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Helicity is a classically conserved quantity which can be used, in addition to and independently
of the (vector) charge and chirality, to characterize thermodynamic ensembles of massless Dirac
fermions. We identify a symmetry of the Dirac Lagrangian which is responsible, via the Noether
theorem, to the classical conservation of the helicity current. We demonstrate the existence of new
nondissipative transport phenomena, helical vortical effects, that emerge in a helically-imbalanced
rotating fermionic system. These phenomena lead to appearance of a new gapless hydrodynamic
excitation, the helical vortical wave. Our results also imply that the helical symmetry suffers from
a quantum anomaly. We conjecture the existence of a new type of triangle anomalies in QED which
involve the helicity currents in addition to the standard vector and axial currents.

Introduction. Massless or nearly-massless fermions
appear in many areas of physics, including theories of
fundamental interactions, cosmological models of early
Universe, ultra-hot relativistic plasmas, and superflu-
ids, to mention a few [1]. Many relativistic phenom-
ena are now available for experimental verification in re-
cently discovered crystals of Dirac and Weyl semimet-
als, where the massless fermions appear as quasiparti-
cle excitations [2]. The most important properties of
these excitations are usually associated with their vec-
tor (gauge) and axial (chiral) symmetries that affect, in
the case of semimetals, electromagnetic [3], thermal [4],
and elastic [5] responses of these materials. Many un-
usual features of these semimetals are associated with
the quantum anomaly that break the continuous axial
symmetry of an underlying classical theory [6]. Similar
anomalies lead to exotic transport phenomena of quarks,
mediated by the topology of evolving gluon fields in ex-
panding quark-gluon plasma of heavy-ion collisions [7].

In our paper, we remind that, in addition to the vec-
tor and axial charges, there is also a third, well-known,
and, simultaneously, often-forgotten quantity that char-
acterizes massless fermions: the helicity. The fermionic
helicity is sometimes confused with the chirality, even
though these quantities reflect different physical proper-
ties of fermions [8]. To highlight the importance of helic-
ity, we demonstrate the existence of a set of new trans-
port phenomena emerging in a gas of rotating massless
fermions, the Helical Vortical Effects (HVE), that differ
substantially from their chiral counterparts, the Chiral
Vortical Effects [9–14].

The HVE may see its applications in noncentral ul-
trarelativistic heavy-ion collisions that create a nearly
perfect fluid of quark-gluon plasma, the most vorti-
cal fluid ever known [15]. Hydrodynamics of relativis-
tic plasmas with nonzero vorticity has attracted signifi-
cant attention recently [16–20]. We uncover a new gap-
less hydrodynamic excitation, the Helical Vortical Wave
(HVW) which is analogous to the Chiral Vortical Wave

(CVW) [16]. In the existing low-density quark-gluon
plasmas, the HVW propagates faster than CVW, being
able to proliferate even in a globally-neutral plasma.
Vector-axial-helical triad for massless Dirac fermions.

We consider one species of free massless Dirac fermions in
a flat (3+1) dimensional Minkowski spacetime, described
by the Lagrangian

L =
i

2
(ψγµ∂µψ − ∂µψγµψ), (1)

where ψ = ψ†γ0 is the Dirac adjoint of the 4-component
spinor ψ and the units ~ = c = 1 are used. The 4 × 4
gamma matrices γµ are taken, for definiteness, in the
Dirac representation, with µ = 0, . . . , 3.

The classical Dirac Lagrangian (1) is invariant under
the action of the (global) vector symmetry group:

U(1)V : ψ → eiαV ψ, ψ̄ → e−iαV ψ̄. (2)

According to the Noether theorem, the symmetry (2) im-
plies the existence of the classically conserved vector cur-
rent, JµV = ψγµψ, with ∂µJ

µ
V = 0. If the fermions would

carry an electric charge e and were coupled to an electro-
magnetic field Aµ, then the global symmetry (2) would
become a local (gauge) symmetry, αV = αV (x). The cou-
pling to electromagnetism is achieved by adding a source
term with the electric current eJµV to the Lagrangian (1):
L → L + eJµVAµ. The symmetry (2) is unbroken at the
quantum level, thus reflecting the fundamental property
of the electric charge conservation in quantum theory.

The Lagrangian (1) possesses also the axial symmetry:

U(1)A : ψ → eiαAγ
5

ψ, ψ̄ → ψ̄eiαAγ
5

, (3)

where γ5 = iγ0γ1γ2γ3 is the fifth gamma matrix. The
Noether theorem gives us the classically conserved axial
(sometimes called “chiral”) current JµA = ψγµγ5ψ. The
axial symmetry (3) is broken at the quantum level, lead-
ing to nonconservation of the axial current in the presence
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of the electric E and magnetic B background fields [6]:

∂µJ
µ
A =

e2

16π2
Fµν F̃

µν ≡ − e2

4π2
E ·B, (4)

where F̃µν = 1
2ε
µναβFαβ , Fµν = ∂µAν−∂νAµ and we use

the convention ε0123 =
√
−g for the Levi-Civita tensor.

The axial charge (chirality) χ is identified with respect
to the eigenstates of the γ5 matrix, γ5ψ = χψ. Due to the
property (γ5)2 = 1, one distinguishes the right-handed
(R) and left-handed (L) chiral eigenstates, respectively:

γ5ψR = +ψR, γ5ψL = −ψL. (5)

The axial current JµA = JµR−J
µ
L represents the difference

in the currents of the right-chiral, JµR = ψ̄Rγ
µψR, and

left-chiral, JµL = ψ̄Lγ
µψL, Dirac fermions.

The chirality χ of a fermion state is intimately related
to the helicity λ of the same state. Classically, the helicity
is given by the projection of the spin s on the direction of
motion of the fermion given by its momentum p. At the
quantum level, the helicity λ is an eigenvalue, hψ = λψ,
of the helicity operator:

h =
s · p
p
≡ 1

2
γ5γ0γ · p

p
, (6)

where p = |p| is the absolute value of the momentum op-
erator p = −i∂, and si = 1

2ε0ijkΣjk is the spin operator

which is a part of the covariant tensor Σµν = i
4 [γµ, γν ].

Since the fermion is a spin 1/2 particle, the helic-
ity takes two values, λ = ±1/2. One distinguishes the
right-handed (↑) and the left-handed (↓) helicity eigen-
states [21]:

2hψ↑ = +ψ↑, 2hψ↓ = −ψ↓. (7)

The chirality and helicity are different quantities. The
chirality of a particle is equal to its helicity (for exam-
ple, a right-chiral particle has a right-handed helicity)
while the chirality of an antiparticle is opposite to its he-
licity (for instance, a right-chiral antiparticle has a left-
handed helicity). For a single fermion the vector (parti-
cle/antiparticle) and the axial (right-/left-chiral) charges
determine rigidly the helicity of this single fermion. We
will see later that for an ensemble of particles a similar re-
lation would not work: the total helicity of the ensemble
is not determined by its total vector and axial charges.

The chirality operator γ5 commutes with the helicity
operator h given in Eq. (6), while both of them com-
mute with the Dirac Hamiltonian corresponding to the
Lagrangian of massless fermions (1):

Ĥ = α · p, (8)

where α ≡ γ0γ in the original Dirac notations.
These commutation relations,

[γ5, h] = 0, [Ĥ, γ5] = 0, [Ĥ, h] = 0, (9)

indicate that all three operators possess the same eigen-
system. The last relation implies that the helicity, simi-
larly to the chirality, is a classically conserved number.

What is the symmetry of the Dirac Lagrangian (1) that
would lead – via the Noether theorem – to a classical con-
servation of the helical charge that, in turn, is suggested
by the last commutation relation of Eq. (9)? The La-
grangian (1) is invariant under a “helical” symmetry:

U(1)H : ψ → e2iαHhψ, ψ̄ → ψ̄e−2iαHh, (10)

where the helicity operator h is given in Eq. (6). One
may readily check that the helical symmetry (10) leads to
the classically conserved helicity current: JµH = 2ψγµhψ.
We introduced here the normalization factor 2 for the
helicity current in order to enforce the integer eigenvalue
2λ = ±1 for the helicity (7), similarly to the chirality (5).

Thus, the vector-axial-helical densitiesQVQA
QH

 =

∫
d3xψγ0

 1
γ5

2h

ψ. (11)

form a “triad” of the classically conserved – via the
Noether theorem – U(1) quantities of the massless Dirac
fermions described by the Lagrangian (1).[22] The be-
havior of the charges Q` and the associated currents J`
of all three quantities ` = V,A,H under the C, P , and
T inversions are shown in Table I.

QV QA QH JV JA JH Ω

C − + − − + − +

P + − − − + + +

T + + + − − − −

TABLE I. Parities of the vector (V ), axial (A), and helical (H)
charges (Q) and currents (J) of a massless Dirac fermion, as
well as the vorticity Ω, under the C-, P -, and T -inversions.
The signs +/− denote the even/odd parities.

A complete set of mode solutions of the Dirac equa-
tion, iγµ∂µψ = 0, includes the particle modes Uj and the
corresponding antiparticle modes Vj = iγ2U∗j , where j
is a cumulative label that indexes the eigenmodes. The
commutation relations (9) imply that these modes are
eigenfunctions of the Hamiltonian, chirality and the he-
licity operators, simultaneously:

ĤUj =EjUj , ĤVj =− EjVj , (12a)

γ5Uj =χjUj , γ5Vj =− χjVj , (12b)

hUj =λjUj , hVj =λjVj , (12c)

where λj = ±1/2 and χj = ±1, while Ej is the mode
energy, satisfying |Ej | = pj (for future convenience, we
allow Ej to take negative values). Using Eq. (6) and
the Dirac equation for massless particles, the relationship
between λj and χj can be readily established:

2hUj = γ5 1

p
HUj ⇒ λj =

χjEj
2|Ej |

. (13)
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The field operator is

ψ̂(x) =
∑
j

[Uj(x)b̂j + Vj(x)d̂†j ], (14)

where canonical anticommutation rules for particle b̂j
and antiparticle d̂j operators are assumed.

The operators of all three conserved charges (11) are:

: Q̂V :=
∑
j(b̂
†
j b̂j − d̂

†
j d̂j), (15a)

: Q̂A :=
∑
j χj(b̂

†
j b̂j + d̂†j d̂j), (15b)

: Q̂H :=
∑
j 2λj(b̂

†
j b̂j − d̂

†
j d̂j), (15c)

where the colons denote Wick (normal) ordering. The
particle and antiparticle states contribute differently to
the axial (15b) and helicity (15c) charges. Equations (12)
and (15) also imply that the helicities and chiralities are
indeed equal (opposite) to each other for particle (an-
tiparticle) modes.

Helical chemical potential. Similarly to the vec-
tor (15a) and axial (15b) charges, the existence of the
third classically conserved number, helicity (15c), re-
quires the introduction of the appropriate thermodynam-
ically conjugated, “helical”, chemical potential µH . Let
us recall that a right-chirality particle (antiparticle) has
a right-handed (left-handed) helicity with spins paral-
lel (anti-parallel) to its direction of motion. An ensem-
ble of an equal number of right-helicity particles (that
all have a right-handed chirality) and right-helicity anti-
particles (characterized by a left-handed chirality) has a
zero global vector (electric) charge density, 〈QV 〉 = 0,
and a zero total axial (chiral) charge, 〈QA〉 = 0, while
the global helicity charge of this ensemble is nonzero,
〈QH〉 6= 0. To describe such helicity-imbalanced, but oth-
erwise neutral systems of Dirac fermions, we introduce
the helical chemical potential µH , as the use of vector,
µV , and axial, µA, chemical potentials is not enough.

Formally, the helicity operator (6) is an ambiguous,
Lorentz-frame-dependent quantity. However, we consider
the Dirac systems at finite temperature T 6= 0 and/or in
the presence of a finite helicity with µH 6= 0 that explic-
itly break the Lorentz invariance. Therefore, our physical
environment sets a natural Lorentz frame to define the
helicity operator and removes the mentioned ambiguity.

It is customary to label the massless Dirac eigenmodes
by their chiralities. One usually distinguishes the right-
handed and left-handed “chiral Weyl cones” with the ap-
propriate chemical potentials µR and µL, respectively,
shown in Fig. 1(a). The difference in the occupation
numbers between the modes is controlled by the axial
(chiral) chemical potential, µA = (µR − µL)/2.

Since the helicity operator shares the same basis with
the chirality, we can also use the helicity to character-
ize the energy branches in an independent, and non-
equivalent, manner, Fig. 1(b). Now, the occupation num-
bers of the “helical Weyl cones” are labelled by the right-
helical (µ↑) and the left-helical (µ↓) chemical potentials.
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FIG. 1. The dispersion relations Ep = ±|p| for Dirac fermions
in (a) chiral and (b) helical basis. The chemical potentials
µR/L determine the occupation numbers for the right-/left-
handed chiralities, while the chemical potentials µ↑/↓ dictate
the densities of the right-/left-handed helicities. The spin
orientations s with respect to the fermion’s momentum p are
shown by the horizontal arrows for each energy branch.

The difference between these potentials gives the helical
chemical potential, µH = (µ↑ − µ↓)/2, which determines
the helical imbalance of the system.
Rigidly-rotating thermal states. To reveal a role of the

helical potential, we consider a gas of Dirac fermions at a
finite temperature, uniformly rotating about the axis z.

It is convenient to introduce a particular basis of kine-
matic vectors for the rigid motion with the four-velocity

u = Γ(∂t + Ω∂ϕ), Γ =
1√

1− ρ2Ω2
, (16)

where Ω is the angular velocity and Γ is the Lorentz
factor. We use cylindrical coordinates (ρ, ϕ, z).

The acceleration and vorticity four-vectors are:

a = ∇uu = −ρΩ2Γ2∂ρ, ω = ω · u = ΩΓ2∂z, (17)

where (∇uu)µ = uν∇νuµ, ωµν = 1
2ε
µνλσ∇λuσ is the

vorticity tensor. The fourth vector, which is orthogonal
to u, a and ω, is τµ = εµνλσωνaλuσ, or

τ = a · ω ·∆ = −ρΩ3Γ5(ρΩ∂t + ρ−1∂ϕ), (18)

where ∆µν = gµν − uµuν .
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The expectation value of an operator Â is given by the
thermal average over the Fock space [23, 24]:

〈Â〉 = Z−1Tr(%̂Â), (19)

where Z = Tr(%̂) is the partition function,

%̂ = exp

−β0

(
Ĥ − ΩM̂z −

∑
`=V,A,H

µ`;0 Q̂`

) , (20)

is the density operator [25], Ĥ is the Hamiltonian (8),

M̂z is the z component of the total angular momentum
operator, β0 ≡ 1/T0 and µl,0 are, respectively, the values
of the inverse temperature T0 and the chemical poten-
tials at the rotation axis ρ = 0. Using the fact that

[Ĥ, M̂z] = 0, the modes (12) are, simultaneously, the

eigenvectors of M̂z. These mode solutions have been
previously derived in Ref. [26] and are reproduced, for
convenience, in Eq. (A5) of the Supplementary Material
(SM). The SM describes also the analytical approaches
used to compute the thermal expectation values below.

The rigidly rotating gas of Dirac fermions generates
the vector, axial, and helical 4-currents (` = V,A,H),

Jµ` ≡ 〈: Ĵ
µ
` :〉 = Q`u

µ + σω` ω
µ + στ` τ

µ, (21)

along the 4-velocity uµ, the 4-vorticity ωµ, and the 4-
circumference τµ. The radial components along the 4-
acceleration vector aµ are absent for all currents (21).
Henceforth, we work in the β (thermometer) frame, by
fixing the four-velocity uµ to be equal to the one given
in Eq. (16) [27–29].

At the rotation axis (ρ = 0), the 4-velocity uµ = (1,0)
points along the time coordinate, the 4-vorticity ωµ =
(0,Ω ez) is directed along the axis of rotation (17), while
the 4-acceleration obviously vanishes, aµ ≡ 0. In a close
vicinity of the axis, the vector τµ = (0, τ ) is aligned along
the circular angular coordinate (18), τ ' ρΩ3 eϕ.

We calculate the 4-currents (21) in a high-temperature
expansion. The charge densities Q` are as follows:

QV =
µV T

2

3
+

4µAµHT

π2
ln 2 +

µ3
V + 3µV (µ2

A + µ2
H)

3π2

+
ω2 + a2

4π2

(
µV +

µAµH
2T

)
+ . . . , (22a)

QA =
µAT

2

3
+

4µHµV T

π2
ln 2 +

µ3
A + 3µA(µ2

H + µ2
V )

3π2

+
ω2 + a2

4π2

(
µA +

µHµV
2T

)
+ . . . , (22b)

QH =
µHT

2

3
+

4µV µAT

π2
ln 2 +

µ3
H + 3µH(µ2

V + µ2
A)

3π2

+
ω2 + a2

4π2

(
µH +

µV µA
2T

)
+ . . . , (22c)

where we ignore terms of order O(T−1,Ω2/T 2,Ω4). In
the limit of vanishing µH , our results for QV and QA
coincide with those found in Ref. [30].

The rotation generates the vector, axial, and helical
(` = V,A,H) spatial currents (21), both along the axis
of rotation ez‖Ω and along the circumference eϕ‖Ω×ρ:

J` = σz` Ω + σϕ` Ω2 Ω× ρ+ . . . (ρ→ 0), (23)

where the ellipsis denotes higher-order terms in the radial
distance ρ with respect to the leading terms in Eq. (23).

The vortical conductivities along the rotation axis are:

σzV =
2µHT

π2
ln 2 +

µV µA
π2

+
µ3
H + 3µH(µ2

V + µ2
A)

12π2T

+
µH(ω2 + 3a2)

48π2T
+ . . . ,

σzA =
T 2

6
+
µ2
V + µ2

A + µ2
H

2π2
+
µV µAµH

2π2T
+ . . . , (24)

σzH =
2µV T

π2
ln 2 +

µHµA
π2

+
µ3
V + 3µV (µ2

H + µ2
A)

12π2T

+
µV (ω2 + 3a2)

48π2T
+ . . . ,

where we ignored terms of order O(T−3,Ω4).
The circular conductivities in Eq. (23) are given by:

σϕV =
µV
6π2

+
µAµH
12π2T

+ . . . , (25a)

σϕA =
µA
6π2

+
µHµV
12π2T

+ . . . , (25b)

σϕH =
µH
6π2

+
µV µA
12π2T

+ . . . , (25c)

where terms of order O(T−3,Ω2) were ignored. On the
rotation axis (ρ = 0), the circumferential currents vanish,
and the current (23) points exactly along the vorticity Ω.

The vortical transport effects (23) are consistent with
the C-, P -, and T -symmetries of the vector, axial, and
helical currents and charges, as shown in Table I. All
vortical effects are dissipationless phenomena, because
the laws (23) and (24) are even under the T -inversion.

In addition to the usual chiral vortical effects (CVE’s),
the currents (23) exhibit a plethora of new helical vor-
tical effects (HVE’s). For example, the rotating dense
(charged) Dirac matter generates the helical current JH
that is linearly proportional to the vector chemical poten-
tial µV and temperature T (24). On the other hand, the
neutral Dirac matter with nonzero helicity (µH 6= 0) gen-
erates the vector (charged) current JV . Remarkably, the
mentioned helical terms, linearly proportional to a chem-
ical potential and temperature, are allowed for HVE’s
and, at the same time, are forbidden for the CVE’s by
virtue of the C-, P -, and T -symmetries.
Helical anomalies in QED. It is known that the vec-

tor σzV and axial σzA vortical conductivities (24), at a van-
ishing helical chemical potential, µH = 0, are determined
by the axial quantum anomalies (for a review, see [31]).

For example, the µV µA term in the vector vortical
conductivity σzV is generated by the axial-vector-vector
(AV V ) vertex of the axial anomaly (4), which is also
responsible for the µ2

V term in the axial vortical conduc-
tivity σzA. Both these terms share similar prefactors with
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the axial anomaly (4). The axial conductivity σzA con-
tains also the µ2

A term due to the axial-axial-axial (AAA)
triangular anomaly, as well as the T 2 term which origi-
nates from the axial-graviton-graviton (ATT ) vertex of
the mixed axial-gravitational anomaly [32].

The presence of the helical component in the vortical
conductivities (24) strongly suggests the existence of new
types of triangle anomalies which involve the helicity ver-
tex (6). For example, the leading term µHT (µV T ) in the
vector (helical) conductivity σzV (σzH) could have its ori-
gin in the new triangle V HT anomaly involving vector

(γµ), helical (γµh), and graviton (T̂µν) vertices.
The new helical anomalies must reveal themselves in

the background of a “helical vector field” AHµ which cou-

ples with the Dirac fermions via the source term AHµ J
µ
H

added to the Lagrangian (1). For instance, the quadratic
µH dependence (24) of the axial vortical conductivity σzA
implies the existence of a particular form of the mixed
axial-helical anomaly responsible for the nonconservation
of the axial current in the background of the AHµ field.

The new AHH vertex, ∂µJ
µ
A = 1

16π2F
H
µν F̃

H,µν , shares
similarity with the standard AV V vertex of the axial
anomaly (4). A detailed structure of triangular anoma-
lies with helical operators will be explored elsewhere [33].

Helical vortical waves. The emergence of the new de-
gree of freedom, the helicity, allows us to uncover new
hydrodynamic excitations in the helical sector, that are
similar to the chiral magnetic [34] and chiral vortical [16]
waves. To illustrate this fact, we take a globally neu-
tral plasma (n̄` = 0, ` = V,A,H) at finite temperature
(T 6= 0), and consider the simplest gapless excitation that
propagates along the vorticity vector at the rotational
axis, where the mean fluid velocity vanishes, v̄ = 0. The
bar over a symbol means a local thermodynamic average.

We consider linear modes in hydrodynamic fluctua-
tions. We notice that in a neutral plasma, the local den-
sities, n` = n̄` + δn` = δn`, and the local fluid velocity,
v = v̄ + δv = δv, are linear in fluctuations. The “non-
anomalous” component of the currents, n`v = δn` δv,
vanishes at the first order, and all the currents are thus
equal to their “anomalous” contributions (21).

The form of the densities (22) implies that in a neutral
plasma, the temperature fluctuations δT decouple from
hydrodynamics of charge density waves δn` at the linear
order (we set T = T̄ ). Moreover, the axial current (24)
becomes quadratic in the fluctuations, so that the chiral
vortical wave – that involves the vector and axial sectors –
does not propagate in the neutral plasma [35–38]. On the
contrary, the vector and helical densities (22) and their
vortical conductivities (24) are linearly cross-coupled and
therefore the vector-helical wave does propagate.

We consider the wave excitation along the vorticity

vector, Jz` = J
(0),z
` e−iωt+ikzz. We impose the conserva-

tion of the vector (` = V ) and helical (` = H) charges,
∂tQ` + ∂zJ

z
` = 0, which is valid in the absence of back-

ground fields. Using Eqs. (21), (22), and (24), we ar-
rive to the wave equation (∂2

t − v2
HVW∂

2
z )Q` = 0, which

describes the propagation of the helical vortical wave
(HVW). The HVW is a gapless (massless) hydrodynamic
excitation with the dispersion relation

ω = vHVW|kz|, vHVW =
6 ln 2

π2

|Ω|
T
, (26)

where vHVW is the HVW velocity. The spectrum of the
helical waves will be studied in more detail elsewhere [33].

To estimate the velocity of the HVW in ultra-
relativistic heavy-ion collisions, we take the temperature
T ' 150 MeV [39] matching the pseudocritical QCD
value [40], and the angular frequency Ω ' 6.6 MeV '
1022 s−1 revealed in a RHIC experiment [15, 42]. We
find that at these parameters, the Helical Vortical Wave
propagates with the velocity vHVW ' 2× 10−2c.

It is instructive to compare the velocity of the helical
vortical wave with its chiral analog, vCVW = 3µV Ω

π2T 2 [16,
35]. To this end, we set for the chemical potential µV =
µq ' 30 MeV [41], and obtain vCVW ' 3 × 10−3c, which
falls into a range of the original estimation of Ref. [16].
The helical wave propagates much faster than the chiral
wave since vCVW

vHVW
= 1

2 ln 2
µV
T ≈ 0.7µV /T while µV � T

in the quark-gluon plasma being created in the ongoing
heavy-ion collision experiments.
Conclusions. We stress that the fermionic helicity is

an independent characteristic of a massless Dirac fermion
similar to its vector and axial degrees of freedom. We
construct a classically conserved helicity current and find
a variety of new nondissipative helical vortical effects
(HVE) in rotating media of Dirac fermions. These effects
include, for example, the generation of the vector (heli-
cal) current in the presence of the helicity (vector charge)
density at finite temperature. The helical vortical effects
lead to the appearance of a new gapless hydrodynamic
excitation, the helical vortical wave (HVW), that involves
coherent oscillation of vector and helical densities. The
HVW propagates in a neutral plasma contrary to the
chiral vortical wave that requires the presence of matter.
In low-density quark-gluon plasmas created in ultrarela-
tivistic heavy-ion collisions, the helical wave propagates
much faster than its chiral cousin. We point out that the
helical vortical effects have an anomalous origin, and con-
jecture the existence of a set of new “helical” quantum
anomalies in QED that appear at the same footing as the
well-known axial and axial-gravitational anomalies.
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Appendix A: Supplementary material

The Supplementary Material presented herein supple-
ments the main text with various technical details. In
Subsec. A 1, we present an analysis of the properties of
the helicity charge operator : QH : under the CPT trans-
formations, which are summarized in Table I. Then, the
details regarding the computation of thermal expectation
values are given in Subsec. A 2. The details regarding
the computation of the t.e.v.s of the vector and helic-
ity charge currents are given in Subsec. A 3. Finally,
the t.e.v.s. of the components of the axial charge cur-
rent (ACC) and stress-energy tensor (SET) are derived
in Subsections A 4 and A 5.

1. Discrete symmetries of the helicity charge
operator

Taking into accout that Pψ(x)P = γ0ψ(−x), it can
be seen that:

QH
P−→
∫
d3x[ψ(−x)γ0(γ0γ5γ0−iγ · ∇x

p
)γ0ψ(−x)

=

∫
d3x[ψ(−x)(γ0γ5γ0 iγ · ∇−x

p
)ψ(−x)

=−QH , (A1)

where ∇x = −∇−x was employed.

For charge conjugation, CψC = iγ2ψ∗ and CψC =

−iψ∗γ2. However, the expression needs to be presented
in normal order, such that

: Q̂H :
C−→
∫
d3x : [ψ̂

∗
(−iγ2)(γ5γ0−iγ · ∇

p
)iγ2ψ̂∗] :

=−
∫
d3x : [ψ̂γ02hψ̂]∗ :

=

∫
d3x : tr[γ02hψ̂ψ̂]∗ :, (A2)

where the minus sign on the last line is due to changing

the operator order of ψ̂ and ψ̂.

Finally, for time reversal Tψ(t)T = −γ1γ3ψ(−t),
T ψ̄(t)T = ψ̄(−t)γ1γ3 and TγµT = (γµ)∗, we have:

QH
T−→
∫
d3xT [ψγ5γ0−iγ · ∇

p
ψ]T

=

∫
d3x[ψ(−t)γ1γ3(γ02h)∗(−γ1γ3)ψ(−t)]

=

∫
d3x[ψ(−t)γ0γ5γ0[γ1γ3γ

∗ · i∇
p

(−γ1γ3)]ψ(−t)]

=

∫
d3x[ψ(−t)γ0γ5γ0[

−iγ · ∇
p

]ψ(−t)]

=QH . (A3)

2. Modes and thermal expectation values

In this subsection, we discuss the construction of ther-
mal expectation values at finite vector, axial and helicity
chemical potentials for massless fermions under rigid ro-
tation. The basis of this construction is Eq. (19), which
requires the computation of the trace over Fock space.
This trace can be computed by first considering a full set
of mode solutions of the Dirac equation, comprised of the
simultaneous eigenfunctions of the system formed by the

Hamiltonain Ĥ, helicity ĥ, and angular momentum M̂z

operators, which appear in the expression of the density
operator %̂, introduced in Eq. (19). Specifically, the parti-
cle and anti-particle mode solutions, Uj and Vj = iγ2U∗j ,
must satisfy Eq. (12), together with:

(−i∂ϕ + Sz)Uj = +mjUj , −i∂zUj = + kjUj ,

(−i∂ϕ + Sz)Vj =−mjVj , −i∂zVj =− kjVj . (A4)

In the above, the eigenvalue of the total angular momen-
tum operator, mj = ± 1

2 ,±
3
2 , . . . , takes only half-odd-

integer values. The eigenvalue of the linear momentum
operator along the z axis is kj . The particle mode so-
lutions Uj ≡ UλE,k,m satisfying the eigenvalue equations

(12) and (A4) can be written as [26]:

UλE,k,m(x) =
e−iEt+ikz

4π

(
1

2λE/|E|

)

⊗

 √
1 + 2λk

p ei(m−
1
2 )ϕJm− 1

2
(qρ)

2iλ
√

1− 2λk
p ei(m+ 1

2 )ϕJm+ 1
2
(qρ)

 , (A5)

where q =
√
p2 − k2.

For the construction of rigidly-rotating thermal states,
Iyer [45] argued that the modes with positive co-rotating

energy Ẽj = Ej−Ωmj > 0 should be interpreted as parti-
cle modes. Following this prescription, the field operator
can be expanded with respect to the particle modes Uj
and the corresponding anti-particle modes Vj = iγ2U∗j
as follows:

ψ̂(x) =
∑

λ=±1/2

∞∑
m=−∞

∫ ∞
−∞

dE |E|θ(Ẽ)

∫ p

−p
dk

× [UλE,k,m(x)b̂λ;Ω
E;k;m + V λE,k,m(x)d̂λ;Ω;†

E;k;m],

≡
∑
j

[Uj b̂
Ω
j + Vj d̂

Ω;†
j ], (A6)

where the integral over E runs over the full real axis,

while the step function θ(Ẽ) ensures that only positive

co-rotating energy Ẽj = Ej−Ωmj > 0 particle states are
taken into account. After second quantization, the mode
decomposition in Eq. (A6) naturally introduces the rotat-
ing vacuum, |0Ω〉, which is annihilated by the operators

bΩj and dΩ
j for which Ẽj > 0.



8

The decompositions of the charge operators in

Eq. (15), together with equivalent ones for Ĥ and M̂z

given below,

: Ĥ :=
∑
j

Ej(b
†
jbj + d†jdj),

: M̂z :=
∑
j

mj(b
†
jbj + d†jdj), (A7)

allow the following relations to be derived:

%̂b̂Ω;†
j %̂−1 =eβ0(Ẽjt−µλj ;χj ;0)b̂Ω;†

j ,

%̂d̂Ω;†
j %̂−1 =eβ0(Ẽjt+µλj,−χj,0)d̂Ω;†

j , (A8)

where

µλj ;χj ;0 = µV ;0 + 2λjµH;0 + χjµA;0, (A9)

is the total chemical potential. The chirality χj and he-
licity λj are related through Eq. (13). Starting from

Eq. (A8), the following t.e.v.s can be derived [25]:

〈b̂Ω;†
j b̂Ωj′〉 =nβ0

(Ẽj − µλj ,χj ,0)δ(j, j′),

〈d̂Ω;†
j d̂Ω

j′〉 =nβ0
(Ẽj + µλj ,−χj ,0)δ(j, j′), (A10)

where nβ0 is the Fermi-Dirac factor:

nβ0
(a) =

1

eβ0a + 1
. (A11)

An extensive discussion on how to compute the t.e.v.s
of various operators using the formalism employed in this
paper can be found in Refs. [43, 44]. Briefly, we consider

operators F̂ for which the t.e.v.s can be put in the form:

〈: F̂ :Ω〉 =
∑
j

[
F(Uj , Uj)nβ0

(Ẽj − µλj ,χj ,0)

−F(Vj , Vj)nβ0
(Ẽj + µλj ,−χj ,0)

]
, (A12)

where F(ψ, χ) is a bilinear form with respect to ψ and χ.
The normal ordering is taken with respect to the rotating
vacuum |0Ω〉, i.e.

: F̂ :Ω= F̂ − 〈0Ω|F̂ |0Ω〉 . (A13)

In computing the t.e.v. in Eq. (A12), the integration over
E in Eq. (A6) can be manipulated such that the range
of E spans only the positive real semiaxis, as follows:

〈: F̂ :Ω〉 =
1

2

∑
λ=± 1

2

∞∑
m=−∞

∫ ∞
0

dp p

∫ p

−p
dk

{
[F(Uj , Uj) + F(Vj , Vj)]

[
nβ0

(|Ẽ| − µλ;χ;0) +−nβ0
(|Ẽ|+ µλ;−χ;0)

]

+ sgn(Ẽ)[F(Uj , Uj)−F(Vj , Vj)]
[
nβ0

(|Ẽ| − µλ;χ;0) + nβ0
(|Ẽ|+ µλ;−χ;0)

]}
, (A14)

where χ = 2λ sgn(Ẽ). As discussed in Ref. [44], the t.e.v.

of the operator F̂ can be expressed with respect to the
Minkowski (non-rotating) vacuum |0M 〉, in which case it
is given by:

〈: F̂ :M 〉 = 〈: F̂ :Ω〉 − 〈0M | : F̂ :Ω |0M 〉 , (A15)

where the subscript M indicates that the normal or-
dering is taken with respect to the Minkowski vacuum,
|0M 〉. The one-particle operators bMj and dMj that annihi-
late |0M 〉 can be introduced by considering the following
mode expansion:

ψ̂(x) =
∑

λ=±1/2

∞∑
m=−∞

∫ ∞
−∞

dE |E|θ(E)

∫ p

−p
dk

× [UλE,k,m(x)b̂λ;M
E;k;m + V λE,k,m(x)d̂λ;M ;†

E;k;m], (A16)

In Eq. (A15), 〈0M | : F̂ :Ω |0M 〉 represents the expectation

value of the operator F̂ expressed in normal order with re-
spect to the co-rotating vacuum, taken in the Minkowski
(stationary) vacuum state. It receives contributions only

from the modes for which ẼE < 0 [44]:

〈0M | : F̂ :Ω |0M 〉 = −
∑
λ=± 1

2

∞∑
m=−∞

∫ ∞
0

dp p

∫ p

−p
dk

× θ(−p̃) [F(Uj , Uj)−F(Vj , Vj)] . (A17)

Inserting the above into Eq. (A15) gives:
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〈: F̂ :M 〉 =
1

2

∑
λ=± 1

2

∞∑
m=−∞

∫ ∞
0

dp p

∫ p

−p
dk

{
[F(Uj , Uj) + F(Vj , Vj)] [nβ0(p̃− µλ;2λ;0)− nβ0(p̃+ µλ;−2λ;0)]

+ [F(Uj , Uj)−F(Vj , Vj)] [nβ0(p̃− µλ;2λ;0) + nβ0(p̃+ µλ;−2λ;0)]

}
. (A18)

The form (A18) is more convenient for analytical manip-
ulations.

In what follows, the computation relies on the following
steps. First, the Fermi-Dirac factors are expanded with
respect to the rotation parameter Ω, as follows:

nβ0(p̃∓ µ) =

∞∑
n=0

(−Ωm)n

n!

dn

dpn
nβ0(p∓ µ). (A19)

The sum over m appearing in Eq. (A18) is then per-
formed using the following formulas:

∞∑
m=−∞

m2nJ+
m(z) =

n∑
j=0

2Γ(j + 1
2 )

j!
√
π

s+
n,jz

2j ,

∞∑
m=−∞

m2n+1J−m(z) =

n∑
j=0

2Γ(j + 3
2 )

j!
√
π

s+
n,jz

2j ,

∞∑
m=−∞

m2n+1J×m(z) =

n∑
j=0

2Γ(j + 3
2 )

(j + 1)!
√
π
s+
n,jz

2j+1, (A20)

where, for future convenience, the following notation was
introduced:

J+
m(qρ) =J2

m− 1
2
(qρ)± J2

m+ 1
2
(qρ),

J×m(qρ) =2Jm− 1
2
(qρ)Jm+ 1

2
(qρ). (A21)

The coefficients s+
n,j can be obtained from:

s+
n,j =

1

(2j + 1)!
lim
α→0

d2n+1

dα2n+1

(
2 sinh

α

2

)2j+1

. (A22)

It can be seen that s+
n,j vanishes when j > n. For small

values of n− j ≥ 0, the first few coefficients are given by
[26]:

s+
j,j =1, sj+1,j =

1

24
(2j + 1)(2j + 2)(2j + 3),

s+
j+2,j =

1

5760
(2j + 1)(2j + 2)(2j + 3)

× (2j + 4)(2j + 5)(10j + 3). (A23)

For general values of n > j, the following recurrences can
be established:

s+
n+1,j =s+

n,j−1 +

(
j +

1

2

)2

s+
n,j ,

s+
n,j+1 =

1

(j + 1)(2j + 3)

n−j∑
k=1

(
2n+ 1

2k

)
s+
n−k,j . (A24)

The last step involves the integration with respect to k,
which can be performed using:∫ p

0

dk qn =
Γ[(n+ 2)/2]

√
π

2Γ[(n+ 3)/2]
pn+1. (A25)

3. Vector and helicity charge currents

The bilinear forms F(ψ, χ) for the vector charge cur-
rent (VCC) and helicity charge current (HCC) are:

J µV (ψ, χ) = ψγµχ, J µH(ψ, χ) = 2ψγµhχ. (A26)

By noting that Vj = iγ2U∗j , it is not difficult to see that

J µV/H(Vj , Vj) = [J µV/H(Uj , Uj)]
∗ = J µV/H(Uj , Uj).

(A27)
The above equality implies that

〈: ĴµV/H :Ω〉 = 〈: ĴµV/H :M 〉 , (A28)

since 〈0M | : Ĵµ :Ω |0M 〉 = 0 by virtue of Eq. (A17).
Furthermore, it can be seen that J µH(Uj , Uj) =
2λjJ µV (Uj , Uj), such that it is convenient to discuss the
t.e.v.s of the VCC and HCC collectively using the nota-
tion:

Ĵµ± = ĴµV ± Ĵ
µ
H . (A29)

Using the explicit expressions for the modes, given in
Eq. (A5), the following expressions can be obtained [44]: 〈: Ĵ t± :Ω〉

ρ 〈: Ĵϕ± :Ω〉
〈: Ĵz± :Ω〉

 =
1

2π2

∞∑
m=−∞

∫ ∞
0

dp

× [nβ0
(p̃− µV ;0 ∓ µH;0 ∓ µA;0)

− nβ0(p̃+ µV ;0 ± µH;0 ∓ µA;0)]

×
∫ p

0

dk

 pJ+
m(qρ)

qJ×m(qρ)

±pJ−m(qρ)

 . (A30)

We illustrate the computational procedure for the tempo-
ral component. Expanding the Fermi-Dirac factors using
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Eq. (A19), we obtain:

〈: Ĵ t± :Ω〉 =
1

2π2

∞∑
n=0

Ω2n

(2n)!

∫ ∞
0

dp p

× d2n

dp2n
[nβ0

(p− µV ;0 ∓ µH;0 ∓ µA;0)

− nβ0
(p+ µV ;0 ± µH;0 ∓ µA;0)]

×
∫ p

0

dk

∞∑
m=−∞

m2nJ+
m(qρ). (A31)

The sum over m and integration over k can be carried
out using Eqs. (A20) and (A25):

∫ p

0

dk

∞∑
m=−∞

m2nJ+
m(qρ) =

n∑
j=0

2Γ(j + 1
2 )

j!
√
π

s+
n,jρ

2j

∫ p

0

dk q2j

=

n∑
j=0

2ρ2jp2j+1

2j + 1
s+
n,j . (A32)

Upon substitution of the above result into Eq. (A31), the
summation over n and j can be reversed, in which case
the range of j is from 0 to ∞, while n runs from j to ∞.
Shifting downwards the summation over n via n→ n+j,
the following result is obtained:

〈: Ĵ t± :Ω〉 =
1

2π2

∞∑
j=0

(ρΩ)2j

2j + 1

∞∑
n=0

Ω2n(2j + 2)!

(2n+ 2j)!
s+
n+j,j

×
∫ ∞

0

dp p2 d
2n

dp2n
[nβ0(p− µV ;0 ∓ µH;0 ∓ µA;0)

−nβ0
(p+ µV ;0 ± µH;0 ∓ µA;0)] , (A33)

where integration by parts was performed 2j times in
the integral over p. In the above expression, the series
over n contributes corrections of order Ω2n to the t.e.v.
Retaining only terms up to O(Ω2), the series over n can
be truncated at n = 1. The sum over j can be performed
at each value of n using the following results:

∞∑
j=0

(j + n)!

j!
(ρΩ)2j = n!Γ2n+2, (A34)

where Γ = (1 − ρ2Ω2)−1/2 is the Lorentz factor cor-
responding to rigid rotation. Changing the integration
variable to x = β0p and using∫ ∞

0

xndx

ex−a + 1
= −n!Lin+1(−ea), (A35)

where Lin(z) is the polylogarithm function, and n =
0, 1, 2, . . . is a natural number, Eq. (A33) can be put

in the form:

〈: Ĵ t± :Ω〉 =
2ΓT 3

π2

{
Li3[−e−(µV ±µH∓µA)/T ]

−Li3[−e(µV ±µH±µA)/T ]
}

+
Γ3Ω2T

12π2
(4Γ2 − 1) ln

1 + e(µV ±µH±µA)/T

1 + e−(µV ±µH∓µA)/T
+O(Ω4).

(A36)

The high temperature limit can be extracted by noting
that

Li3(−ea) =− 3ζ(3)

4
− π2a

12
− a2

2
ln 2− a3

12
+O(a4),

ln(1 + ea) = ln 2 +
a

2
+
a2

8
+O(a4), (A37)

where ζ(z) is the Riemann zeta function. The following
result is obtained:

〈: Ĵ t± :Ω〉 = Γ(µV ± µH)

{
T 2

3
± 4TµA

π2
ln 2

+
(µV ± µH)2 + 3µ2

A

3π2
+O(T−1)

+
3ω2 + a2

12π2

[
1± µA

2T
+O(T−2)

]
+O(Ω4)

}
, (A38)

where ω2 = Ω2Γ4 and a2 = ρ2Ω4Γ4 = Ω2Γ2(Γ2 − 1).
Performing the exact same steps for the ϕ component
yields:

〈: Ĵϕ± :Ω〉 = ΩΓ(µV ± µH)

{
T 2

3
± 4TµA

π2
ln 2

+
(µV ± µH)2 + 3µ2

A

3π2
+O(T−1)

+
ω2 + 3a2

12π2

[
1± µA

2T
+O(T−2)

]
+O(Ω4)

}
. (A39)

For 〈: Ĵz± :Ω〉, the following expression is obtained:

〈: Ĵz± :Ω〉 = ±Γ2ΩT 2

π2

{
Li2[−e−(µV ±µH∓µA)/T ]

−Li2[−e(µV ±µH±µA)/T ]
}

± Γ4Ω3

24π2

(4Γ2 − 3) sinh[(µV ± µH)/T ]

cosh[(µV ± µH)/T ] + cosh(µA/T )
+O(Ω4).

(A40)

Using the following expansion for the polylogarithm:

Li2(−ea) = −π
2

12
− a ln 2− a2

4
− a3

24
+O(a5), (A41)



11

the following expansion is obtained:

〈: Ĵz± :Ω〉 = ±ΩΓ2

π2
(µV ± µH)

{

2T ln 2± µA +
(µV ± µH)2 + 3µ2

A

12T
+O(T−2)

+
ω2 + 3a2

48T

[
1 +O(T−2)

]
+O(Ω4)

}
. (A42)

The charge density Q± and azimuthal conductivity στ±
can be obtained by inverting the expansion (21). Noting
that Q± = u · 〈: J± :Ω〉 = Γ(〈: J t± :Ω〉 − ρ2Ω 〈: Jϕ± :Ω〉),
the following expression is obtained:

Q± = (µV ± µH)

{
T 2

3
± 4TµA

π2
ln 2

+
µ2
V + µ2

H + 3µ2
A

3π2
± µV µH

π2
+O(T−1)

+
ω2 + a2

4π2

[
1± µA

2T
+O(T−2)

]
+O(Ω4)

}
. (A43)

The charge conductivity can be obtained using

στ± =
τµ 〈: Jµ± :Ω〉

τ2
=

Ω 〈: J t± :Ω〉 − 〈: Jϕ± :Ω〉
Ω3Γ3

=
µV ± µH

6π2

[
1± µA

2T
+O(T−2)

]
+O(Ω2). (A44)

Finally, the vortical conductivity σω± can be obtained as
follows:

σω± =
ωµ 〈: Jω± :Ω〉

ω2
=
〈: Jz± :Ω〉

ΩΓ2

=± 2µ±T

π2
ln 2 +

µAµ±
π2

±
µ±(µ2

± + 3µ2
A)

12π2T
+O(T−2)

± µ±(ω2 + 3a2)

48π2T
[1 +O(T−2)] +O(Ω4). (A45)

The vector and helical quantities can be reconstructed
from the above results using:

〈: JµV/H :Ω〉 =
1

2
(〈: Jµ+ :Ω〉 ± 〈: Jµ− :Ω〉). (A46)

4. Axial charge current

The bilinear form F(ψ, χ) for the axial charge current
(ACC) is:

J µA (ψ, χ) = ψγµγ5χ. (A47)

Taking into account the charge conjugation symmetry,
Vj = iγ2U∗j , it can be shown that

J µA (Vj , Vj) = −[J µA (Uj , Uj)]
∗ = J µA (Uj , Uj). (A48)

The above property implies that the term on the first
line in Eq. (A12) makes a vanishing contribution to the
t.e.v.s of the components of the ACC. Using the explicit
expression for the modes given in Eq. (A5), the following
results can be obtained [44]:

J tA(Uj , Uj) =
pj

8π2|Ej |

[
2λjJ

+
mj (qjρ) +

kj
pj
J−mj (qjρ)

]
,

J ϕA (Uj , Uj) =
λjqj

4π2pjρ
J×mj (qjρ),

J zA(Uj , Uj) =
1

8π2

[
J−mj (qjρ) +

2λjkj
pj

J+
mj (qjρ)

]
. (A49)

The results above show that J tA(Uj , Uj) and J ϕA (Uj , Uj)
are odd under the simultaneous flip (kj , λj) →
(−kj ,−λj). Because of this property, Eq. (A17) shows
that

〈0M | : Ĵ tA :Ω |0M 〉 = 〈0M | : ĴϕA :Ω |0M 〉 = 0. (A50)

Thus, the t.e.v.s of the t and ϕ components of the ACC
with respect to the rotating vacuum are the same as when
expressed with respect to the Minkowski vacuum. This
conclusion does not hold true for the z component, for
which there will be non-vanishing vacuum terms in the
t.e.v. computed with respect to the Minkowski vacuum.

Using Eq. (A49), the following expressions can be ob-
tained [44]: 〈: Ĵ tA :Ω〉

ρ 〈: ĴϕA :Ω〉
〈: ĴzA :Ω〉

 =
1

4π2

∑
λ=± 1

2

∞∑
m=−∞

∫ ∞
0

dp

× [nβ0
(p̃− µλ;2λ;0) + nβ0

(p̃+ µλ;−2λ;0)]

×
∫ p

0

dk

2λpJ+
m(qρ)

2λqJ×m(qρ)

pJ−m(qρ)

 . (A51)

Employing the same steps as in Subsec. A 3, we obtain:

〈: Ĵ tA :Ω〉 =
1

4π2

∑
λ=± 1

2

2λ

∞∑
j=0

(ρΩ)2j

2j + 1

∞∑
n=0

Ω2n(2j + 2)!

(2n+ 2j)!

× s+
n+j,j

∫ ∞
0

dp p2 d
2n

dp2n
[nβ0(p− µλ;2λ;0)

+nβ0
(p+ µλ;−2λ;0)] . (A52)

The above expression can be approximated up to O(Ω2)
by taking into account the n = 0 and n = 1 terms. The
following result is obtained:

〈: Ĵ tA :Ω〉 = −ΓT 3

π2

[
Li3(−eµ 1

2
,1
/T

)− Li3(−eµ− 1
2
,−1

/T
)

+Li3(−e−µ 1
2
,−1

/T
)− Li3(−e−µ− 1

2
,1
/T

)
]

+
Γ3Ω2T

24π2
(4Γ2 − 1) ln

eµA/T (cosh µV +µH
T + cosh µA

T )

e−µA/T (cosh µV −µH
T + cosh µA

T )

+O(Ω4). (A53)
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In the high temperature limit, the following result is ob-
tained:

〈: Ĵ tA :Ω〉 = Γ

{[
µAT

2

3
+

4TµV µH
π2

ln 2

+
3µA(µV + µH)2 + µ3

A

3π2
+O(T−1)

]

+
3ω2 + a2

12π2

[
µA +

µV µH
2T

+O(T−2)
]

+O(Ω4)

}
.

(A54)

Similarly, the ϕ component is given by:

〈: ĴϕA :Ω〉 = ΩΓ

{[
µAT

2

3
+

4TµV µH
π2

ln 2

+
3µA(µV + µH)2 + µ3

A

3π2
+O(T−1)

]

+
ω2 + 3a2

12π2

[
µA +

µV µH
2T

+O(T−2)
]

+O(Ω4)

}
.

(A55)

The charge density QA and azimuthal conductivity στA
can be obtained using the relations (A43) and (A44).
The results is summarised in Eqs. (22b) and (25b), re-
spectively.

For 〈: ĴzA :Ω〉, the following expression is obtained:

〈: Ĵz± :A〉 = −Γ2ΩT 2

2π2

[
Li2(−e−µ 1

2
,1
/T

) + Li2(−e−µ 1
2
,1
/T

)

+ Li2(−e−µ 1
2
,1
/T

) + Li2(−e−µ 1
2
,1
/T

)
]

+
Γ4Ω3

48π2
(4Γ2−3)

[
eµA/T + cosh µV +µH

T

cosh µA
T + cosh µV +µH

T

+
e−µA/T + cosh µV −µH

T

cosh µA
T + cosh µV −µH

T

]
+O(Ω4).

(A56)

The large temperature expansion is easily obtained:

〈: ĴzA :M 〉 = ΩΓ2

{[
T 2

6
+
µ2
V + µ2

H + µ2
A

2π2

+
µV µHµA

2π2T
+O(T−2)

]

+
ω2 + 3a2

24π2

[
1 +O(T−3)

]
+O(Ω4)

}
. (A57)

It can be seen that the term on the last line above is
independent of the thermodynamic parameters T and µl
(l ∈ {V,H,A}). This term represents the vacuum con-

tribution 〈0M | : ĴzA :Ω |0M 〉, which was previously found

in many studies [25, 26, 44]. The t.e.v. of Ĵz computed

with respect to the rotating vacuum can be obtained by
subtracting this term. The result is:

〈: ĴzA :Ω〉 = ΩΓ2

[
T 2

6
+
µ2
V + µ2

H + µ2
A

2π2

+
µV µHµA

2π2T
+O(T−2,Ω4)

]
. (A58)

The corresponding vortical conductivity can be obtained
as shown in Eq. (A45) and the result is summarised in
Eq. (24).

5. Stress-energy tensor

For completeness of the overall presentation, we also
provide the result for the thermal expectation value
(t.e.v.) of the stress-energy tensor (SET),

T̂µν =
i

2
[Ψ̂γ(µ∇ν)Ψ̂−∇(µΨ̂γν)Ψ̂]. (A59)

The bilinear form introduced in Eq. (A12) which corre-
sponds to the SET is:

Tµν(ψ, χ) =
i

2
[ψγ(µ∇ν)χ−∇(µψγν)χ]. (A60)

It is easy to check that

Tµν(Vj , Vj) = −[Tµν(Uj , Uj)]
∗ = −Tµν(Uj , Uj). (A61)

Due to the above property, the first line in Eq. (A14)
vanishes, as was the case for the t.e.v. of the ACC dis-
cussed in Sec. A 4. The explicit expressions for the bi-
linears Tµν(Uj , Uj) are presented in Refs. [43, 44] and for
brevity, they are not reproduced here. The procedure to
compute the t.e.v.s is also detailed in these references, be-
ing identical to the one employed for the ACC in Sec. A 4.
The hydrodynamic content of the SET can be extracted
by considering the following decomposition:

〈: T̂µν :〉 = P (4uµuν−gµν)+Πµν+uµWν+uνWµ, (A62)

which contains the isotropic pressure component,

P =
7π2T 4

180
+
T 2

6
(µ2
A + µ2

V + µ2
H)

+
µ4
V + µ4

H + µ4
A + 6(µ2

V µ
2
H + µ2

V µ
2
A + µ2

Hµ
2
A)

12π2

+
3ω2 + a2

72

[
T 2 +

3(µ2
V + µ2

H + µ2
A)

π2

]
+

4µAµHµV T

π2
ln 2 +O(T 0), (A63)

the anisotropic stress contribution,

Πµν = ΠV

(
τµτν − ω

2

2
aµaν − a

2

2
ωµων

)
+ΠH(τµων + τνωµ), (A64)



13

and the heat flux:

Wµ = κττ
µ + κωω

µ. (A65)

The conductivities κτ and κω are as follows:

κτ =− 1

18

[
T 2 +

3(µ2
V + µ2

H + µ2
A)

π2

]
+O(T−1),

κω =
µAT

2

3
+

4µHµV T

π2
ln 2 +

µ3
A + 3µA(µ2

V + µ2
H)

3π2

+
µV µH(3µ2

A + µ2
V + µ2

H)

6π2T

+
ω2 + a2

12π2
[µA +

µV µH
2T

] +O(T−3,Ω4), (A66)

while the coefficient ΠH is given by:

ΠH = − µA
3π2
− µHµV

6π2T
+O(T−2,Ω2). (A67)

For massless particles, we find that ΠV = 0, while the
energy density is E = 3P .
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