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Abstract.

We study the variation of the mean cross section with the density of the samples in

the quantum scattering of a particle by a disordered target. The particular target we

consider is modelled by a set of pointlike scatterers, each having an equal probability

of being anywhere inside a sphere whose radius may be modified. We first prove that

the scattering by a pointlike scatterer is characterized by a single phase shift δ which

may take on any value in ]0 , π/2[ and that the scattering by N pointlike scatterers is

described by a system of only N equations. We then show with the help of numerical

calculations that there are two stages in the variation of the mean cross section when

the density of the samples (the radius of the target) increases (decreases). The mean

cross section first either increases or decreases, depending on whether the value of δ is

less or greater than π/4 respectively, each one of the two behaviours being originated

by double scattering; it always decreases as the density increases further, a behaviour

which results from multiple scattering and which follows that of the cross section for

diffusion by a hard sphere potential of decreasing radius. The exact expression of the

mean cross section is derived for an unlimited number of contributions of successive

scatterings.
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1. Introduction

Many works (see, e.g., [1], [2], [3], [4], [5]) have been done concerning the description of

the quantum scattering of a particle in disordered systems (one usually prefers to speak

of ”transport” rather than ”scattering” if the system is infinite or semi-infinite), but all

of them fail to preserve unitarity. The lack of unitarity has two different origins:

→ the most evident origin lies in the fact that not all sequences of multiple

scattering are taken into account, but usually only those in which the particle is only

scattered once by each particular scatterer

→ another origin for the lack of unitarity lies in the fact that the operator which

describes the scattering by a single scatterer is always replaced by its first-order Born

approximation.

The paper has two purposes, which are:

• to develop a formalism in which unitarity is preserved, which means 1) to use the full

operator describing the scattering by a single scatterer and 2) to take into account all

sequences of multiple scattering

• • to study scattering ”by” (instead of ”in”) disordered systems 1) of finite size (which

is still largely a new topic, see however [6]), and 2) consisting of individual scatterers,

the scattering by which is characterized by phase shifts (disordered systems are usually

modelled by a continuous random potential ”landscape”), in order to find quantum

effects which cannot be seen in disordered systems of infinite size.

These two goals can be simultaneously achieved by modelling disordered systems

as a target with a random distribution of pointlike scatterers.

The paper is divided into five sections and has also two appendices. Section 2 is

devoted to the derivation of the infinite set of equations which describes the quantum

scattering of a particle by a target consisting of identical potential wells with spherical

symmetry. In Section 3 we prove that the scattering by a pointlike scatterer is

characterized by a single phase shift which may take on any value in ]0 , π/2[ and that

the infinite system of equations reduces to a system of only N equations if the target

consists of N pointlike scatterers. In Section 4 we prove that unitarity is preserved in

the case of pointlike scatterers by showing that the optical theorem is satisfied for any

set of them and prove also that the cross section is bounded for pointlike scatterers. In

Section 5 we present and discuss with the help of figures the results of a numerical study

about the scattering by a disordered target consisting of pointlike scatterers, in which

we have studied the variation of the mean cross section with the density of the samples,

and so with the radius of the target, for different values of the phase shift. Section 6

summarizes the main results of the numerical study. Both appendices are devoted to

the derivation of expressions of the mean cross section needed for the interpretation of

the numerical results.
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2. Formalism

Let us consider the scattering of a quantum particle by a target which consists of a set

of N stationary scatterers. Each scatterer is modelled by a potential well, the potential

function being chosen square integrable if the depth is not finite. The scatterers are so

arranged that no two neighbouring wells are close enough to overlap. The Hamiltonian

operator of the system is given by

Ĥ = ĥ0 +
N
∑

r=1

v̂r, (2.1)

where ĥ0 is the kinetic energy operator and v̂r is the operator of multiplication by the

potential function of the rth scatterer. The particle, which has mass m, is assumed to

move with momentum h̄~k before scattering; it therefore has the energy E = h̄2k2/2m,

where k is the magnitude of the wave vector.

The operators which describe the scattering by a single scatterer and by the whole

set of scatterers are respectively given by [7]

t̂r(E) = v̂r + v̂r
1

(E + iǫ)Î − ĥ0 − v̂r
v̂r (r = 1, ...,N), (2.2)

and

T̂ (E) =

(

N
∑

r=1

v̂r

)

+

(

N
∑

r=1

v̂r

)

1

(E + iǫ)Î − Ĥ

(

N
∑

s=1

v̂s

)

. (2.3)

These operators are integral operators in the momentum representation; each kernel is

bounded and (uniformly) continuous, as the corresponding potential function is square

integrable and has bounded support.

It is convenient to write the operator T̂ (E) as

T̂ (E) =
N
∑

r=1

T̂r(E), (2.4)

with

T̂r(E) = v̂r +
N
∑

s=1

v̂r
1

(E + iǫ)Î − Ĥ
v̂s. (2.5)

An operator T̂r(E) may be considered as the transition operator corresponding to the

(hypothetical) scattering process in which the particle is always last scattered by the

rth scatterer. These operators are related by the set of equations [8]

T̂r(E) = t̂r(E) +
N
∑

s=1
(s 6=r)

t̂r(E)
1

(E + iǫ)Î − ĥ0

T̂s(E)

(r = 1, ...,N). (2.6)

Repeated substitution of each equation into the others shows that the particle can be

scattered any number of times by each particular scatterer; scattering by the target may

therefore be considered the result of multiple scattering among the scatterers [9].
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The probability amplitude f(~k
′

;~k) for the particle to be scattered in the direction

of the wave vector ~k
′

is proportional to the particular value T (~k
′

, ~k ;E) of the kernel of

the operator T̂ (E) [10]. We have

f(~k
′

;~k) = −(2π)2
m

h̄2 T (
~k

′

, ~k ;E) = −(2π)2
m

h̄2

N
∑

r=1

Tr(~k
′

, ~k ;E), (2.7)

where Tr(~k
′

, ~k ;E) is the value of the kernel of the operator T̂r(E) for the chosen wave

vectors. It follows from (2.6) that the kernels of these operators are related by the set

of equations

Tr(~η , ~ξ ;E) = tr(~η , ~ξ ;E) +
2m

h̄2

N
∑

s=1
(s 6=r)

∫

d~κ
tr(~η , ~κ ;E) Ts(~κ , ~ξ ;E)

k2 − κ2 + iǫ

(r = 1, ...,N), (2.8)

where tr(~η , ~ξ ;E) is the kernel of the operator t̂r(E) and κ is the magnitude of the wave

vector ~κ. In particular,

Tr(~k
′

, ~k ;E) = tr(~k
′

, ~k ;E) +
2m

h̄2

N
∑

s=1
(s 6=r)

∫

d~κ
tr(~k

′

, ~κ ;E) Ts(~κ ,~k ;E)

k2 − κ2 + iǫ

(r = 1, ...,N). (2.9)

We shall assume that the scatterers are identical and restrict ourselves to potential

functions with spherical symmetry. The kernel of an operator t̂r(E) can then be written

in the form

tr(~η , ~ξ ;E) = e i(~ξ−~η). ~Rr t(~η , ~ξ ;E) (r = 1, ...,N), (2.10)

where t(~η , ~ξ ;E) is the function to which any such kernel would reduce if the centre of

the corresponding potential well were taken as the origin of coordinates and ~Rr is the

vector from the chosen origin to the centre of the rth potential well.

Substituting this equation into (2.9) and writing each function Tr(~κ ,~k ;E) in the

form

Tr(~κ ,~k ;E) = e−i~κ. ~Rr

N
∑

u=1

e i~k. ~Ru Tru(~κ ,~k ;E) (r = 1, ...,N) (2.11)

in (2.7) and (2.9), we obtain

f(~k
′

;~k) = −(2π)2
m

h̄2

N
∑

r=1

N
∑

u=1

e−i~k
′

. ~Rr e i~k. ~Ru Tru(~k
′

, ~k ;E), (2.12)

with

Tru(~k
′

, ~k ;E) = t(~k
′

, ~k ;E) δru

+
2m

h̄2

N
∑

s=1
(s 6=r)

∫

d~κ
e i~κ.(~Rr−~Rs) t(~k

′

, ~κ ;E) Tsu(~κ ,~k ;E)

k2 − κ2 + iǫ
.

(2.13)
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The new set of equations can be transformed to another with no dependence upon

direction. This is done by expanding both sides of each equation in the basis {Ylm} of

the spherical harmonics and comparing the two expansions term by term.

The expansion of the functions Tru(~κ ,~k ;E) is given by

Tru(~κ ,~k ;E)

= 4π
∞
∑

l1=0

l1
∑

m1=−l1

∞
∑

l2=0

l2
∑

m2=−l2

T (ru)
l1m1;l2m2

(κ , k ;E) Y ∗
l1m1

(Ω~κ) Yl2m2(Ω~k
)

(r, u = 1, ...,N), (2.14)

where Ω~κ and Ω~k are the directions of the wave vectors. Since the potential function is

invariant under rotation, the function t(~k
′

, ~κ ;E) has the simpler expansion

t(~k
′

, ~κ ;E) = 4π
∞
∑

l=0

l
∑

m=−l

tl(k , κ ;E) Y ∗
lm(Ω~k

′) Ylm(Ω~κ), (2.15)

where Ω~k
′ is the considered direction of scattering. The functions e i~κ.(~Rr−~Rs) must also

be expanded to obtain the expanded form of the right-hand side of the equations. One

has [11]

e i~κ.(~Rr−~Rs) = 4π
∞
∑

l=0

l
∑

m=−l

il jl(κRrs) Y
∗
lm(Ω~κ) Ylm(Ω~Rsr

)

(r, s = 1, ...,N ; s 6= r), (2.16)

where Rrs and Ω~Rsr

are the magnitude and direction of the vector ~Rsr = ~Rr − ~Rs from

the centre of the sth to that of the rth potential well and jl(x) is the spherical Bessel

function of order l.

Substitution of these expansions into (2.13) and use of the orthonormality relations

of the spherical harmonics leads to the infinite set of equations

T (ru)
l1m1;l2m2

(k , k ;E) = tl1(k , k ;E) δru δl1l2 δm1m2

+ 8π
m

h̄2

∞
∑

l3=0

l3
∑

m3=−l3

∞
∑

l4=0

l4
∑

m4=−l4

il4

√

4π(2l3 + 1)(2l4 + 1)

2l1 + 1

× 〈 l3 l4 0 0 | l10 〉 〈 l3 l4m3 m4 | l1m1 〉

×
N
∑

s=1
(s 6=r)

Yl4m4(Ω~Rsr

)
∫ ∞

0
κ2dκ

jl4(κRrs) tl1(k , κ ;E) T (su)
l3m3;l2m2

(κ , k ;E)

k2 − κ2 + iǫ

(r, u = 1, ...,N)

(l1, l2 = 0, 1, ... ; m1(2) = −l1(2), ..., l1(2)), (2.17)

where 〈 l3 l4 0 0 | l10 〉 and 〈 l3 l4m3m4 | l1m1 〉 are Clebsch-Gordan coefficients [10] coming

from the integration over Ω~κ. Since the coefficient 〈 l3 l4 0 0 | l10 〉 is equal to 0 when the

sum l1 + l3 + l4 is odd, the right-hand side of the equations includes only the terms for

which this sum is even.
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The integral in (2.17) may be evaluated by contour integration. The result is

2
∫ ∞

0
κ2dκ

jl4(κRrs) tl1(k , κ ;E) T (su)
l3m3;l2m2

(κ , k ;E)

k2 − κ2 + iǫ

=
∫ ∞

−∞
κ2dκ

h
(1)
l4
(κRrs) tl1(k , κ ;E) T (su)

l3m3;l2m2
(κ , k ;E)

k2 − κ2 + iǫ

= −iπk h
(1)
l4
(kRrs) tl1(k , k ;E) T (su)

l3m3;l2m2
(k , k ;E)

(r, s, u = 1, ...,N ; s 6= r)

(l1, l2, l3, l4 = 0, 1, ... ; m2(3) = −l2(3), ..., l2(3)), (2.18)

where h
(1)
l (x) is the spherical Hankel function of the first kind of order l. The range of

integration could be extended over the whole line by using the relations

tl1(k ,−κ ;E) = (−1)l1 tl1(k , κ ;E) (2.19)

and

T (su)
l3m3;l2m2

(−κ , k ;E) = (−1)l3 T (su)
l3m3;l2m2

(κ , k ;E), (2.20)

which follow from the rotational invariance of the potential function, and the fact that

the sum l1 + l3 + l4 is even. The contribution of the complex part of the contour to the

integral is arbitrarily small, as can be shown by using the inequalities

|tl1(k ,Re{κ}+ i Im{κ} ;E)| < Al1 e
+|Im{κ}|a (2.21)

and

|T (su)
l3m3;l2m2

(Re{κ}+ i Im{κ} , k ;E)| < Bl2l3 e
+|Im{κ}|a, (2.22)

where a is the radius of the potential wells (Al1 and Bl2l3 are constants), and the fact

that any distance Rrs is greater than 2a.

Substituting (2.18) into (2.17), we obtain the set of equations which describes the

scattering of a particle by a target consisting of identical potential wells with spherical

symmetry. It is

T (ru)
l1m1;l2m2

(k , k ;E)

+ i (2π)2
mk

h̄2 tl1(k , k ;E)
∞
∑

l3=0

l3
∑

m3=−l3

∞
∑

l4=0

l4
∑

m4=−l4

il4

√

4π(2l3 + 1)(2l4 + 1)

2l1 + 1

× 〈 l3 l4 0 0 | l10 〉 〈 l3 l4m3 m4 | l1m1 〉

×
N
∑

s=1
(s 6=r)

h
(1)
l4
(kRrs) Yl4m4(Ω~Rrs

) T (su)
l3m3;l2m2

(k , k ;E)

= tl1(k , k ;E) δru δl1l2 δm1m2

(r, u = 1, ...,N)

(l1, l2 = 0, 1, ... ; m1(2) = −l1(2), ..., l1(2)). (2.23)
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3. Pointlike scatterers

The set has infinitely many equations because the expansion of the function t(~k
′

, ~k ;E)

has an unlimited number of terms. However, in the particular case in which t(~k
′

, ~k ;E)

does not depend on the directions of the wave vectors, which means that

t(~k
′

, ~k ;E) = t0(k , k ;E), (3.1)

it turns out as a consequence of the invariance of the system under time reversal that

only the N2 expansion coefficients T (ru)
00;00(k , k ;E) are different from 0 and so the set has

only N2 equations. The proof is as follows. Substitution of (3.1), which may be written

tl(k , k ;E) = t0(k , k ;E) δl0, into (2.23) leads to the equality

T (ru)
l1m1;l2m2

(k , k ;E) = T (ru)
00;l2m2

(k , k ;E) δl10

(r, u = 1, ...,N)

(l1, l2 = 0, 1, ... ; m1(2) = −l1(2), ..., l1(2)). (3.2)

Time-reversal symmetry implies that

f(~k
′

;~k) = f(−~k ;−~k′

). (3.3)

It follows that the functions Tru(~k
′

, ~k ;E) satisfy the relation

Tru(~k
′

, ~k ;E) = Tur(−~k ,−~k
′

;E) (r, u = 1, ...,N), (3.4)

and so their expansion coefficients the relation

T (ru)
l2m2;l1m1

(k , k ;E) = (−1)l1−m1+l2−m2 T (ur)
l1−m1;l2−m2

(k , k ;E)

(r, u = 1, ...,N)

(l1, l2 = 0, 1, ... ; m1(2) = −l1(2), ..., l1(2)). (3.5)

Alternate use of (3.2) and (3.5) then gives

T (ru)
l1m1;l2m2

(k , k ;E) = T (ru)
00;l2m2

(k , k ;E) δl10

= (−1)l2−m2 T (ur)
l2−m2;00

(k , k ;E) δl10

= T (ur)
00;00(k , k ;E) δl10 δl20

= T (ru)
00;00(k , k ;E) δl10 δl20

(r, u = 1, ...,N)

(l1, l2 = 0, 1, ... ; m1(2) = −l1(2), ..., l1(2)), (3.6)

which completes the proof.

Substituting this equation into (2.23) and using the facts that 〈 0 0 0 0 | 0 0 〉 = 1,

Y00(Ω~Rsr

) = 1/
√
4π, and h

(1)
0 (kRrs) = −i e ikRrs/kRrs, we obtain the set of equations

corresponding to the case considered, which is

T (ru)
00;00(k , k ;E) + (2π)2

mk

h̄2 t0(k , k ;E)
N
∑

s=1
(s 6=r)

(

e ikRrs

kRrs

)

T (su)
00;00(k , k ;E)

= t0(k , k ;E) δru

(r, u = 1, ...,N). (3.7)
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The function t(~k
′

, ~k ;E) does not depend on the direction of the wave vectors only

if the scatterer is pointlike. This can be shown as follows. A pointlike scatterer may be

modelled as a square potential well whose radius a and depth h̄2U0/2m are arbitrarily

small and large, the product x =
√
U0a assuming any of a finite interval of values; we

choose this interval to be ]0 , π/2[, the upper endpoint being excluded so that the well

cannot have a bound state. The expression of t(~k
′

, ~k ;E) for a pointlike potential is then

obtained in three stages. We expand both the numerator and the denominator of each

expansion coefficient of the function t(~k
′

, ~k ;E) corresponding to a square well potential

in powers of the ratio r = k/
√
U0 = ka/x. Next we set

x =
π

2
− r

y
(3.8)

in each term of the obtained power series, thereby introducing the positive variable y.

Finally we allow a and U0 to become arbitrarily small and large, which amounts to let

r tend to 0. We find that all expansion coefficients except t0(k , k ;E) tend to 0 in this

particular limit; the function t(~k
′

, ~k ;E) has therefore no angular dependence only for a

pointlike scatterer, which was to be shown.

The numerator and denominator of t0(k , k ;E) reduce respectively to the first and

first two terms of their expansions in the limit. We have

t0(k , k ;E) = − 1

(2π)2
h̄2

mk

lim
r→0

{

[

tan
(

π

2
− r

y

)

+
r

y
− π

2

]

r

}

1− i lim
r→0

{

[

tan
(

π

2
− r

y

)

+
r

y
− π

2

]

r

}

= − 1

(2π)2
h̄2

mk

lim
r→0

{

[

cot
(

r

y

)]

r

}

1− i lim
r→0

{

[

cot
(

r

y

)]

r

} . (3.9)

Since

lim
r→0

{

[

cot
(

r

y

)]

r

}

= lim
r→0

{

[

y

r
−

∞
∑

n=1

22n|B2n|
(2n)!

(

r

y

)2n−1]

r

}

= y (3.10)

(Bm is the Bernoulli number of order m) [12], the expression of t(~k
′

, ~k ;E) for a pointlike

potential finally is

t(~k
′

, ~k ;E) = t0(k , k ;E) = − 1

(2π)2
h̄2

mk

y

1− iy

= − 1

(2π)2
h̄2

mk
sinδ e iδ, (3.11)

where δ = arctany = arctan(2r/(π− 2x)) is the shift in phase caused by the scattering.

Since the variable x can take on any value of ]0 , π/2[, the interval of possible values of

the variable δ is ]arctan(2r/π) , π/2[, the lower endpoint being arbitrarily close to 0 for

a pointlike scatterer.
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Substituting (3.11) into (3.7), we obtain

T (ru)
00;00(k , k ;E)− sinδ e iδ

N
∑

s=1
(s 6=r)

(

e ikRrs

kRrs

)

T (su)
00;00(k , k ;E)

= − 1

(2π)2
h̄2

mk
sinδ e iδ δru

(r, u = 1, ...,N)

(δ ∈ ]0 , π/2[). (3.12)

This set of N2 equations for the variables T (ru)
00;00(k , k ;E) can be reduced to a system of

N equations for the dimensionless variables Θr defined by

Θr = −(2π)2
mk

h̄2 (cot δ − i)
N
∑

u=1

e i~k. ~Rru T (ru)
00;00(k , k ;E)

(r = 1, ...,N)

(δ ∈ ]0 , π/2[). (3.13)

The proof is as follows. Multiplying each equation by the factor e i~k. ~Rru = e i~k. ~Rrs e i~k. ~Rsu

and then adding the equations with the same value of the index r, we obtain the set of

N equations
N
∑

u=1

e i~k. ~Rru T (ru)
00;00(k , k ;E)

− sinδ e iδ
N
∑

s=1
(s 6=r)

(

e ikRrs

kRrs

)

e i~k. ~Rrs

N
∑

u=1

e i~k. ~Rsu T (su)
00;00(k , k ;E)

= − 1

(2π)2
h̄2

mk
sinδ e iδ

(r = 1, ...,N)

(δ ∈ ]0 , π/2[). (3.14)

Each of these equations can be expressed in terms of the new variables Θr. This leads

to the system of equations

Θr − sinδ e iδ
N
∑

s=1
(s 6=r)

(

e ikRrs

kRrs

)

e i~k. ~Rrs Θs = 1

(r = 1, ...,N)

(δ ∈ ]0 , π/2[), (3.15)

which completes the proof. The reduced set of equations is obviously better suited for

calculations than the original one.

Since the functions Tru(~k
′

, ~k ;E) have no angular dependence, the expression of the

scattering amplitude is very simple for pointlike scatterers. Substituting T (ru)
00;00(k , k ;E)

for Tru(~k
′

, ~k ;E) in (2.12) and using the definition of the variables Θr, we find

f(~k
′

;~k) =
1

k
sinδ e iδ

N
∑

r=1

e−i(~k
′

−~k). ~Rr Θr (δ ∈ ]0 , π/2[). (3.16)
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4. Cross section

The cross section σtot for scattering by the target (the subscript is an abbreviation for

”tot(ality of the scatterers)”) is obtained by integrating |f(~k′

;~k)|2 over Ω~k
′ . We find

σtot = σ

[

N
∑

r=1

|Θr|2 +
N
∑

r=1

N
∑

s=1
(s 6=r)

(

sin(kRrs)

kRrs

)

e i~k. ~Rrs Θ∗
r Θs

]

(δ ∈ ]0 , π/2[), (4.1)

where σ = (4π/k2) sin2δ is the cross section for scattering by an individual scatterer.

The optical theorem [10] is not only verified for a single pointlike scatterer, as one

has (k/4π)σ = Im{(1/k) sinδ e iδ}, but also for a set of any number of them. The proof

is as follows. Multiplication of each equation in (3.15) by Θ∗
r gives

|Θr|2 − sinδ e iδ
N
∑

s=1
(s 6=r)

(

e ikRrs

kRrs

)

e i~k. ~Rrs Θ∗
r Θs = Θ∗

r

(r = 1, ...,N)

(δ ∈ ]0 , π/2[). (4.2)

Adding all these equations and taking the real and the imaginary part of the resulting

equality, we obtain the two equalities

N
∑

r=1

|Θr|2 − sinδ
N
∑

r=1

N
∑

s=1
(s 6=r)

(

cos(kRrs + δ)

kRrs

)

e i~k. ~Rrs Θ∗
r Θs =

N
∑

r=1

Re{Θr}

(δ ∈ ]0 , π/2[) (4.3)

and

sinδ
N
∑

r=1

N
∑

s=1
(s 6=r)

(

sin(kRrs + δ)

kRrs

)

e i~k. ~Rrs Θ∗
r Θs =

N
∑

r=1

Im{Θr}

(δ ∈ ]0 , π/2[). (4.4)

Multiplying the first and the second equality by sinδ and cos δ respectively and adding,

we find

sinδ
N
∑

r=1

|Θr|2 + sinδ
N
∑

r=1

N
∑

s=1
(s 6=r)

(

sin(kRrs)

kRrs

)

e i~k. ~Rrs Θ∗
r Θs

= sinδ
N
∑

r=1

Re{Θr}+ cos δ
N
∑

r=1

Im{Θr} (δ ∈ ]0 , π/2[). (4.5)

Substitution of this new equality into (4.1) gives

k

4π
σtot =

1

k
sinδ

[

sinδ
N
∑

r=1

Re{Θr}+ cos δ
N
∑

r=1

Im{Θr}
]

= Im{f(~k ;~k)} (δ ∈ ]0 , π/2[), (4.6)

which completes the proof.
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The cross section can also be written as a sum of terms each of which but the last

gives the contribution of an increasing number m of successive scatterings. This sum is

obtained by repeated substitution of the system of equations into (4.6). We find

σtot = Nσ

+
4π

k2

M
∑

m=2

(sinδ)m Im

{

e imδ
N
∑

r1=1

N
∑

r2=1
(r2 6=r1)

. . .
N
∑

rm=1
(rm 6=rm−1)

(

e ikRr1r2

kRr1r2

)

×
(

e ikRr2r3

kRr2r3

)

. . .

(

e ikRrm−1rm

kRrm−1rm

)

e i~k. ~Rr1rm

}

+
4π

k2
(sinδ)M+1 Im

{

e i(M+1)δ
N
∑

r1=1

N
∑

r2=1
(r2 6=r1)

. . .
N
∑

rM+1=1
(rM+1 6=rM)

(

e ikRr1r2

kRr1r2

)

×
(

e ikRr2r3

kRr2r3

)

. . .

(

e ikRrMrM+1

kRrMrM+1

)

e i~k. ~Rr1rM+1 ΘrM+1

}

(δ ∈ ]0 , π/2[), (4.7)

where M is arbitrary. The contribution of a given number m of scatterings to the cross

section consists of the sum of those of N(N − 1)m−1 different sequences of scatterings.

The first term in the expression provides the contribution of a single scattering, which

is given by the sum of the individual cross sections as the particle can be scattered by

any of the scatterers. The last term gives the expression of the difference between the

exact expression of the cross section and the sum of contributions corresponding to M

substitutions, and so that of the remainder in the approximation of the former by the

latter. In the simplest approximation the expression of the cross section reduces to the

contribution of a single scattering; this approximation is obviously more accurate the

larger the distance between the closest scatterers.

The normalized cross section σtot/Nσ is smaller than N for any value of the phase

shift and arrangement of the scatterers. The proof is as follows. Multiplication of each

equation of the system by the factor e−i(~k
′

−~k). ~Rr and addition of the obtained equations

leads to the inequality
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

N
∑

r=1

e−i(~k
′

−~k). ~Rr Θr

∣

∣

∣

∣

∣

− sinδ

∣

∣

∣

∣

∣

N
∑

r=1

e−i~k
′

. ~Rr

N
∑

s=1
(s 6=r)

(

e ikRrs

kRrs

)

e i~k. ~Rs Θs

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

< N

(δ ∈ ]0 , π/2[). (4.8)

If |∑ e−i(~k
′

−~k). ~Rr Θr| were greater than N, the inequality would not hold for arbitrarily

small values of the phase shift because the second term in the difference approaches 0

as closely as desired when the phase shift tends to 0. This implies that the least upper

bound of |∑ e−i(~k
′

−~k). ~Rr Θr| is equal to N. It then follows that

σtot

Nσ
=

1

4π

1

N

∫

dΩ~k
′

∣

∣

∣

∣

∣

N
∑

r=1

e−i(~k
′

−~k). ~Rr Θr

∣

∣

∣

∣

∣

2

< N (δ ∈ ]0 , π/2[), (4.9)

which completes the proof.
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5. Numerical study

The fact that the set of equations to be solved in order to obtain one value of the cross

section is finite when the scatterers are pointlike makes this type of scatterer especially

suitable for numerical studies in which a large number of such values is needed. In this

section we present and discuss the results of a numerical study about the scattering by

a disordered target consisting of pointlike scatterers. The target has been modelled by

a set of N scatterers having each an equal probability of being at any position inside a

sphere whose radius R may be modified; samples fitting in the same volume have been

assigned the same value of the density ρ = 3N/4πR3. We have studied the variation of

the normalized mean cross section 〈σtot〉/Nσ with the density ρ of the samples, and so

with the radius R of the target, for different values of the phase shift. The value of the

cross section for a sample at a particular value of the phase shift has been obtained by

substituting the solution of (3.15) into (4.6), which gives an expression of σtot linear in

the variables. The value of the mean cross section corresponding to a particular value

of the density and of the phase shift has been obtained by calculating the mean of the

values of the cross section of 300 different samples with these values of the density and

the phase shift. The calculations have been done for N = 100 and with m = k = h̄ = 1.

The results are shown in the two figures below.

Figures 1 and 2 show the variation of the normalized mean cross section with the

density of the samples for two sets of values of the phase shift (the scale on both axes

is logarithmic in each figure).

10
-6

10
-4

10
-2

10
0

10
2

ρ

0.1

1

<σ
to

t>
/N

σ

δ = π/2 − ε
δ = π/22

δ = π/25

Figure 1. Variation of the normalized mean cross section 〈σtot〉/Nσ with the

density ρ of the samples for a set of values of the phase shift (ǫ = 10−4).
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Figure 2. Variation of the normalized mean cross section 〈σtot〉/Nσ with the

density ρ of the samples for another set of values of the phase shift. The chosen

number of scatterers is shown by an horizontal dashed line.

The obtained curves have two features which can be easily explained. The value of the

normalized mean cross section is never greater than the number of scatterers, a simple

consequence for a particular value of N of the remarkable property of the cross section

to be less than N2σ if the scatterers are pointlike. In addition, it is close to 1 when the

density is very small, and so the radius very large, a mere consequence of the fact that

the distance between the closest scatterers is sufficiently large in a typical arrangement

of very low density for the contribution of a single scattering to be the largest one and

so for the cross section to be almost equal to Nσ. The figures show also that the mean

cross section first either decreases (in Figure 1) or increases (in the two figures) as the

density increases; moreover, it always decreases uniformly as the density increases still

further. The detailed explanation for each of these two other, less expected behaviours

of the mean cross section is given in the remainder of the section.

The decrease and the increase are both originated by double scattering; the reason

for which the mean cross section can first deviate from Nσ in opposite ways is provided

by its expression in the approximation of single and double scattering. This expression

is derived in Appendix A. The result is

〈σs+d〉 = Nσ +
9N(N− 1)

4(kR)6

[

sin(2δ)C(kR) + cos(2δ) S(kR)
]

σ

(δ ∈ ]0 , π/2[), (5.1)

(the subscript ”tot” has been replaced by ”s+d”, which is an abbreviation for ”s(ingle)

and d(ouble scattering)”, in order to avoid any confusion with the exact cross section),



14

with

C(kR) =
(kR) cos(4kR)

16
− sin(4kR)

64
+

(kR)3

3
(5.2)

and

S(kR) =
(kR) sin(4kR)

16
+

cos(4kR)

64
+

(kR)4

2
− (kR)2

8
− 1

64
. (5.3)

When the radius is large enough, and so the density small enough, the contribution of

double scattering is dominated by its term of least power, which is the one in 1/(kR)2.

The normalized mean cross section is then well approximated by

〈σtot〉/Nσ = 1 +
9

8
(N− 1)

cos(2δ)

(kR)2

= 1 +
1

2
(N− 1) cos(2δ)

(

9πρ

2Nk3

)
2
3

(δ ∈ ]0 , π/2[). (5.4)

This equation shows that if the value of the phase shift is greater than π/4, the

contribution of double scattering is less than 0, and so the mean cross section decreases

as the density increases (Figure 1). On the other hand, if the value of the phase shift is

less than π/4, the contribution of double scattering is greater than 0, and so the mean

cross section increases as the density increases (the two figures).

An illustration of the effect of double scattering on the behaviour of the mean cross

section is given in the next two figures, in which 〈σtot〉 is compared with 〈σs+d〉 for two
different values of the phase shift, one greater (Figure 3) and the other less (Figure 4)

than π/4.
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Figure 3. The normalized mean cross sections 〈σtot〉/Nσ and 〈σs+d〉/Nσ plotted

against the density ρ of the samples for a value of the phase shift close to π/2

(ǫ = 10−4).
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Figure 4. The normalized mean cross sections 〈σtot〉/Nσ and 〈σs+d〉/Nσ plotted

against the density ρ of the samples for a value of the phase shift less than π/4.

The figures show that the value of the phase shift determines the sign of the contribution

of double scattering, and so the behaviour of 〈σs+d〉, as predicted by (5.4). Comparison

of 〈σtot〉 with 〈σs+d〉 shows that the former follows the behaviour of the latter, and so

that double scattering is responsible for the phase shift dependence of the variation of

the mean cross section with the density. Besides, Figure 4 shows also that the mean

cross section is not bounded in the approximation of single and double scattering, which

comes from the fact that the function C(kR)/(kR)6 diverges when the radius becomes

arbitrarily small.

The uniform decrease of the mean cross section is caused by an unlimited number

of contributions of successive scatterings to the cross section, that is to say, by multiple

scattering. The expression of the mean cross section corresponding to an unlimited

number of contributions of successive scatterings is derived in detail in Appendix B. We

find
(

k2

4π

)(

N− 1

N

)

〈σtot〉

=
∞
∑

l=0

(2l + 1) Im

{

i

[

(KR) jl(kR) jl+1(KR)− (kR) jl(KR) jl+1(kR)

(KR) h
(1)
l (kR) jl+1(KR)− (kR) jl(KR) h

(1)
l+1(kR)

]}

(δ ∈ ]0 , π/2[), (5.5)

with

K = k

√

√

√

√1 +
3(N− 1) sinδ e iδ

(kR)3
. (5.6)
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In Figures 5 and 6 the mean cross section is compared to the curve obtained from the

expression in (5.5), in which the sum has been truncated at l = 150, for the values of

the phase shift that have been taken in the two previous figures.
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Figure 5. Comparison between the normalized mean cross section and the

expression in (5.5), the sum being truncated at l = 150 (dashed line), for a

value of the phase shift close to π/2 (ǫ = 10−4). The full line gives the values

of the normalized cross section for diffusion by a hard sphere of radius R.

Each figure shows that the expression in (5.5) reproduces well the mean cross section

except in the uninteresting range of values of the density in which the approximation

of single scattering is valid. This discrepancy reflects the fact that the contributions of

more and more partial waves have to be taken into account in the sum as the radius

increases, and so as the density decreases. One can therefore conclude that the uniform

decrease is caused by multiple scattering.

It is interesting to derive the expression to which (5.5) reduces when R tends to 0.

We find

〈σtot〉 ≈
4π

k2
Im
{

j0(kR) (kR) e
ikR
}

≈ 4πR2 (δ ∈ ]0 , π/2[). (5.7)

This means that when the value of the density becomes arbitrarily large, the mean cross

section tends towards the cross section for diffusion by a hard sphere whose radius is

the same as that of the target, a behaviour which is clearly observed in Figures 5 and 6.
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Figure 6. Comparison between the normalized mean cross section and the

expression in (5.5), the sum being truncated at l = 150 (dashed line), for a

value of the phase shift less than π/4. The full line gives the values of the

normalized cross section for diffusion by a hard sphere of radius R.

6. Summary

In this paper, we have developed a formalism which describes the quantum scattering

of a particle by a disordered target consisting of pointlike scatterers. The formalism has

the important feature of preserving unitary because it takes into account all sequences

of multiple scattering. We have used it in a numerical study about the scattering by

a disordered target modelled by a set of pointlike scatterers which have each an equal

probability of being at any position inside a sphere whose radius may be modified. We

have studied the variation of the mean cross section with the density of the samples, and

so with the radius of the target, for different values of the phase shift. The study has

shown that the mean cross section goes through three successive stages as the density

increases, and so as the radius decreases. The mean cross section is nearly constant at

very low density, which reflects the fact that the particle is only scattered once before

leaving the target. As the density increases, the mean cross section may either increase

or decrease, depending on whether the value of the phase shift is less or greater than

π/4 respectively, each one of the two behaviours being originated by double scattering.

As the density increases still further, the mean cross section always decreases uniformly,

a behaviour which is caused by multiple scattering and which follows that of the cross

section for diffusion by a hard sphere potential of decreasing radius.
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Appendix A: Expression of the mean cross section in the approximation of

single and double scattering

This appendix is devoted to the derivation of the expression of the mean cross section

that includes only the contributions of single and double (m = 2) scattering. It follows

from (4.7) that the mean cross section is given in this particular approximation by

〈σs+d〉 = Nσ + σ Im

{

e 2iδ
N
∑

r=1

N
∑

s=1
(s 6=r)

〈(

e ikRrs

kRrs

)

e i~k. ~Rrs

〉}

(δ ∈ ]0 , π/2[) (A.1)

(the subscript is for ”s(ingle) and d(ouble scattering)”); finding its expression amounts

therefore to hardly more than finding that of the mean of (e ikRrs/kRrs) e
i~k. ~Rrs.

Since each scatterer has an equal probability of being at any position in the target

(whose center is taken as the origin of coordinates), we have
〈(

e ikRrs

kRrs

)

e i~k. ~Rrs

〉

=
1

V2

∫

V
d~Rr

∫

V
d~Rs

e ikRrs e i~k. ~Rrs

kRrs

=
1

4π

1

4π

9

R6

∫

V
d~Rr

∫

V
d~Rs

e ikRrs e i~k. ~Rrs

kRrs

. (A.2)

where V and R are the volume and radius of the target. The integration is most easily

done working with the set of angular variables that consists of the azimuthal and polar

angles Θrs and Φrs of the vector ~Rrs, the angle θrs between the vectors ~Rr and ~Rs, and

the angle φrs between the planes that are defined by the vectors ~Rr and ~Rs and by the

vectors ~Rrs and ~k (which is assumed to determine the direction of the third axis). The

expression of the product of volume elements for this choice of angular variables is

d~Rrd~Rs = R2
r dRrR

2
s dRs sinΘrsdΘrsdΦrs sinθrsdθrsdφrs, (A.3)

where Rr(s) is the magnitude of the vector ~Rr(s).

The expression of the mean of (e ikRrs/kRrs) e
i~k. ~Rrs may be obtained by successive

averages over pairs of variables; the variables with respect to which the integration has

been done will be indicated in a subscript. The average over Θrs and Φrs gives
〈(

e ikRrs

kRrs

)

e i~k. ~Rrs

〉

(Θrs,Φrs)

=
1

4π

e ikRrs

kRrs

∫ π

0
sinΘrsdΘrs

∫ 2π

0
dΦrs e

ikRrs cosΘrs

=
∞
∑

n=0

(2i)n

(n+ 1)!
(kRrs)

n−1. (A.4)

It follows that
〈

(

e ikRrs

kRrs

)

e i~k. ~Rrs

〉

=
∞
∑

n=0

(2i)n

(n+ 1)!

〈

(kRrs)
n−1

〉

(θrs,φrs;Rr,Rs)
, (A.5)

and so we need the expression of the mean of (kRrs)
n−1 for any n to obtain that of the

mean of (e ikRrs/kRrs) e
i~k. ~Rrs.
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The average of (kRrs)
n−1 over the angles gives

〈

(kRrs)
n−1

〉

(θrs,φrs)

=
kn−1

4π

∫ π

0
sinθrsdθrs

∫ 2π

0
dφrs (R

2
r +R2

s − 2RrRs cos θrs)
n−1
2

=
kn−1

2(n+ 1)

(

(Rr +Rs)
n+1 − |Rr − Rs|n+1

RrRs

)

(n = 0, 1, ...). (A.6)

The average of the obtained expression gives that of the mean of (kRrs)
n−1. We find

〈

(kRrs)
n−1

〉

(θrs,φrs;Rr,Rs)

=

〈

kn−1

2(n+ 1)

(

(Rr +Rs)
n+1 − |Rr − Rs|n+1

RrRs

)〉

(Rr ,Rs)

=
9

R6

kn−1

2(n+ 1)

∫ R

0
RrdRr

∫ R

0
RsdRs [(Rr +Rs)

n+1 − |Rr −Rs|n+1]

=
72 (2kR)n−1

(n+ 2)(n+ 3)(n+ 5)
(n = 0, 1, ...). (A.7)

Substituting the expression of the mean of (kRrs)
n−1 into (A.5), we obtain

〈(

e ikRrs

kRrs

)

e i~k. ~Rrs

〉

=
72

2kR

∞
∑

n=0

(4ikR)n

(n+ 1)!(n+ 2)(n+ 3)(n+ 5)

=
144

(4kR)5

[

e 4ikR − 1− 4ikR− (4ikR)2

2
− (4ikR)3

6

]

+ i
144

(4kR)6

[

e 4ikR − 1− 4ikR− (4ikR)2

2
− (4ikR)3

6
− (4ikR)4

24

]

. (A.8)

Substitution of the expression of the mean of (e ikRrs/kRrs) e
i~k. ~Rrs into (A.1) leads

to that of the mean cross section in the approximation of single and double scattering,

which is

〈σs+d〉 = Nσ +
9N(N− 1)

4(kR)6

[

sin(2δ)C(kR) + cos(2δ) S(kR)
]

σ

(δ ∈ ]0 , π/2[), (A.9)

with

C(kR) =
(kR) cos(4kR)

16
− sin(4kR)

64
+

(kR)3

3
(A.10)

and

S(kR) =
(kR) sin(4kR)

16
+

cos(4kR)

64
+

(kR)4

2
− (kR)2

8
− 1

64
. (A.11)

The functions C(kR) and S(kR) take on only positive values. It is to be noted that the

mean cross section is not bounded in the approximation of single and double scattering

because the function C(kR)/(kR)6 behaves like 1/kR when R tends to 0.
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Appendix B: Expression of the mean cross section for an unlimited number

of contributions of successive scatterings

This appendix is devoted to the derivation of the expression of the mean cross section

for an unlimited number of contributions of successive scatterings to the cross section.

The relevant expression for the cross section is obtained from (4.7) by discarding the

remainder term and letting the integer M become infinitely large. The formula giving

the mean cross section is then

〈σtot〉 = Nσ

+
4π

k2

M
∑

m=2

(sinδ)m Im

{

e imδ
N
∑

r1=1

N
∑

r2=1
(r2 6=r1)

. . .
N
∑

rm=1
(rm 6=rm−1)

〈(

e ikRr1r2

kRr1r2

)

×
(

e ikRr2r3

kRr2r3

)

. . .

(

e ikRrm−1rm

kRrm−1rm

)

e i~k. ~Rr1rm

〉}

(δ ∈ ]0 , π/2[), (B.1)

where M is as large as desired. Since σ = (4π/k2) sin2δ, this formula may be written as

〈σtot〉 =
4π

k2
N

M
∑

m=1

(N− 1)m−1(sinδ)m Im
{

e imδMm(kR)
}

(δ ∈ ]0 , π/2[), (B.2)

with

M1(kR) = 1 (B.3)

and

Mm(kR) =
1

N(N− 1)m−1

[

N
∑

r1=1

N
∑

r2=1
(r2 6=r1)

. . .
N
∑

rm=1
(rm 6=rm−1)

〈(

e ikRr1r2

kRr1r2

)

×
(

e ikRr2r3

kRr2r3

)

. . .

(

e ikRrm−1rm

kRrm−1rm

)

e i~k. ~Rr1rm

〉]

(m = 2, 3, ...). (B.4)

Since each scatterer has an equal probability of being at any position inside a sphere of

volume V and radius R (whose center is taken as the origin of coordinates), we have

Mm(kR) =
1

Vm

∫

V
d~R1

∫

V
d~R2 . . .

∫

V
d~Rm

(

e ikR12

kR12

)

×
(

e ikR23

kR23

)

. . .

(

e ikRm−1m

kRm−1m

)

e−i~k. ~R1 e i~k. ~Rm

(m = 2, 3, ...). (B.5)
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Introducing the reduced vectors

~ui = ~Ri/R (i = 1, 2, ...), (B.6)

we may also write the expression of Mm(kR) as

Mm(kR) =
3m

(4π)m

∫

d~u1

∫

d~u2 . . .
∫

d~um

(

e ikR|~u2−~u1|

kR|~u2 − ~u1|

)

×
(

e ikR|~u3−~u2|

kR|~u3 − ~u2|

)

. . .

(

e ikR|~um−~um−1|

kR|~um − ~um−1|

)

e−iR~k.~u1 e iR~k.~um

(m = 2, 3, ...), (B.7)

where each integration is over all points inside a sphere of radius 1. The mean of the

contribution of any number of successive scatterings may be written in the form

Mn+1(kR) =
∫ 1

0
duPn(u, kR) (n = 0, 1, ...) (B.8)

with

P0(u, kR) = 3 u2, (B.9)

P1(u, kR) = 3u2 3

(4π)2

∫

dΩ~u e
iR~k.~u

∫

d~r1 e
−iR~k.~u1

(

e ikR|~u−~u1|

kR|~u− ~u1|

)

, (B.10)

and

Pn(u, kR) = 3 u2 3n

(4π)n+1

∫

dΩ~u

∫

d~u1

∫

d~u2 . . .
∫

d~un

(

e ikR|~u2−~u1|

kR|~u2 − ~u1|

)

×
(

e ikR|~u3−~u2|

kR|~u3 − ~u2|

)

. . .

(

e ikR|~un−~un−1|

kR|~un − ~un−1|

)

e−iR~k.~u1

×
(

e ikR|~u−~un|

kR|~u− ~un|

)

e iR~k.~u

(n = 2, 3, ...). (B.11)

The recursion formula for the quantities Pn(u, kR) is then obtained by substituting the

expansions [11]

e i~k. ~R = 4π
∞
∑

l=0

l
∑

m=−l

il jl(kR) Y ∗
lm(Ω~k

) Ylm(Ω~R), (B.12)

where R and Ω~R are the magnitude and direction of the vector ~R, and

e ikR|~us−~ur|

kR|~us − ~ur|

= 4πi
∞
∑

l=0

l
∑

m=−l

jl(kRMin(ur, us)) h
(1)
l (kRMax(ur, us)) Y

∗
lm(Ω~ur

) Ylm(Ω~us
)

(s 6= r), (B.13)
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where ur(s) and Ω~u
r(s)

are the magnitude and direction of the vector ~ur(s) and where

Min(ur, us) is the smaller and Max(ur, us) the larger of ur and us, into (B.11). Using

the notations Ω~ur
= Ωr (r = 1, ..., n), we obtain

Pn(u, kR) = 3 u2 (4π) in
∞
∑

l=0

l
∑

m=−l

il jl(kR) Y
∗
lm(Ω~k)

∞
∑

l′=0

l′
∑

m′=−l′

(−i)l
′

Yl′m′(Ω~k
)

∞
∑

l1=0

l1
∑

m1=−l1

∞
∑

l2=0

l2
∑

m2=−l2

. . .
∞
∑

ln=0

ln
∑

mn=−ln

×
∫ 1

0
3 u2

1du1

∫ 1

0
3 u2

2du2 . . .
∫ 1

0
3 u2

ndun jl1(kRMin(u1, u2))

× h
(1)
l1
(kRMax(u1, u2)) jl2(kRMin(u2, u3))

× h
(1)
l2
(kRMax(u2, u3)) . . . jln−1(kRMin(un−1, un))

× h
(1)
ln−1

(kRMax(un−1, un)) jln(kRMin(un, kr))

× h
(1)
ln
(kRMax(un, kr)) jl′(kRu1)

∫

dΩ~r

∫

dΩ1

×
∫

dΩ2 . . .
∫

dΩn Y
∗
l1m1

(Ω1) Yl1m1(Ω2)

× Y ∗
l2m2

(Ω2) Yl2m2(Ω3) . . . Y
∗
ln−1mn−1

(Ωn−1) Yln−1mn−1(Ωn)

× Y ∗
lnmn

(Ωn) Ylnmn(Ω~r) Ylm(Ω~r) Yl′m′(Ω1).

(B.14)

Use of the orthogonality relation for the spherical harmonics and of the identity [11]

l
∑

m=−l

Y ∗
lm(Ω~k) Ylm(Ω~k) =

2l + 1

4π
(B.15)

then leads to

Pn(u, kR) = 3 u2 in
∞
∑

l=0

(2l + 1) jl(kRu)

×
∫ 1

0
3 u2

1du1

∫ 1

0
3 u2

2du2 . . .
∫ 1

0
3 u2

ndun jl(kRMin(u1, u2))

× h
(1)
l (kRMax(u1, u2))jl(kRMin(u2, u3))

× h
(1)
l (kRMax(u2, u3)) . . . jl(kRMin(un−1, un))

× h
(1)
l (kRMax(un−1, un)) jl(kRMin(un, u))

× h
(1)
l (kRMax(un, u)) jl(kRu1)

(n = 2, 3, ...) (B.16)

and

P1(u, kR) = 3 u2 i
∞
∑

l=0

(2l + 1) jl(kRu)

×
∫ 1

0
3 u2

1du1 jl(kRu1) jl(kRMin(u1, u)) h
(1)
l (kRMax(u1, u))

(B.17)
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We then decompose Pn(u, kR) as

Pn(u, kR) = u
∞
∑

l=0

(2l + 1) jl(kRu)P(l)
n (u, kR) (n = 1, 2, ...). (B.18)

We obtain

P(l)
n (u, kR) = 3 u in

∫ 1

0
3 u2

1du1

∫ 1

0
3 u2

2du2 . . .
∫ 1

0
3 u2

ndun jl(kRu1)

× jl(kRMin(u1, u2)) h
(1)
l (kRMax(u1, u2)) jl(kRMin(u2, u3))

× h
(1)
l (kRMax(u2, u3)) . . . jl(kRMin(un−1, un))

× h
(1)
l (kRMax(un−1, un)) jl(kRMin(un, u))

× h
(1)
l (kRMax(un, u))

= 3 u in h
(1)
l (kRu)

∫ u

0
3 u2

ndun jl(un)
∫ 1

0
3 u2

1du1

∫ 1

0
3 u2

2du2

× . . .
∫ 1

0
3 u2

n−1dun−1 jl(kRu1)jl(kRMin(u1, u2))

× h
(1)
l (kRMax(u1, u2)) jl(kRMin(u2, u3))

× h
(1)
l (kRMax(u2, u3)) . . . jl(kRMin(un−2, un−1))

× h
(1)
l (kRMax(un−2, un−1))jl(kRMin(un−1, un))

× h
(1)
l (kRMax(un−1, un))

+ 3 u in jl(kRu)
∫ 1

u
3 u2

ndun h
(1)
l (un)

∫ 1

0
3 u2

1du1

∫ 1

0
3 u2

2du2

× . . .
∫ 1

0
3 u2

n−1dun−1 jl(kRu1) jl(kRMin(u1, u2))

× h
(1)
l (kRMax(u1, u2)) jl(kRMin(u2, u3))

× h
(1)
l (kRMax(u2, u3)) . . . jl(kRMin(un−2, un−1))

× h
(1)
l (kRMax(un−2, un−1)) jl(kRMin(un−1, un))

× h
(1)
l (kRMax(un−1, un))

= 3i u h
(1)
l (kRu)

∫ u

0
ds s jl(kRs)P(l)

n−1(s, kR)

+ 3i u jl(kRu)
∫ 1

u
ds s h

(1)
l (kRs)P(l)

n−1(s, kR)

(n = 2, 3, ...) (B.19)

and

P(l)
1 (u, kR) = 3i u

∫ 1

0
3 u2

1du1 jl(kR u1)jl(kR Min(u1, u))

× h
(1)
l (kRmax(u1, u))

= 3i u h
(1)
l (kRu)

∫ u

0
3 s2ds jl(kRs) jl(s)

+ 3i u jl(kRu)
∫ 1

u
3 s2ds h

(1)
l (kRs) jl(s)

= 3i u h
(1)
l (kRu)

∫ u

0
ds s jl(kRs)P(l)

0 (s, kR)
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+ 3i u jl(kRu)
∫ 1

u
ds s h

(1)
l (kRs)P(l)

0 (s, kR), (B.20)

with

P(l)
0 (s, kR) = 3 s jl(kR s). (B.21)

This definition of P(l)
0 (u, kR) is compatible with that of P0(u, kR) as given in (B.9)

because of the identity
∞
∑

l=0

(2l + 1) j2l (u) = 1. (B.22)

Each function P(l)
n (u, kR) satisfies a differential equation which is obtained by deriving

the recursion relation twice with respect to the variable u. Using the facts that [11]

jl(z)
d

dz
h
(1)
l (z)− h

(1)
l (z)

d

dz
jl(z) =

1

z2
(l = 0, 1, ...) (B.23)

and

d2

dz2
fl(z) +

2

z

d

dz
fl(z) +

(

1− l(l + 1)

z2

)

fl(z) = 0 (l = 0, 1, ...) (B.24)

for both jl(z) and h
(1)
l (z), we obtain

d2

du2
P(l)

n (u, kR) = − 3

kR
P(l)

n−1(u, kR)−
(

(kR)2 − l(l + 1)

u2

)

P(l)
n (u, kR)

(n 6= 0)

(l = 0, 1, ...) (B.25)

and

d2

du2
P(l)

0 (u, kR) = −
(

(kR)2 − l(l + 1)

u2

)

P(l)
0 (u, kR)

(l = 0, 1, ...). (B.26)

Comparison between these last two equations shows that

P(l)
−1(u, kR) = 0 (l = 0, 1, ...). (B.27)

We now introduce the generating function

G(l)(x, u, kR) =
∞
∑

n=0

xnP(l)
n (u, kR) (B.28)

It follows from (B.25) and (B.26) that the generating function satisfies the equation

∂2

∂u2
G(l)(x, u, kR) = −

(

(kR)2 +
3x

kR
− l(l + 1)

u2

)

G(l)(x, u, kR)

(l = 0, 1, ...). (B.29)

The mean cross section can be calculated with the help of the generating function.

Substituting (B.18) into (B.8) and then (B.8) into (B.2), we obtain

〈σtot〉 =
4π

k2
N

∞
∑

l=0

(2l + 1) 〈σtot〉(l), (B.30)
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with

〈σtot〉(l)

= Im
{

sin δ e iδ
∫ 1

0
duu jl(kRu)

M−1
∑

n=0

(

(N− 1) sin δe iδ

)n

P(l)
n (u, kR)

}

(δ ∈ ]0 , π/2[). (B.31)

Taking M to be infinitely large and using (B.28), we find

〈σtot〉(l)

= Im
{

sin δ e iδ
∫ 1

0
duu jl(kRu)G

(l)
(

x = (N− 1) sin δe iδ, ukR
)}

(δ ∈ ]0 , π/2[). (B.32)

The regular solution of (B.29) is

G(l)(x, u, kR) = Al(x) u jl

(

√

(kR)2 +
3x

kR
u

)

(l = 0, 1, ...). (B.33)

The function Al(x) is found as follows. It follows from (B.19) that

P(l)
n (u = 1, kR) = 3i h

(1)
l (kR)

∫ 1

0
ds s jl(kRs)P(l)

n−1(s, kR),

(l = 0, 1, ...). (B.34)

This implies that
∞
∑

n=1

xn P(l)
n (u = 1, kR)

= 3i h
(1)
l (kR)

∫ 1

0
ds s jl(kRs)

∞
∑

n=1

xn P(l)
n−1(s, kR),

(l = 0, 1, ...). (B.35)

and so

G(l)(x, u = 1, kR)−P(l)
0 (u = 1, kR)

= 3i x h
(1)
l (kR)

∫ 1

0
ds s jl(kRs)G

(l)(x, s, kR).

(l = 0, 1, ...). (B.36)

Substituting (B.33) in the case u = 1 as well as in the general case and (B.21) in the

case s = 1 into this equation, we obtain

Al(x) jl

(

√

(kR)2 +
3x

kR

)

− 3jl(kR)

= 3i x h
(1)
l (kR)Al(x)

∫ 1

0
ds s2 jl(kRs) jl

(

√

(kR)2 +
3x

kR
s

)

.

(l = 0, 1, ...). (B.37)
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Using the fact that

Il(x, kR) =
∫ 1

0
ds s2 jl(kRs) jl

(

√

(kR)2 +
3x

kR
s

)

=
kR

3x

[

√

(kR)2 +
3x

kR
jl(kR) jl+1

(

√

(kR)2 +
3x

kR

)

− (kR) jl

(

√

(kR)2 +
3x

kR

)

jl+1(kR)

]

(l = 0, 1, ...), (B.38)

we obtain

Al(x) =
3 jl(kR)

jl(kR)− 3i x h
(1)
l (kR) Il(x, kR)

(l = 0, 1, ...), (B.39)

where we have used the notation kR =
√

(kR)2 + 3x
kR

. Substituting this equation

into (B.33), we obtain the expression of the generating function, which is

G(l)(x, u, kR) =
3u jl(kR) jl(kRu)

jl(kR)− 3i x h
(1)
l (kR) Il(x, kR)

(l = 0, 1, ...). (B.40)

Substituting this equation into (B.32), we find

〈σtot〉(l)

= Im

{

3 sin δ e iδ jl(kR) Il(x = (N− 1) sin δe iδ, kR)

jl(kR)− 3i (N− 1) sin δe iδ h
(1)
l (kR) Il(x = (N− 1) sin δe iδ, kR)

}

(δ ∈ ]0 , π/2[). (B.41)

Using (B.38) in this equation and then using (B.30), we obtain the expression of the

mean cross section for an unlimited number of contributions of successive scatterings.

We find
(

k2

4π

)(

N− 1

N

)

〈σtot〉

=
∞
∑

l=0

(2l + 1) Im

{

i

[

(KR) jl(kR) jl+1(KR)− (kR) jl(KR) jl+1(kR)

(KR) h
(1)
l (kR) jl+1(KR)− (kR) jl(KR) h

(1)
l+1(kR)

]}

(δ ∈ ]0 , π/2[), (B.42)

with

K = k

√

√

√

√1 +
3(N− 1) sinδ e iδ

(kR)3
. (B.43)
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