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ABSTRACT  

Confocal Raman Mapping (CRM) is a powerful, label free, non-destructive tool, 

enabling molecular characterisation of human skin with applications in the dermo-

cosmetic field. Coupling CRM to multivariate analysis can be used to monitor the 

penetration and permeation of Active Cosmetic Ingredients (ACI) after topical 

application. It is presently illustrated how Multivariate Curve Resolution Alternating 

Least Squares (MCR-ALS) can be applied to detect and semi-quantitatively describe 

the diffusion profile of Delipidol®, a commercially available slimming ACI, from 

Raman spectral maps. Although the analysis outcome can be critically dependent on the 

a priori selection of the number of regression components, it is demonstrated that 

profiling of the kinetics of diffusion into the skin can be established with or without 

additionnal spectral equality constraints in the multivariate analysis, with similar 

results. Ultimately, MCR-ALS, applied without spectral equality contraints, specifically 

identifies the ACI as one of main spectral components enabling to investigate its 

distribution and penetration into the stratum corneum and underlying epidermis layers. 
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1 |  INTRODUCTION 

The dense corneocyte layers and lipid rich composition of 
the Stratum Corneum (SC) of the skin ensure a particularly 
effective defence against exogenous agents. It is well 
accepted that the resulting barrier function can strongly 
compromise the efficiency of Active Cosmetic Ingredients 
(ACI) by limiting their penetration. However, many 
commercialised ACI in skin products have cellular targets 
located in deeper layers of the skin, below the SC. As a result, 
evaluation of cosmetic products, i.e. biological testing, to 
validate the diffusion of the ACI into the skin cannot be 
circumvented. While chromatographic techniques can be 
considered as gold standards [1], enabling determination of 
the kinetics of penetration with high accuracy and sensitivity, 
large amounts of solvents are used for such analysis, making 
the method non eco-friendly (an increasing concern in the 
cosmetic industry). Moreover, tape stripping protocols 
employed for chromatographic analysis lead to lack of 
accuracy at a sub-micrometric level, due the nature of the 
mechanical separation of cell layers with adhesive films. 
Over the last 30 years, Raman spectroscopy has gained 
popularity in this specific field of application [2]. This non-
destructive, label free and reagent (solvent) free technique 
provides molecular fingerprints based on the intrinsic, 
inelastic scattering of light, when the sample is illuminated 
with a laser source without adding any tracer. Moreover, 
coupling the molecular specificity of the analysis with the 
micrometric spatial resolution offers a relevant platform for 

evaluation of local diffusion and distribution of active 
molecules [3]–[9]. 
However, bio-analytical applications of Raman spectroscopy, 
along with Near Infrared (NIR) and Fourier Transform 
Infrared (FT-IR) spectroscopy, are hampered by the 
complexity of the spectral signatures originating from 
combined contributions from all the chemical compounds in 
the analysed area. Therefore, advanced data mining 
protocols are usually necessary to extract and interpret the 
spectral information inside the large data sets generated by 
hyperspectral mapping, and pre-processing can also play a 
key role in correcting or diminishing spectral variability 
originating from several optical and instrumental effects [10]. 
Recently, the development of multivariate analysis (i.e. 
chemometrics) has greatly contributed to increasing the 
potential of spectroscopy mapping for tissue, cell, and 
surface analysis of material but also in pharmaceutical and 
cosmetic fields [3], [7], [19], [20], [11]–[18]. Principal 
Components Analysis (PCA) and K-means clustering 
methods are examples of descriptive unsupervised methods, 
widely used to better understand the hyperspectral data [21]. 
The former, PCA, is often applied to reduce the number of 
variables in a multidimensional data set and the analysis of 
the identified principal components can provide some 
information about the origin of the variability of the data. 
The second approach, K-means clustering, is a method 
commonly employed in spatial mapping applications, by 
which regions of similar spectral profiles are associated. A 
number of examples of applications of PCA and/or K-means 
clustering to understand how skin components evolve under 
specific conditions [11], [12] and to detect the presence of 
exogenous molecules [7], [13] have been reported. Such 



2 

 

methods are particularly interesting for interpretation of 
large hyperspectral maps containing hundreds to thousands 
of data points. However, they are unable to provide the 
spectral signatures of specific biochemical components and 
their respective abundance from data. Thus, to access the 
distribution of specific chemicals, it is necessary to use more 
elaborate unmixing methods. Decomposing each pixel of an 
image in a combination of estimated constituent spectra, 
according to their respective abundance, enables both 
qualitative and quantitative characterisation. Therefore, 
biomedical profiles of cells and tissues can be analysed to 
access subtle changes linked to biological mechanisms or 
pathological development [22], [23]. Among the available 
unmixing approaches, Classic Least Squares (CLS) and 
Independent Components Analysis (ICA) are methods 
commonly employed in a wide range of industrial 
applications, including monitoring the penetration of 
molecules such as penetration enhancers, vitamins or other 
active ingredients [3], [13]–[15], control of pharmaceutical 
products or detection of counterfeit medicines [16], [17]. 
While CLS uses a collection of spectral references of all 
components in the sample to estimate their respective 
abundance, ICA only requires an estimation of the number 
of components present to decompose them. Singular Value 
Decomposition (SVD) is widely used to estimate this 
parameter, while Durbin-Watson criterion and KMO index 
are also regularly used [24], [25]. However, since ICA does 
not impose a non-negativity constraint on the constituent 
spectra, the biochemical interpretation of spectral 
decomposition is more complicated.  
A recent study has investigated the penetration of Delipidol® 
through the skin by means of Non-negative Constrained 
Least Squares (NCLS) applied to skin cross sections [26]. 
Reconstructed distribution maps and penetration profiles of 
this molecule were estimated using a measured pure 
spectrum of ACI. However, this method presents some 
limitations as its performance relies on the availability of a 
large number of spectra from control samples but also on the 
feasibility of collecting highly reliable reference spectra 
from pure compounds. The use of such a reference spectral 
data base excludes the possibility of, for example, band shifts 
due to molecular interactions.  
In contrast, Multivariate Curve Resolution Alternating Least 
Squares (MCR-ALS) regression analysis is an unmixing 
method which can provide an accurate molecular 
decomposition of the spectroscopic information contained in 
the data set, while also dealing with such band shifts [27]. 
MCR-ALS has been applied to detect modification in 
ingredients and their dosing in falsified medicine [16], [18]–
[20], [28]. The method has also been applied on FT-IR and 
Raman data to study effects of pathology, anatomy, 
environmental or genetic factors [27] and on Raman data 
collected from plant cell walls to study the mechanical 
stability of cells by changing their form, their thickness or 
their composition [29]. The advantages of MCR-ALS [30] 
over other multivariate approaches lies in the possibility to 
add some constraints to the model, such as non-negativity or 
equality constraints. The equality constraints can be a known 
spectrum or/and concentration, while retaining a reduced 
number of components. Additionally, the method does not 

require large control data sets. Therefore, MCR-ALS is an 
attractive alternative to most common methods proposed to 
evaluate the efficiency and innocuity of cosmetic products, 
starting with establishing their distribution profiles of the 
ACI to study their kinetics of penetration in skin layers.  
This work aims to evaluate the MCR-ALS algorithm for the 
tracking of an ACI through the skin with Raman 
spectroscopy. The investigation addresses whether an a 
priori knowledge of the tracked molecule is necessary, and 
thus whether forcing one spectral signature to be that of the 
ACI signature changes the performance of the MCR-ALS 
approach in its data decomposition and fitting.  

2 |  Experimental data set  

The present work proposes to revisit and optimise the data 
analysis of previously published material [26]. The initial 
work was performed using NCLS and full details are 
provided in reference. Briefly, Raman spectra were acquired 
using a LabRam (Horiba Jobin-Yvon, Villeneuve-d'Ascq, 
France). Samples of Punica granatum seed oil 
hydroxyphenethyl esters, commercialised as Delipidol®, 
were kindly provided by BioEurope Solabia, France Solabia 
(Pantin, France). It is a patented formulation used as an anti-
cellulite ACI. Ethanolic solution of 5% Delipidol® has been 
topically applied for 1h, 2h and 3h onto human reconstructed 
skin samples (Episkin®, Lyon, France). Raman maps were 
collected from 20𝜇𝑚 thick cross-sections prepared using a 
cryo-microtome and placed on Raman grade CaF2 substrates. 
As mentioned in [26], ethanol is a solvent which can act as 
penetration enhancer leading to superior diffusion of 
Delipidol®. However, the aim of the experiment was to 
construct a set of Raman images with noticeable variations 
in the ACI concentrations to illustrate the application of 
multivariate analysis, i.e MCR-ALS. 

3 |  Data processing and analysis  

3.1 | Data pre-processing 

All Raman spectra were subject to pre-processing, including 
spectral denoising, baseline correction, followed by 
normalisation. All pre-processing steps were performed in 
MATLAB (R2017b).  

3.1.1 | Spectral denoising 

The spectra were first filtered with a PCA to remove the 
noise [31]. PCA is a multivariate data analysis technique that 
aims to summarise and simplify the information available 
with as little information loss as possible. This simplification 
consists of transforming the variables to ones uncorrelated 
with each other. Once the uncorrelated principal components 
have been selected, all data are projected onto them, to go 
back to the original space. Hence, the noise is reduced. Note 
that, in the spectroscopy field, it is common to reduce the 
dimensionality of the spectral data set while preserving its 
main features to make it possible to remove the noise [32], 
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[33]. In this work, 1% of the number of spectral data was 
used as the number of loadings for the data projection (more 
details in Supplementary Materials FIGURE S1).  

3.1.2 | Baseline Correction 

During spectral acquisition, instrumental phenomena, 
scattering or intrinsic fluorescence by certain molecules 
under the excitation laser can introduce a background to 
spectra. This baseline has to be corrected prior to data 
analysis.  
The Rubberband method is a well-established and previously 
employed background correction algorithm [10], [34]–[37] 
that was preferred in this study. 
The Rubberband method estimates a piecewise polynomial 
baseline. First, a set of supports points is determined, such 
that the region below these points form a convex hull. Then, 
a polynomial curve is estimated between each support point. 
The polynomial order was set to 1 to avoid overcorrection of 
spectra. Finally, the set of these estimated polynomials 
compose the baseline and they are subtracted from the 
spectra (FIGURE S2).  

3.1.3 | Normalisation 

The last step of the pre-processing corresponds to the data 
normalisation. In this work, it was achieved by calculating 
the ratio of spectra to their respective Euclidian norms. 

3.2 | Data analysis 

3.2.1 | MCR-ALS 

Unmixing methods assume that the data matrix 𝐷, of size 
𝑁 × 𝑁𝜆  where 𝑁  and 𝑁𝜆  are respectively the number of 
pixels/spectra and Raman shifts, can be expressed as a linear 
combination of pure constituent spectra, weighted by their 
respective abundance (FIGURE 1). Mathematically, the 
data 𝐷  are considered to be the product of a pure spectra 
matrix 𝑆𝑇 , composed of 𝐾  components, multiplied by the 
matrix of relative concentration 𝐶 of these 𝐾 components in 
each pixel, as following: 

𝐷 = 𝐶𝑆𝑇 + 𝐸 (1) 

where 𝐸 is the residual matrix of the linear model (1).  
 

 

FIGURE 1 – Linear mixing model 

 
Furthermore, the MCR-ALS algorithm is a self-modelling 
method. It resolves an optimisation problem through the 
minimisation of the adjustment errors 𝐸 of the linear model. 
The minimisation problem to be solved is expressed as: 

min
 

‖𝐷 − 𝐶𝑆𝑇‖ (2) 

Some constraints have been added to this optimisation 
problem to respect some logical and chemical properties, 
such as positivity of the estimated Raman spectra and their 
relative concentrations. The non-negativity constraint on 
spectra and relative concentration is introduced to the 
minimisation problem, such that equation (1) becomes: 

min
𝑆≥0,𝐶≥0

‖𝐷 − C𝑆𝑇‖2 (3) 

The minimisation problem (4) can be solved by different 

algorithms. The MCR-ALS method is one of them and the 

algorithm is designed to better fit the model to the data by 

alternatively minimising residuals by least squares fitting, 

according to the spectral matrix 𝑆  and to the associated 

abundance matrix 𝐶 . Hence, the ALS aspect of the 

implementation is expressed as: 

𝐶 = 𝐷𝑆(𝑆𝑇𝑆)−1 (4) 

𝑆𝑇 = (𝐶𝑇𝐶)−1𝐶𝑇𝐷 (5) 

Ultimately, MCR-ALS relaxes the hypothesis of the 
presence of pure components within the data and it assumes 
that each pixel is a mixed signal (FIGURE 33).  
Although the MCR-ALS algorithm aims at solving a global 
minimisation problem, its initialisation can influence the 
quality of the results. Therefore, it is preferable to use a 
method such as SIMPLISMA (SIMPLe-to-use-Interactive-
Self-Modelling-Mixture-Analysis) [25] to provide initial 
estimations of pure spectra, somehow close to the solution, 
as a starting point, rather than a random approach that could 
lead to unrealistic, outlier local minima [38]. 
 
SIMPLISMA estimates components of a mixture based on 
the purity of spectra, which is defined as a modified 
coefficient of variation: 

𝑃𝑖 =
𝜎𝑖

𝜇𝑖+𝛽
, (6) 

where 𝑃𝑖  is the purity coefficient for a given spectrum 𝑆𝑖 , 𝜎𝑖 
the standard deviation, 𝜇𝑖  the mean spectrum and 𝛽  is a 
coefficient offset between 1% and 5% of the mean. The 
higher the coefficient, the more significant is the difference 
to the mean, and therefore the component spectrum is 
considered purer. Ultimately, the purest spectra are selected 
based on the purity coefficient and also on their 
orthogonality to each other.  
 
Alternatively, if constituent spectra or/and relative 
concentrations are known, the MCR-ALS method allows the 
addition of constraints to impose this information onto the 
constructed model. It consists of including the known spectra 
into the spectral initialisation and setting the constraints on 
the spectra and relative abundances in the respective 
matrices 𝑆 and 𝐶 at each iteration. It should be noted, that, in 
the absence of calibration, concentrations 𝐶 of constituents 
are relative and their manifestation in the complex mixture is 
dependent on the relative strength of the Raman scattering 
cross sections, giving rise to the spectra 𝑆. 
The MCR-ALS algorithm converges when the difference in 
the model adjustment between two iterations is smaller than 
a set threshold. MCR-ALS was applied using a multiset 
approach, i.e. all images corresponding to 1h, 2h and 3h have 
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been decomposed simultaneously to consider the kinetics of 
Delipidol® penetration and increase the coherency of the 
component extracted to more specifically reconstruct semi-
quantitative distribution maps.  
 
It should be noted that the application of added constraints 
such as non-negativity of spectra/abundances or 
correspondence of one component with a reference spectrum 
and the multiset approach promote singularity of the solution 
and reduces its rotational ambiguity [39]. The MCR-Bands 
algorithm described in [39] makes it possible to estimate the 
rotational ambiguity of a solution. It consists of calculating 
the relative signal contribution of every component of the 
maximum and minimum band boundaries of the feasible 
solutions and computes their differences. In the case where 
there is no rotational ambiguity, the estimated maximum and 
minimum band boundaries are close to the solution and the 
computed difference is close to 0. In this work, MCR-ALS 
and MCR-Bands algorithms have been applied using the 
scripts from MCR-ALS GUI 2.0 software in Matlab [40]. 

3.2.2 | Number of components 

Components are estimated Raman signatures used to 
decompose each pixel of the image. Therefore, it is necessary 
to set the number of components 𝐾 to be estimated in the 
MCR-ALS computation. The parameter 𝐾  plays a critical 
role in the decomposition of spectral maps, and the difficulty 
with biological samples lies in the fact that this number is 
unknown and difficult to estimate. Therefore, in order to 
reduce the subjectivity, different mathematical approaches 
are available to provide an estimation and guide the analysis. 
The most commonly used is SVD. Two other criteria, the 
Durbin-Watson criterion [25] and the Kaiser-Meyer-Olkin 
Index (KMO) [24] have also been recently proposed.  

All these criteria have been applied to the evaluation of 

Raman maps of reconstructed skin samples exposed to 

Delipidol®. While SVD is determined directly from the data 

maps, the other two decision criteria are based on 

SIMPLISMA outputs using a number of constituents ranging 

from 1  to 20 . Further information can be found in 

supplementary data. 

3.2.3 | Analysis tools 

Some statistic tools are needed to analyse the data 
decomposition resulting from MCR-ALS. Correlation 
coefficients are used to quantitatively compare spectral 
components and highlight any possible matches to reference 
spectra, while histograms of experimental residuals are used 
to qualitatively evaluate the model fitting. They are 
described below: 
 
- Correlation coefficient – The correlation coefficient 
measures the linear link between several variables. Two 
components are positively and negatively correlated if their 
correlation coefficient is respectively close to 1 and -1. Note 
that a null value does not imply independence. Moreover, the 
squared correlation coefficient, known as coefficient of 

determination, corresponds to the percentage of variations in 
the spectral values of a component that can explain the 
variations of the spectral values of another one. In other 
words, this squared value corresponds to the recovery rate of 
spectral bands between two components. In general, a 
correlation coefficient superior to 0.9 in absolute value is 
statistically considered as very high correlation, and 
therefore such a correlation coefficient is considered to be 
satisfactory, since more than 80% of variations of spectral 
values will be interrelated [41]. 
 
- Histogram of residuals – A histogram is a graphical 
representation to visualise the data set repartition. All ranges 
of values are binned in classes, categorised according to the 
number of values included in them. In other words, for this 
work, all Raman intensities of mean model residuals are 
organised in a series of intervals and the number of Raman 
shifts having a Raman intensity included in each of them is 
associated to them. The histogram shape provides some 
information about the value distribution; in particular, a 
Gaussian shape means that the residual noise is Gaussian.  

4 |  RESULTS AND DISCUSSION 

4.1 | Spectral characterisation 

 

FIGURE 2 – Comparison of data mean spectrum at each exposure 

time to the ACI with the reference spectrum of the ACI. A: control; 

B: 1h; C: 2h; D: 3h and E: pure spectrum of Delipidol®. Data are 

pre-processed with the Rubberband baseline. 

 
Delipidol® has a characteristic Raman signature, with a 
combination of intense specific peaks easily discernible and 
weaker spectral bands partially overlapping with skin 
features (FIGURE 2-E). As such, it is an interesting 
candidate to evaluate unmixing approaches such as MCR-
ALS. Spectral characterisation of Delipidol® is presented in 
FIGURE 2-E, showing dominant spectral features at 1630 
cm−1 (C═C stretching of the aromatic ring), 1254 cm−1 
(C─C─C) and 1162 cm-1. Other weaker bands at 1441 cm-1, 
1393cm-1, 1307 cm-1, 1251 cm-1, 1207 cm-1, 1076 cm-1, 991 
cm-1, 969 cm-1, 865 cm-1, 843 cm-1 and 827 cm-1 can also be 
observed. 



 5 

 

Mean spectra of Raman maps of control, 1h, 2h and 3h 
exposure time are also illustrated in FIGURE 2 as an overall 
initial comparison of spectra. For illustration purposes, mean 
spectra presented have been obtained using the pre-
processing strategy described above. In addition to those of 
Delipidol®, Raman spectra collected from skin samples 
exhibit a complex signature originating from combined 
spectral features of physiological constituents. The amide I 
band located at 1655 cm-1 indicates the skin is predominantly 
composed of proteins such as keratin and other cellular 
proteins [11]. Content may vary between the upper layers 
corresponding to SC and other layers containing higher 
proliferating cell density (e.g. basal layer). The position and 
shape of the amide I band reflects changes in protein 
composition but also in their conformation (secondary 
structure) [42], and therefore can substantially vary across 
the skin tissue section. Similarly, spectra contain a wealth of 
information about lipids, contributing peaks identified at 
1064 cm-1, 1129 cm-1 and 1297 cm-1 but also bands of DNA 
and nucleic acids observed at 783 cm-1 (O–P–O), 813 cm-1 
(O–P–O), 1086 cm-1 (O–P–O), 1252 cm-1 (guanine, cytosine), 

1324 cm-1 (DNA) and 1340 cm-1 (DNA) [42]. However, 
Delipidol® exhibits a characteristic Raman signature, with a 
combination of intense specific peaks and weaker spectral 
bands (FIGURE 2-E), which are easily discernible 
superimposed on the spectrum of skin (FIGURE 2-

A,B,C,D) even in the mean spectra of the skin cross-section, 
in which its localised contribution is naturally diluted. As a 
result, each pixel of the image can be considered a complex 
spectral mixture corresponding to the local biochemical 
composition tempered with contributions from the ACI. 
MCR-ALS applied to Raman maps is expected to deliver 
more specific information about its distribution in the 
different layers of the epidermis and consequently enable 
construction of penetration profiles. 

4.2 | MCR-ALS applied to ACI penetration study using 

𝑲 = 𝟒 components with non-negativity constraint only 

This section presents results of MCR-ALS applied only with 
non-negativity constraints on spectra and relative  

 

FIGURE 3 – MCR-ALS applied with only non-negativity constraints for 𝐾 = 4 (A) and 𝐾 = {3, 8} (B, C) and with an additional spectral 

equality constraint on the ACI for 𝐾 = 4  (D) on pre-processed data; A1-B1-C1-D1: Spectra estimated with 𝐾  components initialized by 

SIMPLISMA (offset for clarity); A2-B2-C2-D2: Reconstructed maps of Delipidol® in skin samples at 3h exposure time. Maps obtained using 

estimating spectrum of ACI 𝑆1 (A2-B2-C2) or referential spectrum 𝑆1(D2).  
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FIGURE 4 – Reconstructed concentration distribution maps of 𝑆1, 

𝑆2 and 𝑆3 in skin samples at 3h exposure time. They resulted from 

MCR-ALS applied only with non-negativity constraints applied 

with 𝐾 = 4. 

 
concentrations and no ACI reference to guide the algorithm, 
using 𝐾 = 4  components. The 4  estimated spectral 
components are displayed in FIGURE 3-A, with 
corresponding reconstructed distribution map for Delipidol®. 
Results are illustrated with data subjected to Rubberband 
baseline correction, derived from a multiset analysis, 
including maps from 1h, 2h and 3h.  
 
Spectral components are identified as 𝑆𝑖 for 𝑖 = 1, … , 4 ∈  ℕ 
(FIGURE 3-A1) and their display order has been organised 
so that they are more easily readable and comparable. 
Compared to the reference spectrum of Delipidol®, spectral 
component 𝑆1  exhibits strong similarities. Although a 
shoulder at 1661 cm-1 suggests that a small residual feature 
from the amide I band remains, the MCR-ALS applied with 
only non-negativity constraints to spectra and abundances 
was able to identify a spectral component with strong 
similarities to the pure spectrum of the ACI studied 
(correlation coefficient of 0.9746), highlighting that the 
reference spectrum is not necessary to construct accurate 
distribution maps. Distribution maps for components 𝑆2, 𝑆3 
and 𝑆4  obtained with 𝐾 =  4 are displayed in FIGURE 4. 
These components exhibit  features related to biochemical 
constituents of the skin, such as lipids, proteins and nucleic 
acids [11], consistent with those observed in the mean 
spectra of FIGURE 2. Although it is not the subject of the 
current study, the combination of Raman/MCR-ALS can be 

further employed to study the skin composition, and any 
changes to it as a result of permeation of the ACI. 
Moreover, the value  of the differences of the relative 
contributions of the 4 components of maximum and 
minimum band boundaries estimated by application of the 
MCR-Bands algorithm are respectively 1.16 × 10−3 , 
8.00 × 10−3, −5.81 × 10−3 and −25.61 × 10−3 for 𝑆1, 𝑆2, 
𝑆3  and 𝑆4 , indicating that the rotational ambiguities are 
negligible. 
 
For each exposure time, penetration profiles of the ACI were 
averaged over all samples (black curves in FIGURE 5) 
displaying the permeation of Delipidol® into the SC for the 
1h experiment, followed by progressive diffusion into deeper 
layers of the epidermis after 2h and 3h exposure with a 
concomitant increase in the outer layer (0-20 µm). It was 
observed that average penetration profiles calculated using 
the MCR-ALS applied with only non-negativity constraints 
were close to the profiles obtained with a more constrained 
approach such as NCLS [26] (FIGURE 5). 

4.3 | Comparison of numbers of K parameters 

The choice of 𝐾 = 4 in section 4.2.2 was rather subjective 
and based on the similarity of 𝑆1 with the pure spectrum of 
Delipidol®. However, the number of parameters chosen can 
have an impact on the model performance.  
 
It was anticipated that selecting a number of components for 
the MCR-ALS applied to biological samples would be a 
difficult task. Despite the existence of criteria to support the 
analyst in this decision, the observation of SVD, DWC and 
KMOI all suggested that a high number of components 
would be necessary to encompass the entire biochemical 
spectral variability (FIGURE S4). However, the purpose of 
using advanced unmixing methods is to provide simplified 
information about the distribution of Delipidol® which is 
easily interpretable. Moreover, the criteria described took 
into account the global information contained in the spectral 
maps and they did not necessarily directly reflect the optimal 
number of components to accurately and specifically detect 
and localise the ACI onto chemical maps. 
 
Plots obtained using SVD, DWC and KMOI are provided in 
FIGURE S4. There is no unambiguous decision about the 
optimal number of components to use for the spectra 
decomposition. While SVD suggests 11 components would 
be necessary to reach 95% of explained variance, DWC and 
KMO tends to indicate that numbers between 4 and 8 could 
capture the relevant spectral information contained in Raman 
maps. Here are presented results from different sizes of the 
spectral base (𝐾 = {3, 8}) to better understand the impact of 
the parameter 𝐾  on the spectral unmixing and the model 
fitting to the data. Hence, in order to evaluate the reliability 
of MCR-ALS, the correlation coefficients have been 
computed to estimate similarities between spectral 
components and the reference spectrum of Delipidol®, and 
the interpretation of experimental residuals distribution by 
means of histograms has been explored. 

𝑺𝟏 

𝑺𝟐 

𝑺𝟑 
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FIGURE 5 – Average penetration profiles of the Delipidol® for 1h, 2h and 3h of exposure time obtained by MCR-ALS applied with (red) versus 

without (black) spectral equality constraints on the ACI and using K = 4. The average concentrations obtained by NCLS are illustrated by blue 

points. 

 

TABLE 1 – Correlation coefficients between estimated spectra 𝑆𝑖=1,…,𝐾  obtained by MCR-ALS applied with and without spectral equality 

constraints on the ACI (𝐾 = {3, 4}) from data corrected with Rubberband method. 

 𝑲 = 𝟑 𝑲 = 𝟒 

Spectral equality constraint  

No spectral                                    on the ACI 

equality constraint 

𝑺𝟏 

Delipidol® 
𝑺𝟐 𝑺𝟑 

𝑺𝟏 

Delipidol® 
𝑺𝟐 𝑺𝟑 𝑺𝟒 

𝑺𝟏 0.9753 0.0512 0.3452 0.9746 0.3218 0.1393 0.1821 

𝑺𝟐 0.0054 0.9994 0.4070 0.2518 0.9983 0.4214 0.3911 

𝑺𝟑 0.2664 0.4425 0.9971 0.0681 0.4535 0.9979 0.7216 

𝑺𝟒  0.1110 0.4206 0.6790 0.9999 

 

TABLE 2 – Mean concentration of estimated ACI after 1h, 2h and 3h exposure time obtained by MCR-ALS applied with and without spectral 

equality constraints on the ACI for 𝐾 = {3, 4} from data corrected with Rubberband method. 

 

 

 

 

 

 

 

 

 

 

 
 

  𝑲 = 𝟑 𝑲 = 𝟒 

  1h 2h 3h 1h 2h 3h 

No spectral 

equality 

constraint 

𝟎 − 𝟐𝟎𝝁𝒎 0.0635 0.5439 0.8050 0.0691 0.5364 0.8098 

𝟐𝟎 − 𝟒𝟎𝝁𝒎 0.0012 0.1737 0.3477 0.0067 0.1753 0.3498 

𝟒𝟎 − 𝟏𝟏𝟎𝝁𝒎 0.0058 0.0129 0.1532 0.0036 0.0115 0.1623 

Spectral 

equality 

constraint on 

the ACI 

𝟎 − 𝟐𝟎𝝁𝒎 0.0534 0.5072 0.7643 0.0586 0.4995 0.7638 

𝟐𝟎 − 𝟒𝟎𝝁𝒎 0.0001 0.1553 0.3246 0.0013 0.1567 0.3247 

𝟒𝟎 − 𝟏𝟏𝟎𝝁𝒎 0.0016 0.0043 0.1343 0.0009 0.0049 0.1426 

𝐾 = 4 
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Spectral components 𝑆𝑖  for 𝑖 = 1, … , 𝐾 ∈  ℕ  with 𝐾 =
  {3, 8}  used for the MCR-ALS applied with only non-
negativity constraints are displayed in FIGURE 3-B1 and 
FIGURE 3-C1, with corresponding reconstructed 
distribution maps for Delipidol® in FIGURE 3-B2 and 
FIGURE 3-C2. While distribution maps for 3h exposure 
time appeared similar for 𝐾 =  3 and 𝐾 =  4, the outcome 
with 𝐾 =  8 diverged for the first 2 models with clearly an 
significantly lower abundance of Delipidol® in the 20 µm, 
corresponding to the SC. Observations of spectral 
components highlighted that, with 𝐾 =  8 , features of 
Delipidol® at 1630 cm-1, 1442 cm-1, 1254 cm-1 and 1162 cm-

1 have been also found in 𝑆2  along with other skin features. 
It is an example of over decomposition of the spectral 
component of interest. While increasing the number of 𝐾 
parameters should deliver overall a better fitting of the model, 
presently the Delipidol® is no longer considered as single 
pure component thus no interpretation of its distribution can 
be made. 
 
In comparison 𝑆1  components respectively calculated with 
𝐾 =  3 and 𝐾 =  4 appears quite comparable. To estimate 
the degree of similarity correlation coefficients of estimated 
spectral components using 𝐾 = {3, 4}  are presented in 
TABLE 1 (table including 𝐾 =  8  is provided in 

Supplementary Materials – TABLE S1). To be noted that 𝑆1 
Delipidol® refers to the pure spectrum of the ACI. It is 
observed that the correlation coefficients between the 
spectral component of Delipidol® estimated from the 
algorithm using only the non-negativity constraints and the 
reference pure spectrum used (𝑆1 Delipidol®) are really high, 
with respective values of 0.9753, 0.9746 for 𝐾 = 3 and 𝐾 =
4. Moreover, the estimated spectral component 𝑆2 and 𝑆3 for 
𝐾 = 3  and 𝐾 =  4  do not match with the reference ACI 
spectrum (correlation coefficients are respectively 0.0054, 
0.2664 and 0.2518, 0.0681), suggesting the component 
𝑆1 can be considered close to spectroscopically pure. In 
contrast, 𝑆2  for 𝐾 =  8  has a relatively large correlation 
coefficient of 0.8801 with the signature of Delipidol® 

(Supplementary Materials – TABLE S1). As mentioned 
above, this is a result of over-decomposition of the spectral 
signatures resulting with presence of Delipidol® features in 
multiple spectral components.  
 
The study investigates the applicability of MCR-ALS to 
construct distribution maps of the ACI as function of time. It 
is expected that a gradient will be observed from the surface 
of the skin (SC) towards deeper layers of the viable epidermis 
(VE). Therefore, the comparison criteria between models 
relies on the abundance of Delipidol® according to depth. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

FIGURE 6 – Histograms of mean residuals obtained by MCR-ALS applied with (A-B) and without (C-D) spectral equality constraints on the 

ACI for 𝐾 = {3, 4} from data preprocessed with Rubberband baseline correction.  
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Here, numerical values of the relative mean concentrations 
for different depth ranges 0-20µm, 20-40µm and 40-110µm 
for 𝐾 = {3, 4}  have been calculated and are presented in 
TABLE 2 (top part for analysis using only non-negativity 
constraints). These values are also available for 𝐾 = 8 in 
Supplementary Materials – TABLE S2. For 𝐾 = 3 and 𝐾 =
4 sensibly identical results are obtained for 1h, 2h and 3h. 
For instance, after 3h of exposure, relative mean respective 
concentrations are 0.8050 and 0.8098 in the 0-20 µm range. 
Delipidol® reached inferior layers of the epidermis 
progressively (40-110µm) and remained very concentrated 
on the upper skin layer (0-20µm) after 3h. 
 
FIGURE 6-C, D presents the distributions of model 
residuals obtained by MCR-ALS using only non-negativity 
constraints for 𝐾 = {3, 4} . The analysis of residuals can 
bring additional insights about the impact of the number of 
components 𝐾  used. While for 𝐾 = 4  residuals display a 
nearly normal Gaussian distribution, which can correspond 
with the remaining noise,  the shape of the distribution of 
residuals for 𝐾 =  3 is composed of two Gaussian, which 
tends to indicate that not all spectral components have been 
extracted from the data. The right-hand Gaussian part of the 
distribution can be interpreted as residual noise, whereas the 
left Gaussian indicates that some data variability is 
mathematically not modelled. Increasing to 𝐾 =  4 restores 
a unimodal Gaussian distribution, suggesting that no other 
significant spectral components remain in the residuals. 
Moreover, it is noted that the Gaussian distribution of the 
residuals shifts to more centered values when 𝐾 is increased, 
with a central tendency shifting from approximately 
−0.85 × 10−4  to −0.25 × 10−4  and finally 0.05 × 10−4 , 
for respectively𝐾 =  3, 𝐾 =  4 and 𝐾 = 8. It suggests there 
is a mathematical overexpression of some data variability in 
the estimated model when K is too small.  
 
MCR-ALS enables extraction of the spectrum of ACI from 
the data set collected from the skin samples. Selecting too 
few components leads to an unsatisfactory model in terms of 
fitting errors. While the correlation coefficients (TABLE 1) 
and relative mean concentrations (TABLE 2) indicate that 
𝐾 = 3  and 𝐾 = 4  deliver sensibly similar results, the 
experimental residuals suggest optimal fitting is obtained 
with 4 components. Ultimately, 𝐾 = 4 is a good trade-off 
between an acceptable fitting error and a coherent spectral 
decomposition. 

4.4 | Comparison of MCR-ALS applied with and without 

spectral equality constraints on the ACI 

Applying spectroscopic techniques for the analysis of 
penetration and/or permeation profiles of ACIs in the 
cosmetics field generally means the products themselves are 
available, and that pure, or reference, spectra can be collected 
before application onto the skin. In terms of application of 
multivariate analysis protocols, these reference spectra can 
be either employed to guide the analysis, by using them as 
spectral equality constraints, or to validate the analysis. In 
the following, the reference spectrum of Delipidol® is used 

as a spectral equality constraint on the ACI to help MCR-
ALS to estimate its relative concentrations. 
As mentioned in [27], when comparing methods with and 
without spectral equality constraints, it should be kept in 
mind that inserting more constraints in the MCR-ALS 
algorithm will naturally generally lead to a higher lack of fit 
due to a set of conditions to be respected that diminishes the 
flexibility of the model to find the optimal solution. Indeed, 
as MCR-ALS adjusts the fitting of spectral components 
through an iterative algorithm, using a fixed reference 
spectrum of a component leads to fewer degrees of freedom 
than an approach using only the non-negativity constraints. 
This should be considered when analysing the residuals. 
Adding some spectral equality constraints on the ACI can, 
however, in some situations, reduce overfitting to spectra 
that MCR-ALS would estimate as pure. but that could 
actually have a mixed character. For the current application, 
MCR-ALS was applied with 𝐾 = 4 components and with a 
spectral equality constraint on the first component of the 
model, 𝑆1, fixed as a measured pure spectrum of Delipidol®, 
while components 𝑆2 , 𝑆3  and 𝑆4  were calculated by the 
algorithm. As expected, adding a spectral equality constraint 
on 𝑆1 leads to higher residuals (FIGURE 6). The analysis 
using a spectral equality constraint on the ACI indicates 
distributions closer to normal, but the fitting error is tenfold 
higher (10−3) compared to that not including it (10−4). The 
lack of fit [27], [40] was also calculated. The estimated 
model obtained by MCR-ALS applied without any spectral 
equality constraint had a lack of fit of 5.21%. As expected, 
adding a spectral equality constraint on the ACI in the 
analysis increased this lack of fit by 2.17%. 
 
Nevertheless, the estimated spectral components and the 
reconstructed distribution maps for Delipidol® displayed in 
FIGURE 3-D do not exhibit any noticeable difference 
compared to the ones obtained by MCR-ALS applied 
without spectral equality constraint (FIGURE 3-A). Indeed, 
correlation coefficients for 𝑆2 , 𝑆3  and 𝑆4  between 
approaches using spectral equality constraint on the ACI or 
not were close to 1, with respective values of 0.9983, 0.9979 
and 0.9999 (TABLE 1). The spectral components estimated 
by applying a spectral equality constraint or not in the MCR-
ALS analysis were found to be similar, for this application. 
This is understandable, as the component S1 from the MCR-
ALS applied without spectral equality constraint on ACI is 
really close to the reference spectrum of Delipidol®, and thus 
the mathematical decomposition for other components leads 
to similar outcomes. This is confirmed by the trends in 
penetration profiles which are comparable for both 
approaches (FIGURE 5). Both average penetration profiles 
present the same higher accumulation of Delipidol® in the SC 
and progressive decrease in deeper layers (TABLE 2). Note 
also that the kinetics of penetration described in this paper 
are close to the ones previously obtained with an NCLS 
approach [26] (FIGURE 5). However, comparison of 
relative concentrations highlights a slightly lower estimated 
abundance for the analysis using an additional spectral 
equality constraint on the ACI. For example, in the SC (0-20 
µm), when only non-negativity is applied to spectra and 
relative concentrations, estimated abundances were 0.0691 
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(1h), 0.5364 (2h) and 0.8098 (3h), while when a spectral 
equality constraint on the ACI is added to the analysis, values 
of 0.0586, 0.4995 and 0.7638 were found. Despite this slight 
difference of relative abundances, the similarity of kinetics 
of penetration for both approaches support the possibility of 
using an MCR-ALS without spectral equality constraint on 
the ACI for our application. 
 
In the field of cosmetic research and development, Raman 
spectroscopy can be a powerful tool to confirm a molecule is 
able to diffuse trough the main barrier function of the SC and 
reach deeper cellular targets, without the requirement to 
access absolute concentrations. Images are a highly relevant 
means of representation of results with high impact in the 
industrial sector, especially in marketing, enabling 
comparative studies between different conditions, which is 
essential to support for example optimisation of formulations 
for skin care products. Presently, for the case of Delipidol®, 
both approaches applied with and without spectral equality 
constraint on ACI enable to reach converging results as 
reconstructed images convey the same information 
(FIGURE 2-A,B,C,D) and it may be considered that the 
method addresses current needs for improved capabilities of 
Raman spectroscopy for skin analysis. 
 
Previously NCLS was explored to probe the distribution of 
the ACI, rather than the specific skin components [26]. The 
approach remain to model as closely as possible the 
underlying skin contribution in spectra to more specifically 
extract Delipidol® relative concentrations. MCR-ALS, both 
approaches applying spectral equality constraint or not on 
the ACI, appears easier to employ, due to the low 
requirement for reference spectra to perform the analysis. In 
comparison, methods such as NCLS are strongly limited by 
their dependence on the degree of resemblance between the 
pure spectra and the constituents found in the skin, making 
the analysis less adaptive and thus prone to fitting errors. 
 
MCR-ALS appears as potentially powerful alternative for 
unmixing of spectral component and investigation of the 
distribution of an ACI within skin cross sections. The 
approach using a spectral equality constraint on the ACI is 
quite relevant when a priori knowledge of the compound of 
interest is available. Adding a constraint of fixing one of the 
components with its pure spectrum enables to profile its 
distribution within Raman maps and reduces the rotational 
ambiguity of the results [39]. For the case of Delipidol®, it is 
demonstrated that, despite a slight loss in the fitting quality, 
the advantage lies in the absence of ambiguity in the results. 
 
However, the use of a spectral equality constraint in MCR-
ALS could also suffer from limitations in the case where the 
ACI spectrum is changed because of, for example, the 
influence of the local environment as it progresses through 
the layers of the skin, crystallisation, accumulation in 
reservoirs, or metabolisation, or indeed when the target of 
the active is the molecular constituents of the skin itself. In 
such cases, the outcome of analysis constrained or not in 
spectral equality can be expected to diverge, and optimised 

protocols for the more flexible MCR-ALS without 
supplementary constraint could be more suited.  

5 |  CONCLUSION 

Multivariate analysis provides promising unmixing methods 
to understand and track the kinetics of diffusion of ACI in 
skin samples from Raman data. In this work, results confirm 
that Raman microspectroscopy coupled with MCR-ALS is a 
powerful tool to detect and monitor an ACI penetration in the 
upper layers of the skin. It is observed that for the case of 
Delipidol® an a priori knowledge on the spectrum of ACI was 
not necessary for the analysis when using the MCR-ALS 
approach. The method applied without spectral equality 
constraint on the ACI was able to estimate a characteristic 
spectrum very close to that of ACI.  
Ultimately, MCR-ALS decomposition provides similar 
penetration profile estimations to the previously tested 
NCLS, with the great advantage that it is a self modelling 
approach that does not require complex and sometimes 
unreliable large reference database of spectra from pure 
components or an extended number of control data set 
collected from control maps. In other words, the MCR-ALS 
coupled to Raman mapping appears to be an efficient tool to 
analyse and evaluate the effectiveness of ACI penetration 
and could support further transfer of the technique into the 
cosmetics industry. 
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