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Abstract
Kin selection and multilevel selection are two major frameworks in
evolutionary biology that aim at explaining the evolution of social behaviors.
However, the relationship between these two theories has been plagued by
controversy for almost half a century and debates about their relevance and
usefulness in explaining social evolution seem to rekindle at regular
intervals. Here, we first provide a concise introduction into the kin selection
and multilevel selection theories and shed light onto the roots of the
controversy surrounding them. We then review two major aspects of the
current debate: the presumed formal equivalency of the two theories and
the question whether group selection can lead to group adaptation. We
conclude by arguing that the two theories can offer complementary
approaches to the study of social evolution: kin selection approaches
usually focus on the identification of optimal phenotypes and thus on the
endresult of a selection process, whereas multilevel selection approaches
focus on the ongoing selection process itself. The two theories thus provide
different perspectives that might be fruitfully combined to promote our
understanding of the evolution in group-structured populations.
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Introduction
Why should an individual cooperate to benefit others? This 
question pinpoints one of the central theoretical problems of  
sociobiology1–3. Cooperative behaviors such as altruism (an action 
that benefits others at one’s own expense) would reduce the fitness 
of the performer relative to selfish individuals that do not perform 
the behavior, and hence should be selected against4–6. However, 
this expectation is in striking contrast to the ubiquity of coopera-
tion in nature, which occurs among ‘simple’ microorganisms7,8 
and within highly complex eusocial societies alike9.

Kinship and group selection are two key concepts of modern  
sociobiology that have been proposed to help resolve this appar-
ent conundrum1,6. Despite their common origin in the writings of 
Charles Darwin (cf. 10), the developments of these two concepts 
in the modern kin and multilevel (or group) selection theories fol-
lowed diverging paths and fueled a persisting and often heated 
debate about their relevance and usefulness in the study of social 
evolution (e.g. 11–13). Here, we provide a concise introduction to 
the two theories and the controversy surrounding them as well as 
highlight the complementarity of the approaches typically taken by 
their proponents. To this end, we first separately introduce the two 
theories and then point to the roots of the controversy. We subse-
quently review two important aspects of the current debate in more 
detail: the presumed formal equivalency of the two theories and 
the notion of group adaptation. We overall suggest that these issues 
illustrate the complementary nature of the perspectives offered by 
the kin selection and multilevel selection theories.

Kin and multilevel selection theories in a nutshell
Kin selection theory
Interacting organisms may have an evolutionary incentive to 
help each other (or at least to hurt each other less) if they share 
genes, and the magnitude of this incentive should increase with 
the degree of relatedness between them; this is the central tenet of 
William D. Hamilton’s inclusive fitness theory14–16 (the term kin 
selection theory was coined by John Maynard-Smith11 and is here 
used as a synonym for ‘inclusive fitness theory’ to comply with its 
conventional use). This tenet is encapsulated in a very simple form 
in Hamilton’s rule, which states that a (gene for a) social behavior 
is favored by natural selection if rb-c > 0, where c is the fitness cost 
to the individual performing the behavior, b equals the fitness benefit 
to the recipient(s), and r is the genetic relatedness between them14,15. 
The rule thus formalizes the realization that natural selection acts 
not only through direct effects of a behavior on the actor’s own 
fitness (often measured as reproductive output) but also through 
indirect effects on the fitness of the actor’s relatives (that have an 
above-average probability of sharing the actor’s genes, including 
the one[s] that cause the social behavior in question)1. Moreover, it 
provides a potential solution to the central problem of sociobiol-
ogy, as it shows that even costly social behaviors can be favored by 
natural selection as long as the direct costs are outweighed by a 
sufficient amount of indirect benefit to sufficiently closely related 
individuals (Figure 1)17. Note, however, that the application of 
Hamilton’s rule—and thus kin selection theory—is not restricted 
to altruistic behaviors: rb and -c represent, respectively, the indirect 
and the direct fitness consequences of any character of interest and 
hence can both be positive, negative, or zero18. Accordingly, they 

can also represent mutually beneficial (both fitness components 
positive), spiteful (both components negative), or selfish (direct com-
ponent positive and indirect component zero or negative) behaviors.

Alongside Hamilton’s rule, the concept of inclusive fitness is the 
second central element of kin selection theory. An organism’s inclu-
sive fitness is defined as the sum of its direct (Darwinian) and indi-
rect fitness components (Figure 1). The latter is calculated as the 
relatedness-weighed sum of those effects on the fitness of other 
individuals for which the organism is causally responsible14,17. 
Inclusive fitness is thus an actor-centric approach that examines 
how a focal individual influences its own fitness and that of its 
social partners19. Hamilton14 also suggested an alternative and (by 
now) increasingly used approach to account for direct and indi-
rect fitness effects (e.g. 20–22): the neighbor-modulated fitness  
(sometimes referred to as personal or direct fitness). The two 
approaches differ in how the indirect component is conceptualized: in 
contrast to inclusive fitness, neighbor-modulated fitness is a recipient- 
centric approach and thus examines how social partners influence 
the fitness of a focal individual19 (Figure 1). The two approaches are 
usually seen as equivalent, as they predict the same overall response 
to natural selection18 (but cf. 23,24). The inclusive fitness approach, 
however, comes with one significant conceptual advantage: in 
principle, an individual is causally responsible for both its direct 
and indirect fitness and hence can control its inclusive fitness. 
Thus, natural selection might favor organisms that act as if they are 
attempting to maximize their inclusive fitness14,25–27 (but cf. 28,29). 
The possibility of conceptualizing individuals as maximizing agents 
(an optimality approach30) greatly facilitates the linking of theoret-
ical and empirical research and has been central to the study of  
adaptation in behavioral and evolutionary ecology19.

Over the last five decades, kin selection theory has been exten-
sively developed and generalized (e.g. 20,31–35; see 22,23 for  
book-length treatments) beyond the limited scope of Hamilton’s 
original formalization14–16. For instance, Hamilton originally 
defined relatedness as a genealogical measure of shared ancestry14 
but quickly realized that this is only one (albeit by far the most 
frequent) way of generating the above-average genetic similarity 
among individuals that ultimately drives the evolution of many 
cooperative behaviors16,31,36. In contemporary discussions, related-
ness is accordingly more broadly defined (e.g. 23,24) and encom-
passes any genetic similarity, regardless of whether it arose by 
common descent or by other means such as green-beard effects37,38. 
Moreover, the generalization of kin selection theory resulted in the  
development of general versions of Hamilton’s rule (most notably 
on the basis of the Price equation; see below and 34) that—unlike 
the original version—make no assumptions such as weak selection 
or additivity of fitness payoffs (see also 18,39,40). In these gen-
eral versions, the cost-benefit parameters no longer denote simple 
fitness payoffs of social interactions but rather partial regression 
coefficients that quantify the overall statistical association among 
an organism’s phenotype/genotype, its fitness, and the phenotype/ 
genotype of its social partners17,41. Concomitant with its generaliza-
tion, kin selection theory has become the dominating framework for 
the explanation of social behavior from an evolutionary viewpoint  
(e.g. 42,43). Its most prominent empirical prediction, namely 
that social behavior should correlate with relatedness, has been  
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Figure 1. Social interactions in a group-structured population. In this example, non-altruists and altruists (symbolized by triangles and 
squares, respectively; see the legend for details) form (I) pairs of non-altruists, (II) mixed pairs, and (III) pairs of altruists. Altruists and non-
altruists do not share the gene(s) causing the altruistic behavior but are overall related (i.e. genetically similar with respect to other traits). 
Upon reproduction, the (F1) progeny of each pair forms an independent group. Non-altruists do not express social behaviors and reproduce 
according to a baseline fitness (here arbitrarily fixed at z = 3). In contrast, altruists (unconditionally) confer a fitness benefit (b = 4) onto 
their partner at a cost (c = 1) to themselves. Although altruists incur a direct fitness cost, they benefit indirectly from assisting their partner 
and hence overall increase their inclusive fitness (see the fitness box for an illustration: inclusive fitness is composed of a direct [unicolored 
symbols] and an indirect [symbols framed in the same color] component). Similarly, their neighbor-modulated fitness is increased if they 
are assisted by their partner. However, altruists have a relative fitness disadvantage within mixed pairs because they increase the fitness 
of their non-altruistic partner at a cost to themselves and without receiving help in return (see pay-offs box for details). Hence, altruism can 
be disadvantageous even within groups of overall related individuals (precisely if they do not share the altruistic gene). In contrast, uniform 
pairs of altruists produce more offspring than mixed groups or groups of non-altruists (they hence have a higher group fitness in an MLS-1 
framework; the group fitness in an MLS-2 framework corresponds to the number of groups produced and is here the same for all pairs). 
Positive assortment of altruists (e.g. due to limited dispersal) reinforces this ‘group-advantageous’ effect and can explain the evolution of 
cooperation in the long run.

supported across diverse taxa (the equally important impact of the 
costs and benefits received less attention, but see 44,45), and kin 
selection theory has greatly contributed to our current understand-
ing of a variety of biological phenomena such as dispersal, repro-
ductive skew, and queen-worker conflicts in eusocial insects46,47.

Multilevel selection theory
The central tenet of multilevel (or group) selection theory conveys 
that selection not only acts on individuals but can act (simultane-
ously) on multiple levels of biological organization, including cells 
and/or groups48. This view suggests that even if behaviors that ben-
efit other individuals are selectively disadvantageous at the level 
of the individual, they might still evolve if they are advantageous 
at—and hence selected for on—a higher level of the biological hier-
archy (e.g. on the group or colony level)6,48. Altruism, for instance, 
is costly for the altruistic individual, but groups containing a higher 

proportion of altruistic individuals usually have a competitive 
advantage over groups that are composed mostly of selfish individ-
uals (e.g. because altruistic groups are more productive or superior 
in direct confrontations). In such situations, altruism can evolve—
driven by a process of selection between groups—even against the 
background of selection favoring selfishness within each group  
(e.g. 49,50). This is the potential solution of the central problem of 
sociobiology from a multilevel perspective (Figure 1). The applicabil-
ity of multilevel selection theory, however, is not limited to situations 
in which selection pressures on different hierarchical levels are 
opposing. Multilevel selection approaches more generally examine 
the direction and strength of (naturally occurring or experimentally 
applied) selection pressures on multiple hierarchical levels, investi-
gate the mediators (e.g. indirect genetic effects51–53) and magnitude 
of their respective contributions to total evolutionary change50,54,55, 
and explore effects of selection on group traits56.
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Interestingly, there is currently no unanimously accepted formal 
theory of multilevel selection (e.g. 57–60) apart from the broad 
consent that defines group selection as natural selection based on 
the differential survival and reproduction of groups6,51,61 (but cf. 54). 
As a result, both individuals and groups can be found as focal units 
of attention (Figure 1) in multilevel selection approaches. Simi-
larly, the definitions of group fitness and group vary among studies 
depending on whether they aimed at explaining the changing fre-
quency of different types of organisms in a group-structured popu-
lation or at explaining the changing frequency of different types of 
group in a meta-population of groups. In the first case, group fitness 
is often defined as the average (or total) fitness of its constituent 
organism (multilevel-selection-1, or MLS-1; Figure 162–64), and the 
group as a set of interacting individuals that influence each other’s 
fitness, but not the fitness of individuals outside the group, with 
respect to a particular trait (trait-groups49,61; see 48 for a discussion 
of this concept). In the second case, group fitness is defined as the 
expected number of offspring groups (MLS-2; individual fitness is 
then usually defined separately and on a different timescale62–64). 
MLS-2 approaches often explicitly incorporate group-level events 
such as fission or extinction and thus assume that groups of indi-
viduals undergoing such group-level events can be identified in 
the population64. Groups are consequently more narrowly defined 
as geographically discrete, multigenerational, and reproductively 
isolated demes (Figure 1)48.

It is important to note that MLS-1 and MLS-2 approaches are 
not equivalent, as they relate to different natural processes48 (but 
cf. 58). In an MLS-1 scenario, groups ‘merely’ generate the popula-
tion structure that affects the fitness of individuals. Hence, groups 
can propagate by producing individuals as long as these individu-
als form groups themselves at some stage of their life (e.g. after 
blending in a common mating pool). In contrast, groups need 
to reproduce in an ordinary sense in an MLS-2 scenario (i.e. by 
producing more groups)48. Though sometimes seen as foster-
ing confusion (e.g. 58,65), the difference between MLS-1 and 
MLS-2 also provides an intriguing diachronic perspective on 
‘major transitions’ in evolution—and thus on the evolution of the 
biological hierarchy itself—as such transitions involve a tempo-
ral shift from MLS-1 (groups of individuals) to MLS-2 (groups as 
individuals)66–69.

Despite its controversy-plagued history (see below), the multilevel 
selection theory has undergone a resurgence of interest in recent 
years (e.g. 6,12,58,70–72; see 48 for a book-length treatment). This 
is because it has provided novel perspectives on a variety of issues 
such as parasitic virulence73, cultural group selection in humans (that 
is often envisioned as the outcome of warlike confrontation)74,75, 
or the ‘major transitions’ in evolution48,69.

The controversy
A brief history
The controversy surrounding the theories of kin and multilevel 
selection has a long and turbulent history (detailed, e.g., in 
1,24,48,61,76). Until the second half of the last century, many 
biologists did not clearly distinguish between different levels of 
selection, and it was often uncritically assumed that group selec-
tion would easily prevail over individual selection (e.g. 77) or that 
individual selection alone would foster adaptations ‘for the good of 

the group’ (e.g. 78). It was the rebuttal of these ‘naïve’ assumptions 
(though not of the theoretical plausibility of group-level thinking 
per se; cf. 6) that widely led to the rejection of group selection as 
a significant evolutionary force79. Notably, kin selection theory—
along with other theoretical frameworks such as evolutionary game 
theory80 and selfish gene theory37,81—was initially developed as an 
alternative to group selection (e.g. 11,15), which likely contributed 
to an increasing polarization in disfavor of arguments based on 
group-level thinking (e.g. 37).

However, the demise of group selection was only temporary. 
Subsequent studies dropped the ‘naïve’ assumption of the uncon-
ditional superiority of group selection and instead acknowledged 
that selection within groups often undermines selection among 
groups (e.g. 49,82–84). Building on this premise, trait-group mod-
els suggested that group selection can drive evolutionary change 
even when opposed by within-group selection and that a periodical 
blending of groups (e.g. in a common mating pool) can prevent 
the seemingly inevitable fixation of selfish types within groups49,84. 
Moreover, empirical studies demonstrated that experimentally 
applied group selection can drive evolutionary change (e.g. 85–87; 
reviewed in 59,88) and argued that early models had restricted the 
applicability of group selection by deploying unrealistic assump-
tions, such as the notion that group and individual selection are 
always diametrically opposed (reviewed in 6,51). Interestingly, 
Hamilton himself showed that multilevel selection was formally 
equivalent with his theory of inclusive fitness (31, see next section), 
suggesting that the two theories simply outline different perspec-
tives on the same natural processes. In some minds, this realization 
closed the debate, as the choice between the two theories seemed 
to have become a mere matter of personal taste. But far from it, 
the relationship between kin and multilevel selection remained 
controversial.

Over the last four decades, the group selection controversy has lost 
little of its initial momentum and continues to polarize opinions 
fueled by semantic debates (reviewed in 12,65,70) and, ultimately, 
the different implications the two theories seem to have for the 
evolution and self-perception of our own species89–91 (see also 92 
and associated responses). Accordingly, some biologists contest the 
usefulness of multilevel selection in the study of social evolution 
in general12,65, whereas others call for a reframing of the theoretical 
foundations of sociobiology from a multilevel perspective6. Nev-
ertheless, the focus of the controversy has shifted away from the 
question of whether group selection occurs at all and now mainly 
revolves around (the consequences of) its presumed formal equiva-
lence with kin selection theory and the question of whether group 
selection can lead to (group) adaptation. These are the two topics 
we will discuss below.

Kin and multilevel selection: formally equivalent theories?
Most biologists consider kin and multilevel selection formally 
equivalent (e.g. 24,40,61,93,94), but this view is not universally 
accepted and the number of dissenting voices has recently grown 
(e.g. 95–102). What, then, is the basis for the formal equivalency of 
the two approaches, and why is it still controversial?

On a practical level, the compatibility of kin and multilevel selec-
tion relies on the fact that both theories require positive assortment 
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of (genetically) similar individuals for cooperative behaviors to 
evolve (31,103,104; see 105–108 for examples). From a multilevel 
perspective, positive assortment increases the scope for between-
group selection, as it will make groups internally more homoge-
neous and thus reduce the potential for within-group selection 
(Figure 1)48. From a kin selection perspective, positive assortment 
ensures that costly social behaviors such as altruism are prefer-
entially directed toward individuals that show the behavior them-
selves31. This directionality is crucial: altruistic traits are selectively 
disadvantageous even when directed at otherwise (genetically) very 
similar non-altruists (Figure 1) and thus can evolve only if altru-
ists sufficiently often interact with other altruists, thereby increas-
ing their average inclusive fitness over that of non-altruists31. In 
practical terms, the compatibility of kin and multilevel selection 
hence conveys that individuals expressing social behaviors (such 
as altruism) have a higher inclusive fitness than selfish individu-
als, whenever selection between groups is stronger than selection 
within them, and vice versa109.

On a theoretical level, the compatibility of kin and multilevel selec-
tion is conventionally understood to predicate that group selec-
tion models can always be recast in terms of inclusive fitness39,93. 
This formal equivalency is usually inferred by using an equation 
developed by George C. Price110,111 that expresses the intergen-
erational, population-level response to natural selection in a herit-
able trait as the covariance, taken over all individuals within the 
population, between an individual’s trait and its fitness (here meas-
ured as its fecundity; e.g. 31,40,94). The Price equation allows 
partitioning the evolutionary change into its direct and indirect 
components and can be used to derive Hamilton’s rule (the kin 
selection approach;18,22,34,36). However, it also lends itself to parti-
tion the evolutionary change into effects at the individual and group 
levels22,31,40,48,94,111. Hence, kin and multilevel selection are formally 
equivalent when formulated as alternative decompositions of the 
Price equation, as both approaches make it possible to correctly 
compute the total evolutionary change. The approaches differ 
merely in how this change is partitioned and thus offer different, 
potentially complementary ways of viewing evolution in struc-
tured populations31,40,94,112. Two points, however, deserve a closer 
examination: firstly, the above-described decomposition of mul-
tilevel selection applies only to scenarios of the MLS-1 type (as 
group fitness is defined as average individual-level fitness of group 
members;48). Secondly, the multilevel partitioning requires indi-
viduals to be nested in non-overlapping groups; the kin selection 
approach comes with no such requirement and thus is arguably 
more general within the Price framework24,31,48.

Albeit most commonly used in theoretical studies, the Price frame-
work is not the only approach to study multilevel selection. An 
alternative approach (that is often adopted in empirical studies; 
e.g. 55,113,114) is offered by contextual analysis48,50,115. Like the 
Price equation, contextual analysis partitions the change due to 
natural selection (in MLS-1 scenarios;48) into individual and group 
effects; but unlike the Price equation, it detects group selection 
only if group effects on fitness remain even after controlling for 
individual effects. Contextual analysis thus accommodates a clas-
sic criticism against the multilevel partition of the Price equation, 
which can detect a component of between-group selection even 
in non-social contexts (i.e. when the evolution of the population 

can be predicted without taking group structure into account), and 
hence might not always accurately reflect the true causal effect of 
group selection48,115. However, contextual analysis has problems of 
its own, as it detects group selection when there is no variation in 
fitness among groups (e.g. because they all have the same produc-
tivity), but individual fitness depends on their ranking within the 
group (soft selection;48,50,115; but cf. 59). Owing to these problems, it 
is still controversial which approach is better suited to study multi-
level selection (e.g. 48,58–60,116,117; see also 99,118,119). Note 
however that contextual analysis is formally very similar to modern 
kin selection models that are based on neighbor-modulated fitness. 
This supports the conjecture of an equivalency of kin and multilevel 
selection, as the two approaches seem inter-translatable even when 
multilevel selection is studied by using contextual analysis rather 
than the Price equation1,30.

Though suggested by both the Price equation and contextual analy-
sis, the formal equivalency of kin and multilevel selection remains 
controversial (e.g. 95–99). Most critics seem to reject (aspects of) 
the generalization of kin selection theory and instead contrast spe-
cific, narrowly defined formulations of kin selection with more 
general approaches to multilevel selection (e.g. 96,99,100,102). For 
example, Wilson and Hölldobler100 rejected the broad definition of 
relatedness, arguing that it leads to a departure from the earlier and 
heuristically very useful narrow definition of kin selection. As a con-
sequence, it can be argued that kin selection is only a special case 
of multilevel selection because relatedness (i.e. genetic similarity) 
can occur without strict kinship and hence evolution can occur by 
group selection in the absence of selection among narrow-sense kin 
(for instance, if group selection acts on green beards)1. Similarly,  
Van Veelen and colleagues96,99 (see also 95,97) rejected attempts 
to generalize kin selection and then contrasted multilevel selection 
with a specific (rather than a general) version of kin selection in 
which the cost-benefit parameters of Hamilton’s rule denoted fitness 
payoffs (rather than partial regression coefficients). They showed 
that this kin selection approach can lead to incorrect predictions 
if the payoffs are non-additive (see also 120) and hence concluded 
that multilevel and kin selection are not equivalent. However, they 
compared a specific formulation of kin selection with their gen-
eral formulation of multilevel selection and hence arguably could 
not refute assertions of the equivalency of the two theories that are 
based on general formulations of kin selection (cf. 17).

Interestingly, these rejections of the general formulation of kin 
selection99,121 (see also 122,123) relate to a more extensive debate 
that was initiated by a high-profile charge of Nowak, Tarnita, 
and Wilson against the value of inclusive fitness theory in 
explaining the evolution of eusociality101. This partly philosophi-
cal debate revolves around the question of whether the cost-benefit 
parameters in general formulations of Hamilton’s rule allow a 
causal interpretation at all. As these parameters denote partial 
regression coefficients, they can depend on relatedness124 and 
population gene frequency, which can, for instance, lead to the 
counterintuitive result that a social behavior satisfies Hamilton’s 
rule at a low, but not at a high, frequency13. Whereas critics con-
sequently deny the general formulations of Hamilton’s rule any 
explanatory power and claim that they cannot accurately describe the 
evolutionary dynamics of any given system (e.g. 13,101,121,125), 
others argue that they serve as a unifying principle that provides a 
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super-ordinated framework for interpreting the results of otherwise 
disparate models in a general terminology (e.g. 18,39). Overall, this 
debate reveals that the formal equivalency of kin and multilevel 
selection (somewhat obviously) holds only if equally general for-
mulations of the two theories are pitted against each other and that 
the issue at the heart of the debate really is the question of whether 
such general formulations make sense from a heuristic perspective 
(e.g. 13,18,19,101,125–128; see 17,41 for in-depth reviews). Indeed, 
the question of whether and when general versions of Hamilton’s 
rule (and thus kin selection theory) provide a better/worse causal 
(rather than statistical) representation of the evolutionary process 
than the corresponding general approaches to multilevel selection 
(see also Conclusions section) might provide a fruitful avenue for 
future discussions.

Another line of reasoning against the equivalency of kin and mul-
tilevel selection suggests that even generalized formulations of 
kin selection cannot account for the long-term effects of events on 
the group level57,95,98. Group-level events such as fission, fusion, or 
extinction often occur asynchronously, and Simon and colleagues57 
recently suggested that group selection should consequently be 
thought of (and analyzed) as an asynchronous, continuous-time 
process that is shaped by the combined, long-term effects of such 
group-level events. On this basis, they argued that although kin 
and multilevel selection are often equivalent when only one time  
interval between two group-level events is analyzed, they would 
almost never be equivalent in a dynamical setting because kin selec-
tion approaches could not account for the asynchronous nature of 
the group-level events57,98 (see also 129). Interestingly, they also 
suggest that the long-standing disagreement over the equivalency 
of kin and multilevel selection is based on oversimplified models 
of multilevel population dynamics and an inappropriate definition 
(via the Price equation) of group selection57,98: in its usual form, the 
Price equation traces the evolutionary change only over short peri-
ods (see above), assumes that all relevant processes such as repro-
duction or mass dispersion occur at a discrete set of time points, and 
is restricted to MLS-1 scenarios in which group-level events (other 
than mass dispersion) do not feature explicitly57,98. Thus, the Price 
equation (and contextual analysis) might be insufficient to capture 
all relevant aspects of the selection among groups.

Overall, the last word on the equivalency of kin and multilevel 
selection has surely not been spoken, as the partly philosophical 
character of the debate prevents it from being settled by theoretical 
or empirical results alone (cf.17). However, even if it would turn out 
that the equivalency is untenable in some situations, kin and mul-
tilevel selection will surely continue to occupy largely overlapping 
domains, leaving evolutionary biologists with both the blessing and 
the curse of the existence of multiple theoretical frameworks to 
study social behavior.

Does group selection lead to group adaptation?
One fundamental issue that triggered the initial rejection of group 
selection was the (then naïvely alleged) claim that it can foster group 
adaptation (i.e. promote the evolution of traits ‘for the good of the 
group’)6. Although an evolutionary response to group selection has 
by now been demonstrated in a variety of laboratory and field stud-
ies (e.g. 85,130–132), the claim that it can foster group adaptation 
(or any adaptations at all) remains highly controversial12,65.

Recently, Pruitt and Goodnight56 reported that natural colonies 
of the social spider Anelosimus studiosus are characterized by a 
site-specific mixture of ‘docile’ and ‘aggressive’ individuals and 
showed that experimentally constructed colonies with compositions 
mimicking the naturally occurring mixtures survived in the field 
but that colonies with deviating compositions perished. Experimen-
tal colonies with a perturbed composition that had survived at a 
‘foreign’ site had shifted their composition toward a mixture that 
would have been optimal at their native site rather than toward 
the locally optimal mixture. Considering these results, Pruitt and 
Goodnight suggested that the composition of colonies differs 
between sites because of site-specific group selection and—as it is 
optimized to promote long-term colony survival at the native site—
constitutes a group adaptation56. This latter conclusion, however, 
did not go unchallenged133–135. Grinsted and colleagues134 criticized 
that individual-level selection was not ruled out as an alternative 
explanation of Pruitt and Goodnight’s results, and Smallegange 
and Egas133 indeed developed an environmental threshold model to 
explain Pruitt and Goodnight’s observations at the individual rather 
than the group level. Finally, Gardner135 argued that colony compo-
sition is unlikely to maximize colony fitness and thus rejected the 
claim that the site specificity of colony composition constitutes a 
group adaptation.

Do the results of Pruitt and Goodnight56 thus provide no evidence 
for a group-level adaptation after all? The answer depends on the 
definition of ‘group adaptation’. In a kin selection framework, 
adaptations are regarded as occurring at the level of the individual 
organism and to maximize an individual’s inclusive fitness19,135,136. 
By analogy, group adaptation is thus understood as a process that 
is driven by between-group selection and optimizes phenotypes 
for the purpose of group fitness maximization135,136 (see also 137). 
This optimization process, however, is typically compromised by 
within-group selection because of conflicts among group members 
and thus will be favored by natural selection only if these conflicts 
are either absent (as for instance in clonal groups) or completely 
suppressed136 (but cf. 138,139), for example, through mechanisms 
such as fair meiosis140,141 or worker policing140,142. Accordingly, 
group adaptations are expected to occur only rarely in nature, where 
their demonstration would require showing that within-group 
conflict is absent and group fitness is maximized135,136. Pruitt and 
Goodnight56 did not assess within-colony conflict and thus arguably 
provide no conclusive evidence for group adaptation according to 
the above definition—a view that is embraced by all critics of their  
interpretation133–135.

However, a different approach to group (and individual) adapta-
tion is conventionally taken in a multilevel selection framework  
(e.g. 109,143,144). In accordance with the kin selection framework, 
a process would be defined as group adaptation if the trait fre-
quency evolves toward (or has settled down at) the group opti-
mum (i.e. the trait frequency that is predicted to evolve when only 
between-group selection is at work). Likewise, a process would be 
defined as individual adaptation in both frameworks if the trait fre-
quency is driven by within-group selection only and hence evolves 
toward (or has settled down at) the individual optimum. However, 
differences between the kin and multilevel selection frameworks 
emerge if within- and between-group selection are aligned or 
if the metapopulation evolves toward (or has settled down at) a 
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compromise (i.e. an intermediate trait frequency)61,109 (see also 1). 
In these situations, the (outcome of the) process would be called an 
individual adaptation in the kin selection framework, where adapta-
tions are generally considered to occur at the level of the individual 
irrespectively of the strength of between-group selection136,145. In 
contrast, such compromises are often considered group adaptations 
in a multilevel selection framework, especially if they are (predomi-
nantly) driven by between-group selection109,144. Accordingly, while 
mechanisms of conflict suppression such as policing and punish-
ment are a prerequisite of group adaptation in the kin selection 
framework, they are often considered group adaptations themselves 
in a multilevel selection framework6,84. In a reply to their critics, 
Pruitt and Goodnight adhere to this latter view and argue that the 
group-level trait ‘colony composition’ is shaped by site-specific 
group selection and hence constitutes a group adaptation143.

This recent debate about the implications of Pruitt and Goodnight’s 
findings56 sheds light on a clear distinction between the kin and 
multilevel selection frameworks. The kin selection approach typi-
cally grants the individual priority as an evolutionary agent because 
it appears as an adaptive unit and consequently allows a clear-
cut distinction between individual and group adaptations even if 
selection acts on both the within- and between-group levels136,145  
(but cf. 1,61,109). In contrast, the multilevel selection approach 
allows such a clear distinction only in special cases (namely if selec-
tion acts only on one level) but places more emphasis on the fact 
that the realized frequency of a social trait is usually a compromise 
of different selection pressures109,143. Moreover, the multilevel selec-
tion approach allows for situations in which selection pressures on 
the individual and group levels are (at least to some extent) aligned. 
This might be the case where collective traits (e.g. the superstruc-
ture of waterproof rafts built by fire ants through self-assembly146) 
simultaneously promote the survival of the group and directly ben-
efit the individuals within it. We suggest that both approaches may 
provide important insights into our understanding of social evolu-
tion and that, instead of focusing on their (semantic) differences, a 
more fruitful approach to the adaptiveness of social groups might 
be to ask how well adapted a particular social group is relative to 
the (theoretical) ideal of a conflict-free group1 (see also 136,147). 
Moreover, it is important to note that although the kin selection 
approach to group adaptation is more restrictive than the multi-
level selection approach, both in principle allow for group adapta-
tion. Thus far, the formal demonstration of group adaptation (i.e. a 
group-optimal and conflict-free outcome) according to Gardner and 
Grafen’s kin selection-based definition136 is still pending. However, 
elaborate group-level traits such as the dance-language of honey 
bees148 are good candidates that might live up to the definition of 
group adaptation within both frameworks.

Conclusions
Kin and multilevel selection are two key concepts of modern 
sociobiology that provide different perspectives on the evolution of 
social behaviors. Unfortunately, these approaches are often pitted 
against each other in a seemingly endless (and largely semantic) 
debate that arguably impedes scientific progress91 and prevents the 
benefits of the different perspectives from being harnessed.

Most biologists prefer kin selection over multilevel selection 
approaches as a matter of habit or personal taste12,65, and this prefer-
ence seems partly justified as kin selection approaches have received 
more theoretical attention (and are hence highly versatile)20,23 and 
have been put to work in more empirical applications17,46,149 (but 
note that the widespread acceptance of their formal equivalency 
implicates that empirical evidence for one theory cannot be used as 
evidence against the other). However, we believe that a bipartisan 
view on the kin and multilevel selection theories might ultimately 
prove more fruitful. After all, there might be situations in which 
one approach provides a more accurate representation of the causal 
structure of social interactions despite their (presumed) equivalency 
as statistical decompositions of evolutionary change17,150. For exam-
ple, it might be more causally apt to describe the selection pressures 
on a segregation distorter allele that has negative effects on the fit-
ness of its bearer in terms of multilevel selection (i.e. as opposing 
selection pressures at the gene and individual levels). Conversely, 
it might be more causally apt to describe the selection on coopera-
tive behavior in pairwise interactions between related individuals in 
terms of kin selection, especially if those pairs are ephemeral and 
form only for the duration of the social interactions17. More gener-
ally, kin selection might provide a more accurate representation of 
the causal structure of social interactions than multilevel selection 
where fitness pertains to individuals in the first instance (and group 
fitness is a simple function of the fitness of its constituent individu-
als; see also 22,48), whereas the opposite might be true where fit-
ness pertains to the whole group in the first instance (and individual 
fitness is determined by group fitness)150. Such considerations of 
causal aptness might help to explain why multilevel selection was 
readily accepted for the study of major transitions48,69 but only 
slowly establishes itself in the field of behavioral ecology, in which 
social interactions are often studied in ephemeral ‘groups’ of genea-
logical kin42. It is noteworthy that considerations of causal aptness 
seem less clear in the case of eusocial systems (such as ants, ter-
mites, and some species of bees and wasps; cf. 48) and that exactly 
these systems take center stage in the controversy surrounding the 
kin and multilevel selection theories (e.g. 100,101,126,127,151).

Interestingly, kin and multilevel selection approaches might 
ultimately prove to be very useful exactly when applied to the 
same system. Kin selection analyses often follow an optimal-
ity (‘adaptationist’) approach and accordingly try to identify the 
phenotype(s) with the highest overall fitness to extrapolate where 
a population will eventually stabilize18,30. The strength of kin selec-
tion (as a driver of evolutionary change over the course of one or 
multiple generations), however, is rarely reported30. In contrast,  
multilevel selection approaches often follow an ‘evolutionary 
change’ approach and examine how a population will change its 
current configuration (for example, depending on the strength of 
within- and between-group selection or in response to an applied 
selection pressure)30,59. The optimal phenotype, however, is typically 
not identified in multilevel selection studies30. The two perspectives 
opened up by the kin and multilevel selection approach, respec-
tively, seem to be highly complementary30,59. Experimental studies 
already began to harness the translatability of the two approaches 
(e.g. 107,108,152,153). However, we still eagerly await studies that 
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make use of the full potential of their complementarity by combin-
ing both the ‘evolutionary change’ and ‘adaptationist’ perspective 
and the methods that come along with them. We believe that such 
studies would go a long way toward gaining a deeper understanding 
of the processes that ultimately drive the evolution of social behav-
iors in structured populations.
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