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Abstract: Fluorescent labelling of monoclonal antibodies (mAbs) is classically performed by 
chemical bioconjugation methods. The most frequent labelling technique to generate antibody–
fluorophore conjugates (AFCs) involves the bioconjugation onto the mAb lysines of a dye bearing 
an N-hydroxysuccinimide ester or an isothiocyanate group. However, discrepancies between 
labelling experiments or kits can be observed, related to reproducibility issues, alteration of antigen 
binding, or mAb properties. The lack of information on labelling kits and the incomplete 
characterization of the obtained labelled mAbs largely contribute to these issues. In this work, we 
generated eight AFCs through either lysine or interchain cysteine cross-linking bioconjugation of 
green-emitting fluorophores (fluorescein or BODIPY) onto either trastuzumab or rituximab. This 
strategy allowed us to study the influence of fluorophore solubility, bioconjugation technology, and 
antibody nature on two known labelling procedures. The structures of these AFCs were thoroughly 
analyzed by mass spectroscopy, and their antigen binding properties were studied. We then 
compared these AFCs in vitro by studying their respective spectral properties and stabilities. The 
shelf stability profiles and sensibility to pH variation of these AFCs prove to be dye-, antibody- and 
labelling-technology-dependent. Fluorescence emission in AFCs was higher when lysine labelling 
was used, but cross-linked AFCs were revealed to be more stable. This must be taken into account 
for the design of any biological study involving antibody labelling. 

Keywords: antibody–fluorophore conjugate; fluorescence; labelling; bioconjugation 
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1. Introduction 

Fluorescent labelling of biomolecules is highly valuable for the study of biological processes in 
a sensitive, qualitative, or quantitative way. Through their specificity for a cognate antigen, 
chemically modified monoclonal antibodies (mAbs) [1] make powerful molecular tools for various 
applications [1–3]. Indeed, labelled mAbs can facilitate detection of targeted biological markers. They 
are also classically used as secondary antibodies for flow cytometry, enzyme-linked immunosorbent 
assay (ELISA) or immunofluorescence assay. Moreover, labelled mAbs with tunable fluorescent 
sensor dyes [4] or near-infrared dyes (NIR dyes) [3,5] have been used respectively to study molecular 
mechanisms, for in vivo imaging, and even for guided cancer surgery in human [6]. 

Antibody–fluorophore conjugates (AFCs) are classically generated by chemical conjugation 
methods onto amino acids [2,7] using fluorescent dyes functionalized with reactive moieties allowing 
covalent attachment to amino acid lateral chains of the antibody. Amine, sulfhydryl, carbohydrate, 
or disulfide bonds are among the most favored reactive moieties for bioconjugation. Commercially 
available fluorescent labelling kits contain dyes bearing an N-hydroxysuccinimide (NHS) ester 
(Scheme 1) or an isothiocyanate function, permitting bioconjugation onto the ε-amino group of 
solvent-accessible lysines at the mAb surface (Scheme 2a). Up to 30 lysines can be randomly labelled 
using these methods [8], leading to heterogeneous mixtures of AFCs with varying numbers of 
fluorophores attached at different positions on the mAb, determining the FAR (fluorophore-to-
antibody ratio). This method remains the most widely used for labelling. However, the lack of 
information provided within labelling kits contributes to these issues. Generally, the manufacturers 
invoke intellectual property issues to retain technological information regarding both the dye 
concentration and the buffer composition. As a consequence, it is impossible to estimate the number 
of conjugated dyes per labelled mAb and their localization on the protein. Moreover, conjugated 
lysines in the complementary determining region (CDR) or next to essential residues for Fc receptor 
(FcR) binding can respectively alter the affinity to antigen or effector properties of the labelled 
mAb.[9–11] The field of antibody–drug conjugate (ADC) research has widely described that 
conjugation site has a great impact on ADC physico-chemical properties including bond stability 
between the conjugated molecule and the mAb.[12] In this context, two recent publications compared 
various labelling methods.[13,14] While the authors confirmed previously described advantages and 
drawbacks associated with lysine conjugation, cysteine labelling also came with limitations. Even 
though first-generation maleimide (or FGM) [13] allows for covalent linkage to the cysteines of a 
reduced interchain disulfide bridge (mild reduction using either dithiothreitol (DTT) or tris(2-
carboxyethyl) phosphine (TCEP)), it is relatively unstable, [15] undergoing a retro-Michael addition 
in aqueous or serum media, resulting in payload loss over time. This phenomenon could impair the 
stability of labelled mAbs, compromising biological studies employing them as biological tools. To 
challenge lysine conjugation, an alternative labelling method should be easy to use, simple, fast, and 
allow for a reproducible FAR. 

In this context, our team [16–18] and several others [8,19] developed second-generation 
maleimides or SGM (dibromomaleimide or dithiophenylmaleimide) [16,20] to produce ADCs or 
AFCs. After mild reduction of the mAb, these SGMs are able to undergo bioconjugation onto mAb 
through interchain cysteine cross-linking (Scheme 2b) to afford stable AFCs with a controlled FAR. 

In this paper, we report the construction and characterization of eight labelled mAbs, resulting 
from the conjugation of trastuzumab and rituximab with two commercial green fluorophores using 
two well-known conjugation methods. Cross-linked mAbs were compared to their labelled 
counterparts resulting from NHS conjugation in order to evaluate the discrepancies between their 
respective fluorescence emissions, stability upon storage, or pH shift. To avoid aggregation, [21] 
labelled mAbs were produced with an average FAR of 1.5. 

2. Materials and Methods 

Unless otherwise noted, materials were obtained from commercial suppliers at the highest 
purity grade available and used without further purification. Dry solvents were purchased from 
Acros Organics (Fisher Scientific SAS, Illkirch, France), other solvents were purchased from Carlo 
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Erba Reagents (Val-de-Reuil, France). BODIPY-NHS ester was purchased from Lumiprobe Gmbh. 
Fluorescein-NHS ester was purchased from ThermoFisher (Illkirch, France). Other reagents were 
purchased from Sigma-Aldrich (Merck, Darmstadt, Germany). 

For anhydrous and inert reactions, the glassware was heated with a heat gun while several 
vacuum-dry argon cycles were performed. The thin layer chromatography (TLC) studies were 
performed using commercial pre-coated aluminum sheets of silica gel (60 Å, F254; Merck) and revealed 
under UV 254 and 365 nm lighting. The purifications by chromatography on silica gel columns were 
carried out on a TELEDYNE ISCO (Lincoln, NE, USA) purification unit, Combi Flash RF 75 PSI, with 
Redisep flash silica gel columns (60 Å, 230–400 mesh, grade 9385). Nuclear Magnetic Resonance 
(NMR) spectra were measured on a Bruker (Bremen, Germany) Ultrashield 300 spectrometer, 300 
MHz (1H), 282 MHz (19F) and 75 MHz (13C). Chemical shifts are reported in parts per million (ppm, 
δ), downfield from tetramethylsilane (TMS, δ = 0.00 ppm), and are referenced to the residual solvent. 
Coupling constants are reported in Hertz (Hz). The following abbreviations are used singularly or in 
combination to indicate the multiplicity of signals: s—singlet, d—doublet, t—triplet, q—quartet, m—
multiplet. NMR spectra were acquired at 300 K unless otherwise indicated. High-resolution accurate 
mass measurements (HRAM) were performed in positive mode with an electrospray ionization (ESI) 
source on a Q-TOF DataAnalysis 4 maXis mass spectrometer (Bruker, Bremen, Germany) with an 
accuracy tolerance of 2 ppm by the “Fédération de Recherche” ICOA/CBM (FR2708) platform. 

2.1. Synthesis 

Synthesis of compounds 1, 2, 3, 4, and 5 are described in the supporting information (Scheme S1). 

2.1.1. 3,4-Dithiophenoylmaleimide-N-8-amino-3,6-dioxaoctane-BODIPY 6a 

5 (12 mg, 0.021 mmol) was dissolved in dry dimethylformamide (DMF) (400 µL) and put in a 1.5 
mL vial with BODIPY-NHS (9.9 mg, 0.025 mmol) under inert atmosphere. It was stirred in the dark 
at rt for 3 days. The crude mixture was diluted with ethyl acetate (10 mL) and washed with brine at 
0 °C (5 × 10 mL). Combined organic phases were dried over MgSO4, filtered, and concentrated under 
reduced pressure. It was purified by flash chromatography (SiO2, cyclohexane/ethyl acetate 7:3) to 
give 6a (7.9 mg, 52%) as an orange oil. 1H NMR (300 MHz, CDCl3) δ (ppm) 7.32–7.13 (m, 11H, 
NH(CO), Ph), 7.06 (s, 1H, CH Ar), 6.85 (d, J = 3.8 Hz, 1H, CH Ar), 6.29 (d, J = 3.8 Hz, 1H, CH Ar), 6.10 
(s, 1H, CH Ar), 3.68 (t, J = 5.3 Hz, 2H, CH2), 3.59 (t, J = 5.3 Hz, 2H, CH2-O), 3.55–3.52 (m, 2H, CH2–O), 
3.49–3.39 (m, 6H, CH2–O, CH2–NH(CO)), 3.28 (t, J = 7.5 Hz, 2H, CH2–(CO)), 2.63 (t, J = 7.5 Hz, 2H, 
CH2), 2.54 (s, 3H, CH3), 2.24 (s, 3H, CH3). 13C NMR (75 MHz, CDCl3) δ (ppm) 172.1, 167.0 (×2), 160.1, 
158.1, 143.7, 135.8, 133.5, 132.0 (×4), 129.1 (×4), 128.5 (×4), 123.8, 120.4, 117.7, 77.6, 77.4, 77.2, 76.7, 70.5, 
70.0, 69.8, 67.8, 39.4, 38.1, 35.8, 24.9, 15.1, 11.5. 19F (282 MHz, CDCl3) δ (ppm) –145 (q, J = 33.9 Hz). 
HRAM (ESI): m/z calc. = 719.2339, found 719.2362. 

2.1.2. 3,4-Dithiophenoylmaleimide-N-8-amino-3,6-dioxaoctane-FLU 6b 

5 (27 mg, 0.048 mmol) was dissolved in dry DMF (1 mL) and put on FLU-NHS (23 mg, 0.048 
mmol) under inert atmosphere. Diisopropylethylamine (8.4 µL, 0.048 mmol) was added and it was 
stirred in the dark at rt for 3 days. The crude was diluted with CH2Cl2 (10 mL) and washed with brine 
at 0 °C (5 × 10 mL). Combined organic phases were dried over MgSO4, filtered, and concentrated 
under reduced pressure. It was purified by flash chromatography (SiO2, CH2Cl2/MeOH 9:1) to give 
6b (13 mg, 33%) as an orange oil. 1H NMR (300 MHz, MeOD)* δ (ppm) 8.39 (s, 0.5H, Ar), 8.14 (dd, J = 
8.1, 1.6 Hz, 0.5H, Ar), 8.04–8.00 (m, 0.5H, Ar), 7.68 (s, 0.5H, Ar), 7.16–7.07 (m, 10H, Ph), 6.68–6.57 (m, 
2H, Ar), 6.56–6.49 (m, 2H, Ar), 6.49–6.41 (m, 2H, Ar), 3.70–3.49 (m, 6H, CH2, CH2–O), 3.49–3.36 (m, 
4H, CH2–O), 3.36–3.30 (m, 2H, CH2–NH(CO)). 13C NMR (75 MHz, MeOD) δ (ppm) 170.6, 168.4, 168.1, 
161.5, 154.1, 142.1, 137.7, 137.0, 135.5, 132.5, 132.4, 130.7, 130.6, 130.6, 130.5, 130.3, 130.12, 130.1, 129.3, 
129.2, 126.1, 125.8, 125.0, 124.3, 113.8, 110.9, 103.6, 71.3, 71.1 (×2), 70.8, 70.4, 70.3, 68.7, 68.7, 41.2, 41.0, 
39.2, 39.2. HRAM (ESI): m/z calc. = 803.1728, found 803.1718. 

* Both isomers are described. 
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2.2. Bioconjugation 

TTZ and RTX were prepared in borate buffer (400 µL, 4.5 mg/mL) at pH 8.0. Then 18.0 µL of a 
dimethylsulfoxyde (DMSO) solution of linkers 6a or 6b (15 eq) was added. DMSO volume was 
corrected to 10% v/v, and 7.2 µL of a freshly prepared solution of TCEP in borate buffer pH 8.0 (6 eq) 
was added. It was gently shaken under inert atmosphere for 2 h at 37 °C, yielding AFCs 7a, 7b, 8a, 
and 8b. Their lysine counterparts were prepared with DMSO solutions of NHS ester dyes (2 to 5 eq) 
gently shaken with mAbs for 2 h at 37 °C, yielding AFCs 9a, 9b, 10a, and 10b. 

Crude AFCs were purified by gel filtration using Sephadex G-25 (Fisher Scientific SAS, Illkirch, 
France) against phosphne buffer saline (PBS) 1X pH 7.2 and filtered on 0.22 µm membranes. The 
protein concentration of purified AFCs was assessed by UV absorption at 280 nm (Nanodrop, Fisher 
Scientific SAS, Illkirch, France). 

2.3. Mass Spectrometry 

Mass spectrometric analyses of AFCs were performed on a Bruker maXis mass spectrometer 
coupled to a Dionex Ultimate 3000 RSLC system (Dionex, Germering, Germany). Prior to mass 
spectrometry (MS) analysis, samples (ca. 5 µg) were desalted on a MassPREP (Waters, Saint-Quentin-
en-Yvelines, France) desalting cartridge (2.1 × 10 mm, Waters) heated at 80 °C using 0.1% formic acid 
as solvent A and 0.1% formic acid in acetonitrile as solvent B at 500 µL/min. After 1 min, a linear 
gradient from 5 to 90% B in 1.5 min was applied; the first 1.5 min were diverted to waste. MS data 
were acquired in positive mode with an ESI source over the m/z range from 900 up to 5000 at 1 Hz 
and processed using DataAnalysis 4.4 software (Bruker, Bremen, Germany) and the MaxEnt 
algorithm for spectral deconvolution. 

2.4. HER2 Binding by ELISA 

The functionality of AFCs was checked by indirect ELISA using the HER2 protein (Sino 
Biologicals, Beijing, China) as a target. The samples were detected by protein L-peroxydase (Thermo 
Scientific Pierce, Illkirch, France) in the presence of a chromatic substrate, 3,3',5,5'-
tetramethylbenzidine (TMB; Sigma, St. Louis, MO, USA). Briefly, HER2 was coated in a 96-well plate 
at 1 µg/mL and incubated overnight at 4 °C. The wells were then saturated with 3% bovine serum 
albumin in phosphate buffer saline (BSA–PBS) for 1 h at 37 °C and washed with PBS prior to 
incubation with AFC from 0.01 nM to 31.00 nM during 1 h at 37 °C. Wells were then washed with 
PBS–tween 20 (0.05%) and incubated with 100 µL of protein-L-peroxydase (1.25 µg/mL) for 1 h at 37 
°C added to 100 µL of TMB substrate (Sigma-Aldrich, St. Louis, MO, USA). Enzymatic reactions were 
stopped with the addition of 50 µL of 1M H2SO4, and the absorbance was measured at 450 nm using 
a microplate reader (Biotek, Winooski, VT, USA). 

2.5. CD20 Binding by Flow Cytometry 

Daudi cells were obtained from American Type Culture Collection (ATCC, CCL-213™). Daudi 
cells were harvested and successively washed in Roswell Park Memorial Institute (RPMI) and Hank's 
Balanced Salt Solution (HBSS) media. Cell count was adjusted to 2 × 106 cells/mL in HBSS buffer. The 
Daudi cells (5 × 104 cells) were incubated for an hour at 4 °C in the dark with the various ADCs diluted 
at 0, 1, 3, 10, 30, or 100 µg/mL in HBSS buffered either at pH 6 (with 2-(N-morpholino) ethanesulfonic 
acid (MES)) or 7. They were then washed with HBSS and immediately processed on a 2-laser-8-colour 
Gallios flow cytometer (Beckman Coulter, Brea, CA, USA). Ten thousand events were acquired per 
condition by flow cytometry in the Gallios List Mode Data Acquisition and Analysis Software 1.2. 
Raw data from all samples were analyzed using Kaluza Analysis Software v.1.1.11052.10190 
(Beckman Coulter). A gate was set on living cells using the forward scatter–side scatter plot. The ratio 
of mean fluorescence at each concentration versus cells alone was used to establish the fluorescence 
curves. All flow cytometry experiments were performed three times independently. 
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2.6. Fluorescence Emission 

Fluorescence emission spectra of the AFC solutions in PBS 1X pH 7.2 buffer were recorded from 
295 to 700 nm with a Hitachi F-4500 fluorescence spectrophotometer. Excitation was set to 275 nm to 
minimize Raman scattering, which can interfere with fluorescence emission at weak concentrations 
while being energetic enough to see the fluorescence emission of both antibody and dye. 
Concentration in protein was adjusted to 50 µg/mL, and spectra were normalized at the intensity of 
the tryptophan (Trp) band at 350 nm before comparison. 

3. Results and Discussion 

We aimed at designing a reproducible labelling process affording all AFCs with the same FAR 
to be comparable. For this purpose, we purchased two commercially available green-emitting 
fluorophores (Scheme 1), fluorescein-NHS and BODIPY-NHS, as solid powder and not as a labelling 
kit, allowing us to prepare DMSO solutions with known concentrations to control the bioconjugation 
step. These compounds have fluorescence emission maxima at similar wavelengths (520 nm and 509 
nm, respectively) with high quantum yields (0.90 and 0.97, respectively). Although more photostable 
dyes could have been used in this study, we chose fluorescein and BODIPY common dyes of different 
size and solubility to better observe discrepancies in the assessment of the stability profiles of our 
AFCs, which make them good candidates for our comparative labelling study. From Fluorescein and 
BODIPY, since they were functionalized with NHS-ester to allow conjugation on lysines (Scheme 2a), 
we synthesized the corresponding dithioether SGM-bearing dyes (Scheme 1) to perform an interchain 
cysteine cross-linking reaction onto mAbs (Scheme 2b). We chose the anti-HER2 trastuzumab (TTZ) 
and the anti-CD20 rituximab (RTX) as antibody carriers (IgG1κ) to analyze potential antibody-
dependent discrepancies during the bioconjugation process with two different well-known 
bioconjugation method. FAR value should be limited to avoid AFC aggregation and the loss of mAb 
biological properties [21]. Therefore, we produced all labelled mAbs (Table 1) with an average FAR 
of 1.5 verified through mass spectroscopy analysis. We studied binding to antigen for all AFCs before 
comparing their stability profiles under various conditions. 

Table 1. Antibody–fluorophore conjugates (AFCs) obtained from interchain cysteine cross-linking or 
lysine bioconjugation technologies onto trastuzumab or rituximab with BODIPY or fluorescein dyes. 

Antibody Compound Used for Bioconjugation AFC 
Trastuzumab BODIPY-SGM 6a TTZ-SGM-BDP 7a 
Trastuzumab Fluorescein-SGM 6b TTZ-SGM-FLU 7b 
Rituximab BODIPY-SGM 6a RTX-SGM-BDP 8a 
Rituximab Fluorescein-SGM 6b RTX-SGM-FLU 8b 

Trastuzumab BODIPY-NHS TTZ-BDP 9a 
Trastuzumab Fluorescein-NHS TTZ-FLU 9b 
Rituximab BODIPY-NHS RTX-BDP 10a 
Rituximab Fluorescein-NHS RTX-FLU 10b 

3.1. Synthesis of Linkers 

2,3-Dibromomaleimide was efficiently activated with methylchloroformiate to afford precursor 
1. In the presence of a short polyethylene glycol chain monoprotected with a tert-butyloxycarbonyl 
group 2, 1 afforded intermediate 3 according to a previously described synthesis [22]. Deprotection 
of 3 using TFA to obtain 4, followed by conversion of bromines into phenylthioethers, gave the 
trifluoroacetic salt 5 with a 43% yield over 4 steps (Scheme S1). 

BODIPY-NHS and Fluorescein-NHS, in the presence of compound 5, afforded the desired 
BODIPY-SGM 6a and Fluorescein-SGM 6b, respectively (Scheme 1). Fluorescein-NHS was less 
reactive and necessitated the addition of N,N-diisopropyléthylamine (DIPEA) to react on 5. 
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Scheme 1. Synthesis of compounds designed for bioconjugation from precursor 5: BODIPY-SGM 6a 
and Fluorescein-SGM 6b. Abbreviations: TFA = trifluoroacetic acid, NHS = N-hydroxysuccinimide, 
SGM = second generation maleimide, DIPEA = N,N-diisopropyléthylamine. 

3.2. Bioconjugation onto mAbs 

It is known that heavily loaded mAbs aggregate or lose function [23–25]. To avoid these 
problems, we targeted a FAR of 1.5 to limit AFC aggregation. 

First, we conjugated TTZ and RTX onto disulfide bridges to linkers BODIPY-SGM 6a or 
Fluorescein-SGM 6b to yield, respectively, AFCs TTZ-SGM-BDP 7a, TTZ-SGM-FLU 7b, RTX-SGM-
BDP 8a, and RTX-SGM-FLU 8b (Table 1, Scheme 2b). We managed to obtain an average FAR of 1.5 
for each cross-linked AFC with 6 eq of TCEP and 15 eq of linkers per antibody. 

Then, TTZ and RTX were conjugated on lysines to BODIPY-NHS ester or to fluorescein-NHS 
ester to afford, respectively, AFCs TTZ-BDP 9a, TTZ-FLU 9b, RTX-BDP 10a, and RTX-FLU 10b (Table 
1, Scheme 2a). For both TTZ and RTX, while BDP-NHS required around 3 eq per mAb to achieve the 
desired FAR of 1.5, FLU-NHS necessitated 10 eq per mAb to reach the same result (Table S1). 

 
Scheme 2. Bioconjugation reactions. (a) bioconjugation onto a native mAb (lysines) using 
N-hydroxysuccinimide (NHS) ester fluorophore resulting in a randomly functionalized AFC with an 
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average of 1.5 fluorophores per mAb. (b) Bioconjugation onto a native mAb (disulfide bridges) using 
an SGM fluorogenic linker 6 and giving a cross-linked AFC with an average of 1.5 fluorophores per 
mAb. Abbreviations: BBS = borate buffer saline; TCEP = tris(2-carboxyethyl)phosphine; FLU = 
fluorescein. 

3.3. Mass Spectrometry 

Mass spectrometry analysis was used to determine the FAR distribution of all AFCs (Tables S2 
and S3). We used an electrospray ionization (ESI) source, producing multicharged ions. Compared 
to matrix-assisted laser desorption/ionization (MALDI) technology, which produces monocharged 
species, ESI sources improve resolution (Figures S1, S2 and S3). Careful study of mass spectra allowed 
us to determine the FAR distribution and, subsequently, the average FAR of each AFC (Figure 1). As 
shown in Figure 1, all tested AFCs had an average FAR of 1.5 calculated from the FAR distribution 
(Figure 1). As expected, for the same average FAR, the distribution of SGM-based AFCs 7a, 7b, 8a, 
and 8b was more homogeneous (2 species, FAR 1 and 2) compared to their lysine-conjugated 
counterparts 9a, 9b, 10a, and 10b (5 or 6 species, ranging from FAR 0 to FAR 5) [16,26,27]. 

 
Figure 1. Relative abundance of labelled antibodies in each AFC according to their fluorophore-to-
antibody ratio (FAR): (a) mAb-FLU 9b and 10b; (b) mAb-BDP 9a and 10a; (c) mAb-SGM-FLU/BDP 
7a, 7b, 8a, and 8b. The average FAR is 1.5 for all AFCs. mAb = TTZ or RTX. Abbreviations: BDP = 
BODIPY; FLU = fluorescein; TTZ = trastuzumab; RTX = rituximab. 

3.4. Antigen Binding 

As the chemical modification of mAbs should have minimal interference on antigen binding, we 
determined HER2 affinities of AFCs TTZ-SGM-FLU 7b and TTZ-FLU 9b by ELISA (Figure S4). We 
observed no difference between the two AFCs, with similar affinity to HER2 for AFC generated 
through either interchain cystein cross-linking or lysine bioconjugation. 

In parallel, we assessed the binding of AFCs RTX-SGM-FLU 8b and RTX-FLU 10b to CD20 using 
flow cytometry (Figures S5, S6 and S7). Considering their fluorescence emission data (Figure 2B), it 
is possible to compare directly the binding to CD20 antigen expressed on Daudi cells via fluorescence 
ratios (Figures S5 and S7). Flow cytometry experiments showed a significantly higher fluorescence 
ratio for AFC RTX-SGM-FLU 8b as compared to AFC RTX-FLU 10b at pH 7 (Figure S5, table S4). 
Hence, AFC RTX-SGM-FLU 8b had a higher binding to CD20 than AFC RTX-FLU 10b at pH 7. 
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Figure 2. Comparison of fluorescence emissions of cross-linked AFCs (blue curves) and lysine-
functionalized AFCs (orange curves) after normalization: (A) BDP-labelled RTX; (B) FLU-labelled 
RTX; (C) BDP-labelled TTZ; (D) FLU-labelled TTZ. Lower and higher wavelength bands correspond 
to the intrinsic emission of antibody aromatic amino acids (mainly tryptophan) and conjugated 
fluorophore emission, respectively. The excitation wavelength was 275 nm. For easier comparison, 
the sample concentration was adjusted to 50 µg/mL of protein. 

3.5. Comparative Fluorescence Emission between AFCs 

One of the common drawbacks of fluorescent protein labelling is the modification of the dye 
quantum yield occurring upon labelling [23,28,29]. Therefore, we measured and compared the 
fluorescence emission of AFCs of several mAb–dye pairs to evaluate the effect of the labelling method 
on the dye fluorescence properties (Figure 2). We first measured UV-visible absorption of AFCs 
(Figure S8). We set the excitation wavelength at 275 nm in order to be sufficiently energetic to allow 
the observation of fluorescence emission from both the dye and mAb. We observed the fluorescence 
emissions of both moieties in the AFCs, respectively, at higher and lower wavelength bands, the latter 
being due to tryptophans (Trps) inside the mAb amino acid sequence. The Trp emission did not 
change significantly between comparable samples (neither in intensity nor in the spectral shape); 
therefore, it was used as an internal intensity standard. 

The BODIPY fluorescence emission was strongly quenched in TTZ-SGM-BDP 7a and RTX-SGM-
BDP 8a compared, respectively, to AFCs TTZ-BDP 9a and RTX-BDP 10a. For the fluorescein dye, 
there was no difference in the fluorescence emission between RTX-SGM-FLU 8b and RTX-FLU 10b. 
However, there was a fluorescence decrease (ca 50%) for TTZ-SGM-FLU 7b as compared to TTZ-FLU 
9b. In cross-linked AFCs, in both antibody- and dye-dependent manners, the fluorophores could 
become more exposed to the exchange with a polar aqueous environment that contains quencher 
species like chlorides and dioxygen [30]. The partial inhibition of their fluorescence emission can 
therefore occur because of their collisions with quencher species in the buffer. This well-known 
physical quenching mechanism is independent of the chemical nature of the compound emitting 
fluorescence. We did not make the experiment in quencher-free medium because it may perturb the 
AFC stability, both colloidal and conformational. The stronger quenching of fluorescence observed 
for BODIPY may be additionally explained by its ability to form aggregates (H- or J-type), which is 
known to occur at high concentrations of BODIPY [31]. Although it cannot be excluded, the latter 
quenching mechanism seems unlikely in the present study because of (i) the low FAR used, (ii) the 
absence of fluorescence quenching for BODIPY in the lysine-functionalized AFCs, and (iii) the 
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potential sterical hindrance from linkers, which may not favor the aggregation where molecular units 
have to be aligned either in a parallel, coplanar, or head-to-tail fashion [32]. 

3.6. Stability of AFCs upon Storage 

In order to evaluate AFC stability, we compared the fluorescence emission before and after 
storage in the dark at 4 °C for 2 months (Figure S9). 

All SGM-based AFCs 7a, 7b, 8a, and 8b were very stable over time in these storage conditions. 
However, we observed discrepancies in behavior with lysine-conjugated AFCs. Indeed, while TTZ-
BDP 9a and RTX-BDP 10a were stable over time, TTZ-FLU 9b and RTX-FLU 10b showed a 
fluorescence increase upon storage, which can be explained through an mAb macromolecular 
structure reorganization, limiting dye exposure to the aqueous buffer, i.e., to the fluorescence 
quenching by chloride ions [30]. Thus, the lysine-conjugated fluorescein dye became more protected 
from the aqueous environment after two months of storage. These structural modifications could 
hamper the reproducibility of assays carried out with lysine-labelled AFCs after storage over long 
periods of time. Fluorescence emission results demonstrated that cross-linked AFCs were more 
reliable over time. 

3.7. Stability of AFCs to pH Variation 

Some biological assays, such as FcRn-binding testing (compulsory for the regulatory filing of 
any mAb-based drug), require slightly acidic conditions (pH 6) [33]. Indeed, this receptor binds mAbs 
at pH 6 in early endosomes before releasing them in the extracellular environment (neutral in terms 
of pH) and is responsible for the recycling and, therefore, the long half-life of mAbs. Thus, testing the 
affinity of the IgG–FcRn complex at pH 6 is crucial during the preclinical development of a new 
therapeutic mAb [34]. For this reason, we decided to compare the fluorescence emission of our eight 
AFCs at pH 6 and 7. To that end, we added 1% (v/v) of 2-(N-morpholino)ethanesulfonic acid (MES) 
100X to the pH 7 solutions in PBS, shifting the pH to 6. We evaluated fluorescence emission without 
further treatment (Figure S10).  

Upon examining the fluorescence emission of the dye in the AFCs, it appeared that the quantum 
yield of fluorescein-labelled AFCs 7b, 8b, 9b, and 10b was more pH-sensitive than the BODIPY-
labelled AFCs 7a, 8a, 9a, and 10a. Indeed, all AFCs containing fluorescein, a pH-sensitive dye [35,36], 
have lower fluorescence emission (approximately twofold lower) at pH 6 compared to pH 7. 
BODIPY-functionalized AFCs showed no change in their emission at pH 6. Upon examining the 
fluorescence emission spectrum of the mAb moiety, it appears that decreasing the pH did not impact 
the mAb fluorescence emission and, consequently, did not destabilize its folding at lower pH. 

4. Conclusion 

The lack of information on labelling kits and the incomplete characterization of labelled mAbs 
produced thanks to these induce reproducibility-related issues, aggregation, and, potentially, 
functional losses. To circumvent these limitations and set up a reproducible labelling method, we 
generated and compared eight AFCs based on two mAb scaffolds, two fluorophores, and two well-
known bioconjugation methods. 

We characterized the eight AFCs by mass spectroscopy and studied their fluorescence 
properties. They exhibited discrepancies between their structure, respective fluorescence emission, 
stability upon storage, or pH shift. SGM-based AFCs were more homogeneous than their lysine-
labelled counterparts. We observed a quenching of fluorescence emission for SGM linkers, which was 
dye- and antibody-dependent. However, we observed that SGM-based AFCs were more stable upon 
storage and equally stable to pH shifts when compared to their lysine-labelled counterparts. 

The better stability of SGM linkers could be of interest for future in vitro applications. We 
demonstrated that a labelling experiment does not proceed similarly according to the antibody of 
interest, and resulting AFCs exhibit discrepancies in a dye-, antibody-, and labeling-method-
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dependent manner. Furthermore, with the replacement of green-emitting fluorophores by near-
infrared dyes, this methodology could also be applied to carry out in vivo experiments. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1: synthesis of starting 
compound 5, NMR spectra, MS spectra, RAW MS spectra, TIC, UV-visible, ELISA and cytometry data. Scheme 
S1: Synthesis of compounds 1, 2, 3, 4 and 5. Table S1: Optimized equivalents for lysine conjugation. Table S2 and 
Table S3: Molecular weights of AFCs expected and observed by MS. Table S4. Statistical analysis on CD20 
binding. Figure S1: Deconvoluted spectra of AFCs and native trastuzumab. Deglycosylation was performed 
using PNGase F on lysines samples diluted to 1 mg/mL. Samples were incubated 6 h at 37 °C prior to MS analysis. 
Figure S2: Deconvoluted spectra of AFCs and native rituximab. Deglycosylation was performed using PNGase 
F on lysines samples diluted to 1 mg/mL. Samples were incubated 6 h at 37 °C prior to MS analysis. Figure S3: 
Raw mass spectra of native and deglycosylated mAbs, AFCs and associated TIC Native RTX. Figure S4. HER2 
affinities of AFCs TTZ-SGM-FLU 7b (blue curve) and TTZ-FLU 9b (orange curve) by ELISAs. Figure S5. Binding 
of AFCs RTX-SGM-FLU 8b (blue curve) and RTX-FLU 10b (orange curve) to CD20 by flow cytometry. Figure 
S6. Models representing rituximab (left) and trastuzumab (right), from PDB structures 2OSL and 4HKZ 
respectively. Heavy (blue) and light (red) chains are represented as cartoons, and lysines are visualized as cyan 
surfaces. In the V-domains, trastuzumab contains 9 lysine residues (4 in VH and 5 in VL), among which one is 
contained inside CDRH1 and 2 others in the heavy chain framework are close to the paratope. For rituximab, 
the V-domains include 12 lysine residues among which 6, all inside the heavy chain, are very close to the 
paratope. Figure S7. Flow cytometry of AFCs RTX-SGM-FLU 8b and RTX-FLU 10b at pH 7 and pH 6, n = 3.. UV-
visible absorption of AFCs. Sample concentration was adjusted to 500 µg/mL of protein. Figure S8. UV-visible 
absorption of AFCs. Sample concentration was adjusted to 500 µg/mL of protein. Figure S9. Fluorescence 
emission of fresh (orange curves) and stored in the dark at 4 °C (blue curves) AFCs based on rituximab after 
normalisation. Excitation wavelength: 275 nm. For easier comparison, the sample concentration was adjusted to 
50 µg/mL of protein. Figure S10. Comparison of fluorescence emission of AFCs based on rituximab at pH 7 (blue 
curves) and 6 (orange curves) after normalisation. Excitation wavelength: 275 nm. For easier comparison, the 
sample concentration was adjusted to 50 µg/mL of protein.  
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