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CENTRALIZERS OF THE SUPERALGEBRA osp(1|2): THE BRAUER

ALGEBRA AS A QUOTIENT OF THE BANNAI–ITO ALGEBRA

NICOLAS CRAMPÉ†,∗, LUC FRAPPAT‡, AND LUC VINET∗

Abstract. We provide an explicit isomorphism between a quotient of the Bannai–Ito algebra and
the Brauer algebra. We clarify also the connection with the action of the Lie superalgebra osp(1|2)
on the threefold tensor product of its fundamental representation. Finally, a conjecture is pro-
posed to describe the centralizer of osp(1|2) acting on three copies of an arbitrary finite irreducible
representation in terms of a quotient of the Bannai–Ito algebra.

To the fond memory of Peter Freund, a much esteemed scientist who always generously shared
his immense culture.

1. Introduction

The purpose of this paper is to obtain the relation between the Bannai–Ito and the Brauer
algebras. The Brauer algebra has been introduced in [3] in the framework of the Schur–Weyl
duality for the orthogonal and symplectic groups whereas the Bannai–Ito algebra has been defined
in [17] to give an algebraic description of the eponym polynomials [1].
Both algebras are associated to the centralizer of the Lie superalgebra osp(1|2); a connection

between these algebras is therefore expected. Inspired by recent results relating the Racah algebra
and the centralizers of su(2) [4], we have found an explicit isomorphism (that we report here)
between a quotient of the Bannai–Ito algebra, the Brauer algebra and the action of osp(1|2) on
the threefold tensor product of fundamental representations of this superalgebra. The quotient
of the Bannai–Ito algebra is linked to the direct sum decomposition of the tensor product of the
three fundamental representations which is usefully depicted with the help of the associated Bratteli
diagram. This construction can be generalized so as to give a conjecture which if true, describes in
terms of generators and relations the centralizers of the action of osp(1|2) on the tensor product of
three arbitrary irreducible representations of finite dimension.
The outline of the paper is as follows. In Section 2, we define the universal Bannai–Ito and Brauer

algebras. Then, we state and prove the main theorem of this paper which gives the isomorphism
between a quotient of the Bannai–Ito algebra and a specialization of the Brauer algebra. Section 3
describes the relation that the previous result has with the centralizer of the threefold tensor product
of the fundamental representation of the Lie superalgebra osp(1|2). We first recall the definition and
the algebraic properties of osp(1|2) in Subsection 3.1. We then briefly give an overview of the finite
irreducible representations of osp(1|2) in Subsection 3.2. The connection between the centralizer of
three fundamental representations of osp(1|2) and the Bannai–Ito algebra is explained in Subsection
3.3. Finally, we propose in Section 4 a conjecture for an isomorphism between the centralizer for
the threefold tensor product of an arbitrary osp(1|2) finite irreducible representation with itself and
a quotient of the Bannai–Ito algebra.
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2. Quotient of the Bannai–Ito algebra and Brauer algebra

The universal Bannai–Ito algebra I3 is generated by three generators X , Y and Z and three
central elements ωX , ωY and ωZ satisfying the relations [1, 5, 6, 9, 17]

{X, Y } = X + Y + Z + ωZ ,(1a)

{X,Z} = X + Y + Z + ωY ,(1b)

{Y, Z} = X + Y + Z + ωX ,(1c)

where {X, Y } = XY + Y X . The usual presentation of the Bannai–Ito algebra [5, 6, 9] is easily
recovered by the following affine transformations: X → X + 1/2, Y → Y + 1/2, Z → Z + 1/2,
ωX → ωX − 1, ωY → ωY − 1 and ωZ → ωZ − 1.
The Brauer algebra B3(η) is the unital algebra generated by the four generators s1, s2, e1 and e2

with the defining relations [3]

s2i = 1 , e2i = ηei , siei = eisi = ei ,(2)

s1s2s1 = s2s1s2 , e1e2e1 = e1 , e2e1e2 = e2 ,(3)

s1e2e1 = s2e1 , e2e1s2 = e2s1 .(4)

Let us recall that the dimension of the Brauer algebra B3(η) is 15 and it is easy to prove that the
following relations also hold:

s1s2e1 = e2e1 , e2s1s2 = e2e1 , s2e1s2 = s1e2s1 ,(5)

s2e1e2 = s1e2 , e1e2s1 = e1s2 , e1s2e1 = e1 , e2s1e2 = e2 ,(6)

s2s1e2 = e1e2 , e1s2s1 = e1e2 .(7)

The main result of this paper is stated in the following theorem where we give an explicit iso-
morphism between a quotient of the Bannai–Ito algebra and a specialization of the Brauer algebra.

Theorem 2.1. The quotient of the Bannai–Ito algebra I3 by the following relations ωX = ωY =
ωZ = ω and

X
(
X2 − 4

)
= 0 , Y

(
Y 2 − 4

)
= 0 , Z

(
Z2 − 4

)
= 0 ,(8)

(ω + 4) (ω − 2) (ω − 8) (ω − 14) = 0 ,(9)

(X − ω + 16) (X − ω + 10) (X − ω + 8) (X − ω + 6) (X − ω) (X − ω − 2) (X − ω − 6) = 0,(10)

(Y − ω + 16) (Y − ω + 10) (Y − ω + 8) (Y − ω + 6) (Y − ω) (Y − ω − 2) (Y − ω − 6) = 0,(11)

(Z − ω + 16) (Z − ω + 10) (Z − ω + 8) (Z − ω + 6) (Z − ω) (Z − ω − 2) (Z − ω − 6) = 0.(12)

denoted I3, is isomorphic to the Brauer algebra B3(−1). This isomorphism is given explicitly by:

Ψ : I3 → B3(−1)(13)

X 7→ 2(s1 + e1)

Y 7→ 2(s2 + e2)

Z 7→ 2s2(s1 + e1)s2 = 2s1(s2 + e2)s1.

The image of ω by Ψ is given by Ψ(ω) = {Ψ(X),Ψ(Y )} −Ψ(X)−Ψ(Y )−Ψ(Z).
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Proof. The first step of the proof consists in proving that Ψ is a homomorphism, in other words
that Ψ(X), Ψ(Y ), Ψ(Z) and Ψ(ω) satisfy the relations of the quotient I3 of the Bannai–Ito algebra.
The relations (1a) and (8) are easy to check. The relation (1b) gives

{Ψ(X),Ψ(Z)} −Ψ(X)−Ψ(Y )−Ψ(Z)−Ψ(ω) = 4{s1 + e1, s1(s2 + e2)s1} − 4{s1 + e1, s2 + e2}

= 4



(s2 + e2)s1 + s1(s2 + e2) + e1(s2 + e2)s1
︸ ︷︷ ︸

=e1e2+e1s2

+ s1(s2 + e2)e1
︸ ︷︷ ︸

=e2e1+s2e1

−{s1 + e1, s2 + e2}



 = 0 .(14)

The relation (1c) is computed similarly. Relations (9) and (12) need more work to be verified. We
prove them in the faithful 15× 15 regular representation of the Brauer algebra.
The second step is to show that Ψ is surjective which is done easily. Indeed, one gets Ψ(1 +

X/2−X2/4) = s1, Ψ(1 + Y/2− Y 2/4) = s2, Ψ(−1 +X2/4) = e1 and Ψ(−1 + Y 2/4) = e2. The 4
generators of the Brauer algebra belong to the image of Ψ. Therefore, Ψ is surjective.
The last step requires demonstrating that Ψ is injective. We know that the dimension of B3(−1)

is 15. To prove the injectivity, we have to show that there is a generating family of generators of
dimension 15 in I3. By using the anti-commutation relations (1), (8) and (9), it is easy to see that
the following ensemble

(15) {wjXxY yZz | j = 0, 1, 2, 3 and x, y, z = 0, 1, 2}

forms a set of generators. We will show that there exist supplementary relations between the
elements of that set. Compute X2(1a)−X(1a)X + (1a)X2, using the fact that X3 = 4X in I3, it
is seen that the following relation is implied in I3

(16) X2Z = −X2Y −
1

3
(ω − 2)(X2 − 2X) + 2XY + 2XZ .

Similarly, one gets

Y Z2 = −XZ2 −
1

3
(ω − 2)(Z2 − 2Z) + 2XZ + 2Y Z ,(17)

Y 2Z = −XY 2 −
1

3
(ω − 2)(Y 2 − 2Y ) + 2ω + 2X + 2Y + 2Z .(18)

The equations (19) to (23) below are obtained as follows: multiplying expression (16) by Y on the
right and ordering with (1), one finds (19); using this last equation after having multiplied (16) by
Z on the right leads to (20); multiplying (17) by X on the left and using (20), one arrives at (21);
multiplying (17) by Y on the left and calling upon (21), one gets (22) and finally, one obtains (23)
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by multiplying (18) by X on the left.

X2Y Z = X2Y 2 +
1

3
(ω − 2)(X2Y − 2XY + 2X2 − 4X)− 2XY 2 + 2XY Z ,(19)

X2Z2 = −X2Y 2 +
1

9
(ω − 8)(ω − 2)(X2 − 2X) + 2XY 2 + 2XZ2 ,(20)

XY Z2 = X2Y 2 −
1

9
(ω − 2)2(X2 − 2X)−

1

3
(ω + 4)(XZ2 − 2XZ)

−2XY 2 + 4XY + 2XY Z − 2X2Y ,(21)

Y 2Z2 = X2Y 2 −
1

9
(ω − 2)2(X2 − 2X) +

1

9
(ω − 8)(ω − 2)(Z2 − 2Z)− 4XY 2 + 4XY

−
2

3
(ω − 2)(Y 2 − 2Y )− 2X2Y − 2XZ2 + 4XZ + 4X + 4Y + 4Z + 4ω ,(22)

XY 2Z = −X2Y 2 −
1

3
(ω − 2)(XY 2 − 2XY ) + 2X2 + 2XY + 2XZ + 2ωX .(23)

Multiplying (23) by X on the left and using (16), multiplying (21) by X on the left and using (16),
(19), (20), multiplying (22) by X on the left and using (16), (20), one finds in a similar way

X2Y 2Z = −4XY 2 −
1

3
(ω − 2)(X2Y 2 − 2X2Y + 2X2 − 4X)

+4XY + 4XZ + 2ωX2 + 8X ,(24)

X2Y Z2 = 4XY Z −
1

27
(ω + 4)(ω − 2)(ω − 8)(X2 − 2X)

+
1

3
(ω + 4)(X2Y 2 − 2XY 2 + 2XZ2 + 4XZ) ,(25)

XY 2Z2 = −2X2Y 2 +
1

9
(ω + 4)(ω − 14)(XZ2 − 2XZ)−

2

3
(ω + 4)(XY 2 − 2XY )

+4(XZ2 −XZ +XY 2 −XY +X2 + ωX) .(26)

One also obtains

X2Y 2Z2 =
2(ω + 4)(ω − 14)

9
(XY 2 − 2XY +XZ2 − 2XZ) + 8XZ2 − 8XY − 8XZ

+
(ω − 8)2(ω − 2)(ω + 4)

81
(X2 − 2X)−

(ω + 4)(ω − 8)

9
(X2Y 2 − 2X2Y ) + 8X2 + 8ωX .(27)

Then, we deduce from relations (16) to (27) that the generating family (15) of I3 reduces to

(28) C = F ∪ ωF ∪ ω2F ∪ ω3F ,

where

(29) F = {1, X, Y, Z, X2, Y 2, Z2, XY, XZ, Y Z, X2Y, XY 2, XZ2, XY Z, X2Y 2} .

To find supplementary relations between the 60 elements of the set C, we construct the regular
action of the generators X , Y , Z and ω on C thereby associating to each of these 4 generators a
60× 60 matrix. Demanding that these matrices satisfy the relations of the quotiented Bannai–Ito
algebra, we find 45 constraints. An abstract mathematical software has been useful to perform
these computations. We thus deduce that F is a generating family. Since F has 15 elements, this
implies the injectivity of Ψ and concludes the proof. �
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Remark 1. From the previous theorem, we know that the dimension of I3 is 15. With computations
similar to those used in the proof, we can also show that the dimensions of the quotients of I3 by
ω = −4, ω = 2, ω = 8 and ω = 14 are respectively 4, 1, 9 and 1.

While the relations (8)–(12) used to define the quotient of the Bannai–Ito algebra seem artificial
at first glance, we are going to show in the following that this quotient is natural when we consider
the image of the Bannai–Ito algebra in three copies of the fundamental representation of the Lie
superalgebra osp(1|2).

3. Bannai–Ito algebra and Lie superalgebra osp(1|2)

3.1. Algebraic definitions and properties . In this subsection, we recall definitions and well-
known results concerning the Lie superalgebra osp(1|2).
This superalgebra has two odd generators F± and three even generators H , E± satisfying the

following (anti-)commutation relations [11]

[H,E±] = ±E± , [E+, E−] = 2H ,(30)

[H,F±] = ±
1

2
F± , {F+, F−} =

1

2
H ,(31)

[E±, F∓] = −F± , {F±, F±} = ±
1

2
E± .(32)

Remark that the subalgebra generated by H and E± is isomorphic to su(2). The Z2-grading of
osp(1|2) can be encoded by the grading involution R satisfying

(33) [R,E±] = 0 , [R,H ] = 0 , {R,F±} = 0 and R2 = 1 .

In the universal enveloping algebra U(osp(1|2)), one defines the sCasimir by [13, 14]

(34) S = [F+, F−] +
1

8
.

It anti-commutes with the odd generators, {S, F±} = 0 and commutes with the even ones, [S,E±] =
0, [S,H ] = 0. A central element Q of U(osp(1|2)) can be constructed as follows by using the sCasimir
and the grading involution:

(35) Q = S R = [F+, F−]R +
R

8
.

The U(osp(1|2)) algebra is endowed with a coproduct ∆ defined as the algebra homomorphism
satisfying

∆(E±) = E± ⊗ 1 + 1⊗ E± , ∆(H) = H ⊗ 1 + 1⊗H ,(36)

∆(F±) = F± ⊗ R + 1⊗ F± , ∆(R) = R⊗R .(37)

Denote by U3 the threefold tensor product U(osp(1|2))⊗ U(osp(1|2))⊗ U(osp(1|2)). We define in
U3 the following algebraic elements

Q1 = Q⊗ 1⊗ 1 , Q2 = 1⊗Q⊗ 1 , Q3 = 1⊗ 1⊗Q ,(38)

Q12 = ∆(Q)⊗ 1 , Q23 = 1⊗∆(Q) ,(39)

Q4 = (∆⊗ 1)∆(Q) .(40)
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Finally, one introduces also

(41) Q13 =

(

[F+ ⊗R⊗ R + 1⊗ 1⊗ F+, F− ⊗R ⊗R + 1⊗ 1⊗ F−] +
1

8

)

R⊗ 1⊗R .

The relations between the Bannai–Ito algebra and the algebraic elements Q are given by the fol-
lowing statement [5, 9]:

Proposition 3.1. The map Φ : I3 → U3 defined by

(42) X 7→ −4Q12 +
1

2
, Y 7→ −4Q23 +

1

2
, Z 7→ −4Q13 +

1

2
,

and

ωX 7→ 32(Q1Q2 +Q3Q4)− 1 ,(43a)

ωY 7→ 32(Q2Q3 +Q1Q4)− 1 ,(43b)

ωZ 7→ 32(Q1Q3 +Q2Q4)− 1 ,(43c)

is an algebra homomorphism.

Note that the shift by 1/2 in (42) is due to our definition of the X, Y, Z generators in comparison
to [5,9]. The importance of the previous construction lies in the fact that the image of the Bannai–
Ito algebra by Φ belongs to the centralizer of the image of U(osp(1|2)) by (∆ ⊗ 1)∆. Indeed, one
gets

(44) [(∆⊗ 1)∆(g),Φ(x)] = 0 ∀g ∈ U(osp(1|2)) and ∀x ∈ I3 .

3.2. Finite irreducible representations of osp(1|2) . The finite irreducible representations [j]±

of osp(1|2) are labeled by an integer or an half integer j but also by a sign ± corresponding
to the parity of the highest weight (+ stands for a bosonic state and − for the fermionic state)
[8,15,16]. More precisely, if we denote by v±j the corresponding highest weight, one gets Rv±j = ±v±j ,

Hv±j = jv±j and F+v±j = E+v±j = 0. The dimension of the representation [j]± is 4j + 1 and the

value of the Casimir Q (35) is ±4j+1
8

.

In particular, in the fundamental bosonic representation
[
1
2

]+
, the generators of osp(1|2) are

represented by the following 3× 3 matrices

H =
1

2





1 0 0
0 −1 0
0 0 0



 , F+ =
1

2





0 0 1
0 0 0
0 1 0



 , F− =
1

2





0 0 0
0 0 −1
1 0 0



 ,(45)

and E± = ±4(F±)2, R = diag(1, 1,−1). For the sake of simplicity, we have used the same notations
for the abstract algebraic elements of osp(1|2) and their representatives.
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The direct sum decomposition of the tensor product of representations is also well-known [8,15,16].
For the purpose of this paper, we need the following:

[0]+ ⊗

[
1

2

]+

=

[
1

2

]+

,(46)

[
1

2

]+

⊗

[
1

2

]±

= [1]± ⊕

[
1

2

]∓

⊕ [0]± ,(47)

[1]+ ⊗

[
1

2

]+

=

[
3

2

]+

⊕ [1]− ⊕

[
1

2

]+

.(48)

With this information, we can draw the Bratteli diagram (see Figure 1) that represents the direct
sum decomposition of the threefold tensor product.

[
1
2

]+

[1]+
[
1
2

]−
[0]+

[
3
2

]+
[1]−

[
1
2

]+
[0]−

⊗
[
1
2

]+

⊗
[
1
2

]+

Figure 1. Bratteli diagram for the threefold tensor product of the fundamental
representation.

From this Bratteli diagram, we observe that

(49)

[
1

2

]+

⊗

[
1

2

]+

⊗

[
1

2

]+

=

[
3

2

]+

⊕ 2 [1]− ⊕ 3

[
1

2

]+

⊕ [0]− .

We recall that the degeneracy of a representation present in the direct sum decomposition is the
number of edges reaching the representation in the Bratteli diagram.

3.3. Centralizer of the threefold tensor product of the fundamental representation . Let

us introduce V =
[
1
2

]+
⊗
[
1
2

]+
⊗
[
1
2

]+
and the centralizer associated to the action of osp(1|2) on V:

C = End osp(1|2) (V)(50)

= {M ∈ End (V) | M.(g.v) = g.(M.v) , ∀v ∈ V , ∀g ∈ osp(1|2)} .(51)

By adding the squares of the degeneracies (1, 2, 3, 1) in the decomposition (49), one observes that
the dimension of C is 15. It is also known that the centralizer C is isomorphic to the Brauer algebra.
Therefore, from Theorem 2.1, C is isomorphic to the quotiented Bannai–Ito algebra:

Corollary 3.1. The quotiented Bannai–Ito algebra I3 defined in Theorem 2.1 is isomorphic to

End osp(1|2)

([
1
2

]+
⊗

[
1
2

]+
⊗

[
1
2

]+
)

.

We can prove this corollary directly without reference to the isomorphism between the Brauer
algebra and the centralizer C. In the following, we use the same notation, namely, Q#, X , Y , Z
and ω, for the algebraic elements and their images in End (V). Proposition 3.1 and relation (44)



8 N.CRAMPÉ, L.FRAPPAT, AND L.VINET

imply that X , Y , Z and ω are in C. We must also show that the images in End (V) of the l.h.s.
of relations (8)–(12) vanish. The Casimirs Qi (for i = 1, 2, 3) equal 3

8
times the identity matrix.

From the decomposition of the tensor product of two fundamental representations into a direct
sum of irreducible representations (see relation (47)), we deduce that the eigenvalues of Q12, Q13

and Q23 are 5
8
,−3

8
, 1
8
. Therefore, from Proposition 3.1, the eigenvalues of X , Y and Z are −2, 2, 0.

By the Cayley–Hamilton theorem, we conclude that relation (8) holds. We find similarly that the
eigenvalues of Q4 are given by −5

8
,−1

8
, 3
8
, 7
8
(see the third row of the Bratteli diagram displayed on

Figure 1) and that the eigenvalues of ω = 7
2
+ 12Q4 are −4, 2, 8, 14. This proves relation (9). The

eigenvalues of X − ω are given by the edges of the Bratteli diagram Fig. 1: if x is an eigenvalue of
X corresponding to the representation [j]ǫ1 in the second row of the Bratteli diagram and w is an
eigenvalue of ω associated to the representation [k]ǫ2 in the third row, then x− w is an eigenvalue
of X − ω iff [j]ǫ1 and [k]ǫ2 are connected in the Bratteli diagram. It is found this way that the
eigenvalues of X − ω are −16,−10,−8,−6, 0, 2, 6. This proves (10). Relations (11) and (12) are
derived similarly. This shows that the map from the quotiented Bannai–Ito algebra to C is a well-
defined algebra homomorphism. The images of the following 15 elements 1, Q12, Q23, Q

2
12, Q

2
23,

Q12Q23, Q23Q12, Q
2
12Q23, Q12Q23Q12, Q23Q

2
12, Q

2
23Q12, Q23Q12Q23, Q

2
12Q

2
23, Q

2
23Q

2
12 and Q12Q

2
23Q12

in End (V) are linearly independent. Surjectivity is therefore ensured since the dimension of the
centralizer is 15. In the proof of Theorem 2.1, we also show that dim(I3) = 15 which proves
bijectivity.

4. Conjectures and perspectives

Corollary 3.1 provides a link between a quotient of the Bannai–Ito algebra and the centralizer of
the tensor product of three fundamental representations of osp(1|2). We believe that such a relation
also exists for three copies of osp(1|2) in the irreducible representation [j]+. More precisely, we state
the following conjecture:

Conjecture 4.1. Let [j]+ be the irreducible representation of osp(1|2) with 2j ∈ Z>0. The cen-
tralizer End osp(1|2) ([j]

+ ⊗ [j]+ ⊗ [j]+) is isomorphic to the Bannai–Ito algebra I3 defined by (1)
quotiented by the following relations ωX = ωY = ωZ = ω and

2j
∏

k=−2j

(
X − 2k

)
= 0 ,

2j
∏

k=−2j

(
Y − 2k

)
= 0 ,

2j
∏

k=−2j

(
Z − 2k

)
= 0 ,(52)

3j
∏

k=−3j

(
ω − (4j + 1)(2j + 1− 2k) + 1

)
= 0 ,(53)

∏

k∈M

(
X − ω − k

)
= 0 ,

∏

k∈M

(
Y − ω − k

)
= 0 ,

∏

k∈M

(
Z − ω − k

)
= 0 . .(54)

In the above formulas, the products are always understood to be with integer steps even if the
boundaries have half-integer values. The set M is obtained as explained at the end of the previous
section from the edges of the Bratteli diagram associated to [j]+⊗[j]+⊗[j]+ (see below for an explicit
description). The isomorphism is defined by (πj ⊗πj ⊗πj)Φ where Φ is given by (42) and (43) and
πj is the representation homomorphism from osp(1|2) to End ([j]+).

As an illustration, we give the Bratteli diagram for the threefold tensor product of the [1]+

representation:
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[1]+

[2]+
[
3
2

]−
[1]+

[
1
2

]−
[0]+

[3]+
[
5
2

]−
[2]+

[
3
2

]−
[1]+

[
1
2

]−
[0]+

⊗ [1]+

⊗ [1]+

Figure 2. Bratteli diagram for the threefold tensor product of the representation [1]+.

The eigenvalues of X − ω being given by the edges of the Bratteli diagram, one obtains for a
generic [j]+:

−6ℓ− 2k − 5 with |j − k| ≤ ℓ ≤ j + k and 0 ≤ k ≤ 2j(55)

6ℓ− 2k − 5 with |j − k|+ 1 ≤ ℓ ≤ j + k and 0 ≤ k ≤ 2j(56)

and, when j is integer,

−6ℓ+ 2k − 3 with j − k ≤ ℓ ≤ j + k and 0 ≤ k ≤ j − 1

or k − j + 1 ≤ ℓ ≤ j + k and j ≤ k ≤ 2j − 1(57)

6ℓ+ 2k − 3 with j − k ≤ ℓ ≤ j + k + 1 and 0 ≤ k ≤ j − 1

or k − j + 1 ≤ ℓ ≤ j + k + 1 and j ≤ k ≤ 2j − 1(58)

or, when j is half-integer,

−6ℓ+ 2k − 3 with j − k ≤ ℓ ≤ j + k and 0 ≤ k ≤ j − 1
2

or k − j + 1 ≤ ℓ ≤ j + k and j + 1
2
≤ k ≤ 2j − 1(59)

6ℓ+ 2k − 3 with j − k ≤ ℓ ≤ j + k + 1 and 0 ≤ k ≤ j − 1
2

or k − j + 1 ≤ ℓ ≤ j + k + 1 and j + 1
2
≤ k ≤ 2j − 1.(60)

The total number of the X − ω eigenvalues, taking into account their multiplicities, is given by
the Hex numbers 12j2 + 6j + 1 (crystal ball sequence for hexagonal lattices). The set M is then
obtained by considering the distinct eigenvalues given by equations (55)–(60).
The dimension of the centralizer End osp(1|2) ([j]

+ ⊗ [j]+ ⊗ [j]+) is equal to dj = (2j + 1)4 − (2j)4,
which is the sequence of rhombic dodecahedral numbers.
To support this conjecture, remark that for j = 1

2
we recover the quotient of the Bannai–Ito

algebra introduced in Theorem 2.1. Another important point is that a similar conjecture has been
made in [4] for the connection between the Racah algebra and the centralizer of su(2). In this case,
the conjecture has been proven in numerous instances. The main step to derive the conjectured
isomorphism is to show that (52)–(54) generate the whole kernel.
If true, this conjecture gives a description of the centralizer for three copies of osp(1|2) in the

representation [j]+. We also believe that this conjecture can be generalized to the case of three
arbitrary irreducible osp(1|2) representations of finite dimension. It would be also interesting to
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consider tensor products of degree higher than three; this would connect to the higher rank Bannai–
Ito algebra that has been introduced in [7] and comparisons could then be made with the limit q → 1
of the algebra studied in [12]. Obviously, the generalization to the case of the quantum superalgebra
should also be possible and a connection between the q-Bannai–Ito algebra [10] and the Birman–
Murakami–Wenzl algebra [2] is to be expected.
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