to promote gastric cancer cell 

invasiveness through the metastasis-associated in colon cancer-1 (MACC1)-dependent up-

regulation of NHE1 (175). NaV channels in cancer cells are critical for the metastatic 

colonization of organs, and their inhibitors that are clinically used for the treatment of other 

pathologies were demonstrated to be powerful pharmacological tools to inhibit cancer cell 

invasiveness and prevent metastatic colonization (166,174,176,177).  

While NHE1 activity is electroneutral, some of the other pH regulators cited above are 

electrogenic and their activity might regulate the membrane potential (Em) of cancer cells at 

the same time they control H
+
 homeostasis, thus also controlling the activity of voltage-

sensitive ion channels and/or the driving force for some ions. Furthermore, several ion 

channels are directly gated by extracellular H
+
, such as acid-sensing ion channels (ASIC) 

(178), while some other are regulated by acidic pH such as TRPV1 (179,180) and TRPA1 

(181,182).  These ion channels have recently been proposed to be involved in cancer 

progression through the promotion of lymphatic metastasis (183), and to be responsible for 

pain associated with cancer (184-186). 
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The acidic pHe has also been demonstrated to participate to the acquisition, by cancer cells, of 

aggressive features that are characteristics of the EMT. Indeed, the acidic pHe induces the 

loss of β-catenin from adherens junction in hepatocarcinoma cells through the activation of 

Src kinase (187), and the degradation of E-cadherin (188). The acidic pHe also participate to 

the acquisition of a mesenchymal, fibroblast-like, elongated cell phenotype, that is involved in 

an increased migratory activity (133,189) and an ECM-degradative function that participate to 

the metastatic evasion/invasion of tissues (32). While some of these aspects may be associated 

with pH by itself, some others were directly correlated with the activity of specific pH 

regulators. The acidification of the tumour microenvironment, is implicated in a positive 

feedback loop further enhancing the mesenchymal phenotype and the degradation of the 

extracellular matrix. Zeb1 promotes the NHE1-dependent anterograde lysosome trafficking to 

the plasma membrane, supporting ECM degradation and invasion by cancer cells (145). With 

an acidic pHe, the number of lysosomes decreased, owing to their displacement to the cell 

periphery and their exocytosis. This was shown to increase the secretion of degradative 

enzymes, but also the formation of filopodial structures, which together contributed to cancer 

cell invasiveness (34). The acidic pHe also indirectly promotes EMT in cancer cells. In a 

recent study, it has been shown that mesenchymal stem cells grown in low pHe conditions 

favour the growth and progression of melanoma through a release of TGF-β and the 

acquisition of an EMT program in melanoma cells (190). 

Lastly, the acidic environment of tumours also controls the metabolic activity of cancer 

cells. In the tumour, cancer cells are exposed to intermittent hypoxic episodes between which 

oxygen becomes sufficient again to allow mitochondrial respiration, while the acidic 

microenvironment is maintained. This acidic microenvironment also interferes with the 

metabolism of oxygenated cancer cells, in proximity of blood vessels, in the tumour. The two 



28 

 

recent studies of Corbet and collaborators demonstrate that cancer cells subjected to an acidic 

environment (pH 6.5) have a preferred glutamine reductive metabolism (191), and fatty acid 

oxidation to provide acetyl-coA to the TCA cycle (192). The consequences of this rewiring of  

metabolism are the preferred consumption of fatty acids to provide energy, but also the 

reduction of ROS production due to the hyperacetylation of mitochondrial complex I, which 

together support cancer cell proliferation and tumour growth (192). 

 

-pH regulation and resistance to anticancer treatments- 

Major mechanisms contributing to chemo-resistance are the down-regulation of cell death 

mechanisms, but also the limitation of anticancer drug diffusion mainly due to the poor 

vascular perfusion of tumours, and the overexpression or activity of P-gp mediating the ATP-

dependent efflux of drugs. The characteristics of tumour microenvironment, i.e. hypoxia, low 

nutrients concentration, high lactate concentration, and acidic pHe, which are consequences of 

the abnormal vascularization of tumours and the glycolytic metabolism of some tumour cells, 

are critical factors contributing to drug resistance.  

The acidic pHe of the tumour microenvironment plays an important role in limiting drug 

diffusion. This particular phenomenon, called “ion trapping”, occurs when the plasma 

membrane permeability of a drug is different for its ionized or non-ionized form (193,194). 

The ratio of ionized versus non-ionized form of a drug is pH-dependent. At acidic pH, 

molecules that are weak bases are ionized into protonated, positively charged drugs with 

limited diffusion through the plasma membrane. Common chemotherapeutic drugs are weak 

bases such as anthracyclines, anthraquinones and vinca alkaloids. As such, both in vitro and 

in vivo studies evidenced that an acidic pHe prevents the distribution of these weak bases 

inside cancer cells, thus leading to a decreased efficacy in treatment (195-198) (Figure 2). On 
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the opposite, drugs that behave as weak acids are permeable in their non-ionized form at 

acidic pH, are deprotonated and become negatively charged when they reach the slightly 

alkaline intracellular milieu. Therefore, they are trapped intracellularly and gain in efficacy. 

This is the case of chlorambucil, cyclophosphamide (alkylating agents) and 5-FU 

(antimetabolic), which all have an enhanced uptake in acidic pHe conditions (197,199,200). 

As a result, the experimental acidification of the extra-tumoral pH in vivo, by -0.2 pH unit, 

using glucose administration, led to an increased efficiency of the weak acid chlorambucil, 

while it inhibited the tumour growth-reduction effect induced by the weak base doxorubicin 

(196). On the contrary, the cytotoxic action of the alkylating agent melphalan, which is 

indicated for advanced breast and ovarian cancer and myeloma, and which can be assimilated 

as an acid drug, is more effective at acidic pH under hypoxia (201,202). This consideration 

was taken into account for the treatment of confined advanced metastatic melanoma, by using 

the isolated limb infusion of melphalan under non-oxygenated conditions to reduce pHe 

(203). Taken together, these studies clearly highlight the contribution of tumour metabolism 

to produce acidity and its relevance to cancer treatment. 

In addition, this dysregulation of the pH homeostasis occurring in cancer cells influences drug 

distribution within the different intracellular compartments. Weak base anticancer drugs in the 

intracellular medium can be sequestered in acidic organelles (lysosomes, endosomes), thus 

limiting their availability to exert cytotoxic effects. Osteosarcoma cells exposed to an pHe of 

6.5, have been shown to present a higher population of lysosomes being more acidic, and this 

was associated with a reduction in the cytotoxic effect of the anthracyclin doxorubicin, 

because of a reduced nuclear localization (198). This intracellular trapping of anticancer drugs 

is exacerbated in multidrug resistant breast cancer cells since they have more acidic 
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endosomes and lysosomes compared to sensitive cells. As a result, this provokes an 

accumulation of basic drugs in these acidic compartments and a reduced cytotoxicity (204).  

Recent studies report that the reduced efficacy of anticancer drugs in acidic pH is also 

related with P-gp-dependent efflux. While the expression of the P-gp does not seem to be 

modified under acidic environment, its drug efflux activity is enhanced (205,206) (Figure 2). 

It was proposed by the authors that the acute exposure to an acidic pHe (6.6) induces a 

reduction of intracellular Ca
2+

 concentration, which increases the transport rate of P-gp. While 

the molecular details of the control of the intracellular Ca
2+

 homeostasis was not described, a 

comparable effect was found with the inhibition of protein kinase C (PKC). This effect was 

potentiated by hypoxia, which is a critical parameter of the tumour microenvironment 

(205,206). Furthermore it has been proposed that alterations of cell membrane mechanical 

properties induced by pHi in cancer cells may also participate to the control of doxorubicin 

diffusion inside the cells and to the acquisition of the resistance phenotype (207).  

Therefore, the reverse pH gradient that is characteristic of tumours has important 

consequences for the efficacy of the anticancer treatment, and development of resistant 

tumours. This reality should be taken into account for the development of more effective 

anticancer treatments, leading to new therapies targeting the abnormal pH of tumours, alone 

or in combination with conventional treatments. This concept has been entitled “the buffer 

therapy” (194). Mathematical models argued that the best buffer to neutralize pHe in the 

tumour microenvironment should have a pKa of 7 (208). Even if the pKa of bicarbonate (pKa 

6) is not ideal, this is for the moment the best known buffer suitable for systemic 

administration. The use of bicarbonate gave the first evidence that systemic buffering in mice 

can reduce pHe of tumours (209). Bicarbonate had no effect on primary tumour growth but 

improved the effect of doxorubicin to reduce tumour volume (209). Furthermore, in a model 
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of mammary tumour, bicarbonate administration in the drinking water of mice elevated pHe 

in the tumour and importantly decreased spontaneous metastasis (210). The evaluation of the 

buffering capacity of food suggests that a new strategy based on a controlled nutritional intake 

may reduce pHe in the tumour microenvironment and may be effective to improve the 

efficacy of chemotherapy (211). 

In addition, it has been proposed that interfering with pHe and reversing the acidic pH of 

organelles, using proton pump inhibitors (PPI), would avoid the accumulation of drugs in 

acidic compartments and would increase their distribution in the cytosol and in the nucleus of 

cancer cells. Targeting the lysosomal pH using omeprazole, a PPI that is generally used to 

treat excess stomach acid production and symptoms of gastroesophageal reflux, was 

demonstrated to improve the cytotoxic effect of doxorubicin, and to decrease tumour volume 

in a mouse model of osteosarcoma (198). In breast cancer, the other PPI lansoprazole 

enhanced the therapeutic effect of doxorubicin by both improving its distribution and its 

cytotoxic activity (212).  

 

2.4. Autophagy and resistance to anticancer treatments  

Autophagy is not specific to tumours, but is definitely an important metabolic pathway 

that allows cancer cells to degrade their own compartments and components, such as proteins, 

nucleotides or lipids (in that case called lipophagy), used as energetic substrates to fulfil high 

anabolic demands required to sustain the enhanced cell proliferation rate and survival under 

stressful conditions (ischemic episodes, exposure to anticancer treatments) (213) (214-217). 

Recent studies also suggest that autophagy may be a key inducer of EMT in cancer cells 

(218,219), further delineating the relationship between metabolism and the acquisition of 

aggressive parameters, and a potential role in resistance to anticancer treaments. The non-
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selective form of autophagy is called macroautophagy (later called autophagy), whereas 

mitophagy, lipophagy or pexophagy are related to the specific recycling of mitochondria, lipid 

droplets and peroxisomes, respectively. The chaperone-mediated autophagy is an additional 

form of autophagy which lacks the formation of an isolation membrane and directly addresses 

cytosolic proteins containing a consensus pentapeptide for their degradation in lysosomes 

(220). During the autophagic process, the autophagosome, a double membrane vesicle, is 

formed and allows for the isolation of non-specific or specific cellular materials to be 

degraded. In this process, the ATG proteins, encoded by the autophagy-related genes (ATG), 

are responsible for the conjugation of phosphatidylethanolamine (PE) to LC3 (microtubule-

associated protein 1 light chain 3), thus resulting in its incorporation into autoeagosome 

membranes. This is a critical step in autophagosome elongation and maturation, and as such, 

the presence of LC3–PE, also referred as LC3-II, is often used as a marker of autophagy. The 

autophagosome then fuses with the lysosomal compartment that provides enzymes. The 

internal acidification of lysosomes by the V-ATPase is essential for the degradation activity of 

these proteolytic enzymes. Autophagy can be initiated during nutrients starvation, when the 

intracellular ATP/ADP ratio becomes low, leading to the activation of the AMPK and the 

inhibition of the mTOR signalling pathway (221,222), to allow the recycling of amino acids 

and free fatty acids. This defines the metabolic function of autophagy sustaining cell viability 

when energetic supplies are reduced, such as in the ischemic regions of tumours. Moreover, 

autophagy can also assume a protective role against stress conditions, such as those that 

generate ROS. This could be the case under some anticancer therapies, such as radiation 

therapy or the exposure to chemotherapeutic agents generating oxidative stress, such as 

anthracyclines (doxorubicin, epirubicin, daunorubicin), alkylating agents, platinum 

coordination complexes (cisplatin, carboplatin, oxaliplatin), epipodophyllotoxins (etoposide, 



33 

 

teniposide), and the camptothecins (topotecan, irinotecan) (Figure 2). In those cases, 

autophagy allows for the degradation of dysfunctional organelles and aggregated proteins. 

Besides these roles of autophagy in response to stressful conditions, the maintenance of a 

normal autophagic flux is also needed for the physiological function of multiple organs in the 

whole body, as it is the case in brain, muscle and liver (217,223).  

The role of autophagy in tumours is complex and it is now admitted that it could have a dual 

role in tumour progression (224,225). Studies, in which autophagy genes were knocked-out in 

mice, evidenced the protective role of autophagy against tumour initiation mainly by inducing 

oxidative stress (226,227). However, in advanced tumours stages, it has been demonstrated 

that cancer cells rely on autophagy for their survival, which is favourable for tumour growth 

and progression (224,228,229). Besides, the stressful conditions of the tumour 

microenvironment (hypoxia, low nutrients availability, presence of ROS) are known to 

activate autophagy. In a recent study, we have shown that lactate, which is elevated in 

tumours because of the elevated glycolytic metabolism, is associated with autophagy (230). In 

this study, we demonstrate that autophagy is not only activated by nutrient deprivation, but 

also by lactate. In cancer cells, lactate oxidation by the lactate dehydrogenase B (LDHB) 

participates to lysosomal acidification to promote autophagy, which is favourable for cancer 

cell survival and tumour growth. LDHB was found to be in close proximity with the V-

ATPase, expressed at the lysosome. It is therefore proposed that the H
+
 released by the 

LDHB, during the conversion of lactate to pyruvate, are transferred to the lysosomal 

compartment through the activity of the V-ATPase (230). 

The ways by which autophagy is regulated by nutrients availability and by the acidic pHe in 

the tumour microenvironment are still poorly understood. Besides its role in lysosomal 

acidification, the V-ATPase could have an important role in the regulation of autophagy and 
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subsequent cell growth. Recent evidence shows that pHi and lysosomal V-ATPase link 

glucose metabolism with cell growth. In yeast, the V-ATPase has been considered as being a 

sensor of the cytosolic pH, in response to glucose availability (231,232). In aerobic 

conditions, a correlation was found between the concentration of extracellular glucose and a 

high pHi, and this promoted the assembly and the activation of V-ATPase. V-ATPase 

interacted with the GTPase Arf1 and Gtr1, leading to the activation of TORC1 and Ras to 

promote cell growth (233). Similarly, the “sensing” of amino acid availability was proposed 

to be dependent on the V-ATPase and to the Rag GTPase (234,235), but seemed independent 

on cytosolic pH (233). It has been proposed that this mechanism for pHi sensing of glucose 

metabolism could be conserved in mammals (234) since V-ATPase also interacts with Rag 

GTPase (mammalian homologue for Gtr1 and Gtr2 in yeast), which  promotes mTORC1 

activity (235,236). Although the direct involvement of cytosolic pH in the regulation of 

autophagy is still lacking in mammals, it has been demonstrated that acidic pHe, leading to a 

decrease in pHi, inhibits mTORC1, a master negative regulator of autophagy (237). While the 

mechanistic link is still elusive, one could speculate that the deregulated pH gradient found in 

cancer cells could regulate cancer cell proliferation through the inhibition of mTORC1 and 

autophagy.  

Autophagy has been described as a process activated during cancer treatment by both 

radiotherapy and chemotherapy, and was identified as being responsible for tumour resistance 

(238). The existence of an acidic pHe has also been linked with resistance to treatment 

through the participation of autophagy. In human melanoma and breast cancer cells, both 

acute and chronic acidosis activate autophagy, probably through PI3K/Akt/mTOR inhibition 

(239,240). In this context, the activation of autophagy is an adaptative mechanism to acidosis 

and promotes cancer cell survival. In addition, autophagic markers have been detected in the 
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outer region of tumours corresponding to hypoxic regions that are probably acidic (240). One 

contradictory study exists where acidic pH blocks autophagy in non-cancer breast epithelial 

cells (MCF-10A) and less aggressive breast cancer cells (MCF-7) as compared to MDA-MB-

231) (241), suggesting a more complex regulation of autophagy by pHe. 

These studies highlighting the influence of the extracellular microenvironment on the 

regulation of cancer cell survival and autophagy led to the proposition that controlling pHe of 

tumours might inhibit autophagy and increase anticancer treatment efficacy. In this direction, 

it has been shown that the use of bicarbonate, as a systemic buffer, decreased the expression 

of the autophagic marker LC3 in breast tumours (240). Another strategy used to inhibit 

autophagy through pH modulation was to disrupt lysosomal pH, by repurposing the weak 

base chloroquine, approved by the Food and Drug Administration (USA) as an antimalarial 

drug, and its derivatives. In preclinical models, chloroquine effectively reduced autophagy 

and improved anticancer therapy using alkylating drugs (242). This permitted chloroquine and 

hydroxychloroquine to be considered for clinical trials for anticancer treatments. The first 

results of these trials documented safety and pharmacokinetic data of their use, and were very 

promising (243). However, these weak base compounds present the disadvantage of having a 

limited diffusion in the acidic extracellular microenvironment of tumours. For this reason, the 

efficacy of chloroquine to block autophagy was reduced at acidic pH in vitro and in the 

hypoxic region of tumours in vivo (244). To counteract these limitations, the autophagy 

inhibitor salinomycin was proposed to be a possible substitute to chloroquine (245). However, 

the effects of salinomycin on autophagy seemed to be very complex, and were opposite 

depending on the dose used (246). Furthermore, these drugs are not specific and act as global 

pH modulators. As such, the development of specific inhibitors of lysosomal acidification is 

needed.  
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In the context of cancer treatment, while the overexpression of autophagy markers in 

cancer cells and tumours is commonly accepted, the biological consequences of autophagy 

remain controversial. Several studies have shown that radiation therapy could induce 

autophagy in cancer cells (247-249), which was supposedly due to a decreased 

phosphorylation of mTOR (250) and to the involvement of the integrin-associated protein 

CD47 (251). However, conflicting results were initially obtained, and it is not clear whether 

autophagy induction in this context is leading to cancer cell death, or their survival. Two 

different and opposing hypotheses were formulated. The first one was to consider autophagy 

as a cell death mechanism (“autophagic cell death”) induced by radiations. In this hypothesis, 

the induction of autophagy would be beneficial to kill cancer cells, and it should be enhanced. 

However, the term “autophagic cell death” has been considered as being a misnomer, and to 

be in fact cell death associated with markers of autophagy, rather than being a specific type of 

cell death (252,253). The second hypothesis, which recently gained more insights, is to 

consider autophagy as a survival mechanism involved in cancer cell resistance to 

radiotherapy, and in that case, its inhibition would be beneficial to cancer treatment. This 

hypothesis is supported by the demonstration that, in cells deficient for autophagy, radiations 

induced the accumulation of p62, which inhibited the recruitment of DNA-repairing factors 

such as UIMC1/RAP80, BRCA1 and RAD51 to double strand break sites, leading to impaired 

DSB repair and decreased cell survival (254). Clinical trials with hydroxychloroquine and 

radiation therapy gave promising results (255). Few studies investigate the role of acidic pHe 

involvement for radiation therapy but it has been evidenced that at acidic pH, radiations 

induced less apoptosis (256). It has also been proposed to use PPI to overcome the autophagy 

induced by chemotherapies. This idea has brought some hopeful results with omeprazole, 

which was effective in re-establishing chemosensitivity of resistant melanoma cells to 
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cisplatine (257), and with pantoprazole, also enhancing the efficacy of docetaxel on the 

growth of human tumour xenografts by inhibiting autophagy (258). At this point, it is 

probably worth mentioning that the apparent contradictions on the biological significance of 

autophagy induction during anticancer treatment might also differ as a function of the level of 

induction and its persistence in time. Furthermore, autophagy is also important for anticancer 

or permissive immune response. It has been proposed that activating autophagy could 

improve an anticancer immune response and radiation therapy (259).  

 

3. The perspectives of using dietary lipids for an integrated strategy in the treatment of 

cancers 

The molecular mechanisms of the cancer hallmarks mentioned above are/can be 

targeted by specific drugs interfering with deregulated pH in cancer cells, such as the use of 

pH buffers (210), or drugs inhibiting H
+
 transporters (260-262) or their key regulators (174), 

alone or in combination with conventional chemotherapeutics. This strategy seems to be very 

promising, at least at the basic research level and in pre-clinical models, but needs to be 

further studied in clinical trials. Another tempting strategy would be to identify molecules that 

have the capacity to target more than one of these mechanisms without displaying adverse 

side effect. Dietary lipids might be of interest to do so. Indeed, cancers are diseases for which 

the development and progression are also under the dependence of environmental factors that 

present the benefit of being modifiable. This is the case of nutritional factors. Some dietary 

compounds have been recognized to influence both the apparition and the survival to different 

carcinoma.  

The adipose tissue plays an essential function in the storage of lipids, such as fatty acids 

and sterols, and it is a qualitative biomarker of past dietary fatty acids intake. Being in close 
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proximity to multiple epithelial tissues, such as the adipose tissue in the mammary gland, the 

periprostatic adipose tissue, or the mesenteric adipose tissue close to the colorectal tracts, the 

adipose tissue has been shown to importantly control primary tumour progression and may 

influence clinical markers of tumour aggressiveness (Figure 3). 

Lipids, such as polyunsaturated fatty acids (PUFA, such as n-6 or n-3 PUFA) and sterols have 

been proposed to regulate, either positively or negatively, tumour development and disease 

progression by modulating cellular properties in both cancer and non-cancer cells of the 

tumour microenvironment. Studies performed on breast cancer have already demonstrated the 

importance of adipose tissue and epithelial tissue fatty acid composition, from triacylglycerids 

and phospholipids, respectively, on breast tumour development. Among dietary lipids, long 

chain n-3 PUFA, from marine fatty fishes, have been identified from epidemiological studies 

for their potential to prevent the appearance of breast cancer (263,264). From in vivo and in 

vitro studies, n-3 PUFA have been reported to have multiple anti-tumour effects and their 

dietary consumption was associated with a lower risk of cancers, such as breast or colorectal 

cancers (264-266). Also, they have been shown to reduce chronic inflammation associated 

with these cancer types (263,264,267). Even though n-3 PUFA were suggested to be prostate 

cancer suppressor (268), their beneficial effect is not that clear and more intervention trials or 

observational studies are still required (269).  

  

-Primary tumour growth and resistance to treatment-  

Following up on previous work on the lipidome, that associated the risk of breast 

cancer to the lipid composition (270,271), a recent pilot study showed that fatty acid 

composition of breast adipose tissue differed according to breast cancer focality. Low levels 

of DHA and EPA in breast adipose tissue were associated with tumour multifocality, a marker 
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of cancer aggressiveness (272). These results could indicate that differences in lipid content 

may contribute to mechanisms through which peritumoral adipose tissue drives breast cancer 

aggressiveness. 

Developing approaches that can improve the selectivity and efficacy of anticancer drugs, 

while limiting their side effects, remains a challenge. Long-chain n-3 PUFA have been 

attributed the potential to increase tumour sensitivity to chemotherapy with no sensitization of 

normal tissues (264). DHA and EPA have generated intense interest due to their ability to 

reduce resistance to anthracyclines, taxanes or radiotherapy, without additional side effects, in 

mammary tumour models. The efficacy of numerous anticancer drugs on breast cancer cell 

lines and rodent mammary tumours may be enhanced by treatment with DHA.  

In the case of breast cancer, n-3 PUFAs supplementations were proposed to have beneficial 

effects in reducing primary tumour growth (Figure 3). This was attributed to their potency to 

inhibit cancer cell proliferation (273). Docosahexaenoic acid (DHA, 22:6n-3) and 

eicosapentaenoic acid (EPA, 20:5n-3) decreased the proliferation of human MDA-MB-231 

breast cancer cells through the regulation of the cell cycle. Both DHA and EPA increased the 

duration of the G2/M phase, while there was no alteration of G1 or S phases. These two fatty 

acids decreased the expression of cyclin A, cyclin B1 and cyclin-dependent kinase 1. Upon n-

3 PUFA treatment, cyclin B1 phosphorylation was inhibited and the expression of the cell 

division cycle 25C phosphatase, which dephosphorylates cyclin-dependent kinase 1, was 

decreased (273). 

Different molecular mechanisms such as the amplification of oxidative stress generated by 

anthracyclines or radiotherapy and increased accumulation of anticancer agents have been 

proposed to account for the effects of these highly peroxidable fatty acids. In a phase II 

clinical trial performed with breast cancer patients with severe metastatic disease, a diet 
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enriched with DHA (1.8 g daily) increased time to progression from 3.5 months for patients 

not incorporating DHA, to 8.7 months for patients incorporating DHA (Bougnoux et al, 

2009). In parallel to this type of nutritional intervention in breast cancer patients under 

chemotherapy, original modes of action by which DHA can sensitize mammary tumours to 

anticancer agents have been uncovered in a rat model of N-nitroso-N-methylurea (NMU)-

induced mammary tumours. In this breast cancer model, DHA supplementation enhanced 

DHA tumour content in a time- and dose-dependent manner (274-276). DHA is a natural 

ligand for the nuclear peroxisome proliferator-activated receptors (PPAR), and in the (NMU)-

induced mammary tumour model, a reduced expression level of PPARβ mRNA correlated 

with regression of mammary tumours. Tumours that most regressed displayed the most 

reduced PPARβ mRNA expression. In addition, PPARβ regulated DHA-induced growth 

inhibition of MDA-MB-231 and MCF-7 cells, identifying PPARβ as an important player for 

the inhibition of breast cancer cell growth and mammary tumour growth with a DHA diet 

(277).  

As already mentioned, an important limitation of cancer treatment is the acquisition by the 

tumour of a resistance to chemotherapeutic agents. Resistance to taxanes can occur by the 

induction of signalling pathways such as PI3K/Akt and ERK1/2, which promote survival and 

cell growth in human cancer cells. In docetaxel-treated MDA-MB-231 cells, phosphorylated-

ERK1/2 levels were increased by 60% in both membrane and nuclear compartments, 

compared to untreated cells and ERK1/2 activation depended on PKCε and PKCδ activation. 

In DHA-supplemented cells, docetaxel was unable to increase PKCε and PKCδ levels in 

membrane and nuclear fractions, resulting in both diminished ERK1/2 phosphorylation and 

increased docetaxel efficacy. Reduced membrane levels of PKCε and PKCδ were associated 

with significant incorporation of DHA in all phospholipid classes, including in 
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phosphatidylcholine, which is a major source of phosphatidic acid. Additionally, study of the 

Akt pathway showed that DHA could repress docetaxel-induced Ser473Akt phosphorylation. 

In rat NMU-induced mammary tumours, dietary DHA supplementation during docetaxel 

chemotherapy repressed ERK and Akt survival pathways and, in turn, strongly improved 

taxane efficacy. P-ERK1/2 levels were negatively correlated with tumour regression. These 

findings could be of potential clinical importance for the treatment of chemotherapy-resistant 

cancer (278). 

     In addition to their antitumour activities reported in epithelial cancer cells, it was 

demonstrated that n-3 PUFA could increase the efficacy of the chemotherapeutic treatment by 

remodelling the vascular network in mammary tumours, thereby contributing to more 

efficient drug delivery (279). Functional vascular parameters (vascularization measured by 

ultrasounds, interstitial fluid pressure IFP) were determined for two nutritional groups, control 

and n-3 UFA-enriched diet, of female rats bearing NMU-induced mammary tumours. 

Whereas docetaxel stabilized tumour growth in the control group, it induced a 50% tumour 

regression in the n-3 PUFA group. Before the first treatment with docetaxel, there was an 

apparent remodelling of the tumour vasculature with smaller vessels in the n-3 PUFA group. 

Ultrasounds parameters were consistently lower in the n-3 PUFA group at all time-points 

measured, down to 50% at the end of the docetaxel treatment. A single dose of docetaxel in 

the n-3 PUFA group markedly reduced IFP as early as 2 hours after the first injection of 

docetaxel and this reduction was maintained for one week, at a time when Evans blue 

extravasation was increased by 3-fold. A decreased activation of endothelial nitric oxide 

synthase in tumours of the n-3 PUFA group, and in vitro, in human endothelial cells cultured 

with n-3 PUFA, points toward a PUFA-induced disruption of nitric oxide (NO) signalling 

pathway (279). Using an original contrast-enhanced ultrasound method (280), the vascular 
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architecture was analysed during docetaxel treatment of mammary tumours in rats fed with 

control or n-3 PUFA diets. The vascular network was remodelled in favour of smaller vessels 

(microvascularization) in the n-3 PUFA tumours, and this correlated with an improved 

response to docetaxel chemotherapy. Analysis of angiogenesis-related gene expression using 

PCR arrays showed that the expression of epiregulin and amphiregulin were reduced in 

tumours of the n-3 PUFA group. This was correlated with tumour regression after 

chemotherapy. In vitro studies showed that epiregulin and amphiregulin expression were 

strongly induced by VEGF in primary endothelial cells. DHA supplementation repressed only 

epiregulin gene expression and counteracted VEGF activities on proliferation and pseudo-

capillaries formation. The normalization of tumour vasculature under n-3 PUFA diet indicated 

that such a supplementation, by improving drug delivery in mammary tumours, could be a 

complementary clinical strategy to decrease anticancer drug resistance (281) (Figure 3). 

 

- Cancer cell metabolism and autophagy- 

While there are several reports that n-3 PUFA could induce apoptosis in cancer cells, mainly 

through the formation of ROS, Ca
2+

 accumulation and opening of the mitochondrial 

permeability transition pore (MPTP) (282) or caspase activation (283,284), there are relatively 

few data concerning the potential regulation of cancer cell metabolism. It is however tempting 

to speculate that these long chain n-3 PUFA could also modulate or normalize cancer cell 

bioenergetics, acting through a modulation of the aerobic glycolysis as well as on the 

mitochondrial activity. 

In a recent study focusing on colorectal carcinogenesis, male Wistar rats received a weekly 

intraperitoneal injections of ethylenediamine tetra-acetic acid (EDTA) or N,N-

dimethylhydrazine dihydrochloride (DMH) for a period of 4 weeks, responsible for the 
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initiation and post-initiation phase, respectively (285). These groups were subdivided into 

dietary groups, a control group, a group receiving fish oil and corn oil in similar proportions 

(1:1) and an n-3 PUFA-enriched group receiving fish oil and corn oil in 2.5:1 proportions. 

DMH treatment induced a mitochondrial degeneration, disrupted cristae and a significant 

decrease in electron transport chain complexes activity, reflecting carcinogenetic-associated 

metabolic reprogramming. This was associated with an increase in cholesterol and cardiolipin 

levels in post-initiation phase, suggested to provoke a loss of apoptotic activity. Interestingly, 

fish oil diet in both the ratios stabilized or increased the number of mitochondria. The diet the 

more enriched in fish oil induced mitophagy, along with modulation of the electron transport 

chain complexes activity, decreased cholesterol and cardiolipin (a specific phospholipid of 

mitochondrial membranes containing four acyl chains) levels, thus facilitating apoptosis and 

attenuating carcinogenesis (285). 

In PC3 prostate cancer cells, treating the cells with fish oil, containing 90% ethyl ester n-3 

fatty acid among which 40% DHA, 40% EPA, and 10% other n-3 PUFA, induced important  

phosphoproteomic changes as compared to a control group treated with oleic acid. 

Particularly relevant are the phosphorylation levels of the two regulatory serine residues in 

pyruvate dehydrogenase alpha 1 (PDHA1), serine-232 and serine-300, which were 

significantly decreased upon fish oil treatment, resulting in the increase of pyruvate 

dehydrogenase (PDH) activity. Results brought by this study supported the protective role of 

n-3 PUFA in prostate cancer through the suppression of aerobic glycolysis by restoring PDH 

activity, and in controlling the balance between lipid and glucose oxidation (286). 

Metabolic investigation were also performed in breast cancer cells showing respiratory (BT-

474 cell line) or glycolytic (MDA-MB-231 cell line) phenotypes, compared to non-

cancerMCF-10 mammary cells, and revealed that DHA supplementation significantly 
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diminished the cancer cell metabolism and glycolytic profile of malignant cell lines in a dose-

dependent manner (287). DHA enrichment decreased HIF-1α levels and transcriptional 

activity in the malignant cell lines but not in the non-transformed cell line. Consequently, 

downstream targets of HIF-1α, such as GLUT-1 and LDH, were decreased by DHA treatment 

in the BT-474 cell line, as well as in the MDA-MB-231 cell line. Correlatively, DHA 

supplementation decreased glucose uptake and oxidation, glycolytic metabolism, and lactate 

production. DHA induced a decrease of intracellular ATP in both cancer cell lines. This 

resulted in the phosphorylation of AMP-activated protein kinase (AMPK, at Thr172) as a 

metabolic stress marker. These important results indicated that DHA could alter cancer cell 

growth and survival by modulating cancer cell metabolism, while not affecting the one of 

non-cancer cells (287). By specifically interfering with cancer cell metabolism, the 

supplementation with n-3 PUFA (such as DHA) could be considered as an opportunity to 

inhibit cancer cell survival and tumour progression (288). 

 

 Recent data have shown that n-3 PUFA could regulate autophagy, which could be 

involved in both survival and apoptosis of cancer cells, depending on the carcinogenetic phase 

and on the treatment context.  In a study conducted in cervical, breast and lung cancer cells, 

DHA was found to induce apoptosis and to increase the number of autophagic vacuoles 

without impairing autophagic vesicle turnover. The induction of autophagy was mediated by 

p53. DHA-induced autophagy was associated with p53 loss, and to the activation of AMPK 

and the decrease in the activity of mTOR. Autophagy inhibition suppressed apoptosis, and 

further autophagy induction enhanced apoptosis in response to DHA treatment (289).  

Another study performed in the context of colon carcinogenesis studied the effects of DHA on 

cancer cell differentiation or programmed cell death involving mitochondrial pathway 
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induced by sodium butyrate. Sodium butyrate induced autophagy both in HT-29 and HCT-

116 cells, which are sensitive and insensitive to the induction of differentiation, respectively. 

However, autophagy supported cell survival only in HT-29 cells. DHA promoted cell death 

and activated PPARγ in both cell types. The inhibition of autophagy both attenuated 

differentiation and enhanced apoptosis in HT-29 cells treated with sodium butyrate and DHA, 

but was ineffective in HCT-116 cells. PPARγ silencing decreased differentiation and 

increased apoptosis only in HT-29 cells. Thus, authors suggested that diverse responses of 

colon cancer cells to fatty acids might rely on their level of differentiation, which may in turn 

depend on distinct engagement of autophagy (290).  

DHA treatment induced oxidative stress in SW620 and Caco-2 colon cancer cells. DHA 

inhibited the growth of SW620 cells and induced transcriptional regulation of genes involved 

in oxidative stress response and autophagy. However, the oxidative stress response was not 

the cause of DHA-induced cytotoxicity in SW620 cells. Inhibition of autophagy sensitized 

both SW620 and Caco-2 cells to DHA. Autophagy stimulation resulted in decreased DHA-

sensitivity of SW620 cells that have a low basal level of autophagy, while inhibition of 

autophagy in Caco-2 cells, displaying a higher level of basal autophagy, resulted in increased 

DHA-sensitivity. Taken together, these results indicated that autophagy was important for the 

DHA sensitivity of colon cancer cells (291). 

 

-EMT and Invasive properties – 

As already mentioned, EMT is a key step in the acquisition of aggressiveness in cancer cells, 

through increased invasive properties and resistance to treatments. To date, there is no potent 

pharmacological strategy to prevent EMT. Again, there is evidence that n-3 PUFA may 
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inhibit the expression of EMT markers and reduce associated invasive properties in cancer 

cells (Figure 3). 

A recent study indicated that the supplementation of colorectal cancer cells with DHA, 

inhibited the expression of the serine protease Granzyme B, characterized as being an EMT 

inducer, and therefore inhibited the expression of Snail1 and N-cadherin while overexpressing 

E-cadherin. DHA treatment also resulted in a reduction of colorectal cancer cell invasiveness 

(292). These results supported the use of DHA, a dietary compound without toxic effects, as 

an adjuvant in colorectal cancer therapy.  

Similarly, it was found that increasing the endogenous levels of n-3 PUFA, using n-3 fatty 

acid desaturase (fat-1) transgenic mice, was associated with a reduction in the growth rate of 

melanoma xenografts. This reduction in melanoma growth in fat-1 mice, compared with 

wild‑type mice, was associated with an increased expression of E‑cadherin and the reduced 

expression of its transcriptional repressors, Zeb-1 and Snail-1 (293). It also significantly 

repressed the EGFR/Akt/β‑catenin signalling pathway and induced the formation of 

significant levels of anti-inflammatory n-3 PUFA‑derived lipid mediators, such as resolvin 

D2 and E1, maresin 1 and 15‑hydroxyeicosapentaenoic acid (293). 

While it is commonly accepted, since a long time now, that n-3 PUFA have anti-invasive and 

anti-metastatic properties (264,294-297), molecular details for these effects are not fully 

described. One possible explanation is the repression of EMT, but again, the clear mechanism 

for this remains to be elucidated. Importantly, n-3 PUFA, through the activation of PPARγ, 

have been shown to down-regulate the expression of NHE1 and to reduce cancer colony 

growth (298). This inhibition of NHE1 expression could also be responsible for the anti-

invasive activity of these fatty acids. What is known is that these fatty acids can, in their 
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native non-peroxidated or peroxidated forms, modulate the activity of NHE exchangers 

(299,300), and of ion channels (301,302) that have been demonstrated to be key regulators of 

cancer cell invasiveness (295). An important mode of regulation by n-3 PUFA is the change 

of physico-chemical properties of cell membranes after their incorporation into phospholipids, 

notably in lipid raft domains (303). Indeed, DHA and EPA have been shown to have 

protective effects by affecting NHE1 activity trough a non-genotoxic pathway associated with 

plasma membrane remodelling (304). 

This is the case for the NaV1.5 channel, importantly regulating the invasive properties of 

breast and colorectal cancer cells (170,305,306), which activity was initially found to be 

inhibited in expression systems or in native rat cardiomyocytes (307,308). As such, n-3 

PUFAs have been proposed to exert their beneficial effect on cancers through a reduction of 

the activity of NaV1.5, such as it would have beneficial cardiac anti-arrhythmic effects 

(295,309). In initial studies performed in Alexander Leaf’s group, n-3 PUFA were found to 

directly bound to the channel and to inhibit its activity (310,311). However, contrasting 

results were obtained in human breast cancer cells in which NaV1.5 channel, which is 

expressed under the form of a neonatal splice variant (167), was not inhibited by acute 

application of n-3 PUFA, even at high concentrations (30-50 µM) (312). In fact, growing 

breast cancer cells in the presence of low doses of DHA (0.5 to 10 µM) reduced SCN5A gene 

expression and levels of NaV1.5 proteins and related sodium current (312,313). The inhibition 

of SCN5A expression was mediated by the lipid-sensitive nuclear receptor PPARβ. This 

inhibition of NaV1.5 activity was responsible for a reduced activity of NHE1, decreasing H
+
 

efflux, resulting in a limited extracellular acidification, a reduced proteolytic activity and the 

inhibition of breast cancer cell mesenchymal invasion (312). In this context, one could 

postulate that DHA would also limit cell migration and resistance to treatment that are 



48 

 

properties related to pH regulation, in all cancer cells showing functional NaV1.5-NHE1 

complexes. 

 

Altogether, these studies provide mechanistic, pre-clinical and clinical information 

that dietary supplementations of n-3 PUFA might represent new powerful opportunities to 

normalise cancer cell metabolism, limit the aggressive progression of some cancer types and 

prevent the resistance to anticancer treatments (Figure 3). 

 

4. Conclusions 
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F i g u re  l e g en d s :  

 

Figure 1: The gain of invasive capacities in carcinoma cells 

The acquisition of an invasive phenotype in carcinoma cells is associated with the epithelial-

to-mesenchymal transition (EMT), a process characterized by the loss of functional apico-

basal polarity, the loss of cell-to-cell adhesions (loss of ZO-1 and E-cadherins), the 

remodelling of the actin cytoskeleton (with the loss of the submembrane cortical F-actin 

network to the profit of actin stress fibers), the secretion of extracellular matrix (ECM)-

degrading proteases (such as matrix metalloproteinases (MMP) and cathepsins). Invasive 

carcinoma cells that underwent the EMT display a rear-leading-edge polarity, representative 

of mesenchymal cells, and develop invasive structures, called invadopodia, where is 

performed the proteolysis of the ECM. In this new cell phenotype, there is redistribution of 

existing ion channels and transporters, such as the Na
+
-H

+
 exchanger type 1 (NHE1) 

expressed in baso-lateral side of normal epithelial cells that is translocated to the leading edge 

and to invadopodia of invasive carcinoma cells. There is also the over-expression of some ion 

channels such as voltage-gated gated sodium channels (NaV) in invadopodia. NaV activity 

promotes invadopodial formation and ECM proteolytic activity through the Src-dependent 

phosphorylation of the actin-nucleating promoting factor cortactin (at Y421), resulting in 

actin polymerisation, and the increase of H
+
 efflux through NHE1, the acidification of the 

extracellular microenvironment, resulting in protease activation. 

 

Figure 2: Cancer cell metabolism and the increased production of protons promote 

tumour progression 
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Under hypoxia, cancer cells are selected on their capacity to produce ATP through the 

glycolysis. They generally keep this preferred metabolism even in normoxic conditions, a 

situation called “aerobic glycolysis” (or Warburg effect). This is associated with the increase 

in glucose transporter 1 (GLUT1) and glycolytic enzymes expression, that is mediated 

through the stabilization of the hypoxia-sensitive transcription factor HIF1α, and the increase 

in the production of H
+
. HIF1α also promotes the epithelial-to-mesenchymal transition (MET) 

through the expression of EMT transcription factors (Zeb1/2, Snail 1/2,  Twist, …), leading to 

the down-regulation of epithelial markers (such as Zonula Occludens 1, ZO-1, and epithelial 

cadherin, E-Cadh) and the up-regulation of mesenchymal markers (such as vimentin and the 

neuronal cadherin, N-Cadh). High amounts of CO2-derived protons are generated by the 

mitochondrial activity (tricarboxylic acid (TCA) cycle) and the pentose phosphate pathway. 

The efflux of H
+
, mediated by several plasma membrane transporters (such as NHE1, V-

ATPase, MCT…), permits cancer cell survival and proliferation, favours the acquisition of 

migrative and invasive properties and inhibits anti-cancer immune response. Voltage-gated 

sodium channels (NaV1.5 and NaV1.7) increase the activity of NHE1 and promote cancer cell 

invasiveness through the proteolytic degradation of the ECM. Protons that are intracellularly 

produced are also transported to autophagolysosomes to support autophagy and cancer cell 

survival under nutrient deprivation or anticancer treatment. Extracellular acidification reduces 

chemotherapy efficacy by limiting the diffusion of some chemotherapeutic agents (such as 

anthracyclines) and by overactivating the activity of the plasma membrane efflux pump P-

glycoprotein (P-gp). Chemotherapy efficacy is also limited by the expression of P-gp at 

mitochondrial membranes and by the mitochondrial bioenergetics activity (oxidative 

phosphorylation, OXPHOS). 
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Figure 3: Proposed anti-tumour effects of dietary n-3 polyunsaturated fatty acids (n-3 

PUFA) 

Dietary n-3 PUFA can, directly or after their being stored under the form of triacylglycerids in 

adipose tissues, interfere with the carcinogenesis of epithelial tissues and tumour progression. 

They are proposed to inhibit tumour progression through the inhibition of tumour 

inflammation, the inhibition of primary tumour growth, the reduction of local invasion, the 

prevention of metastases development or relapse, and to improve anticancer treatment by 

limiting chemoresistance. 

 

 

 


