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Abstract  

The Coronavirus Disease 2019 (COVID-19) pandemics-triggered mortality is significantly 

higher in older than in younger populations worldwide. Alzheimer’s Disease (AD) is related to 

aging and was recently reported to be among the major risk factors for COVID-19 mortality in 

older people. The symptomatology of COVID-19 indicates that lethal outcomes of infection 

rely on neurogenic mechanisms. The present review compiles the available knowledge pointing 

to the convergence of COVID-19 complications with the mechanisms of autonomic 

dysfunctions in AD and aging. The severe acute respiratory syndrome coronavirus-2 (SARS-

CoV-2) is prone to neuroinvasion from the lung along the vagus nerve up to the brainstem 

autonomic nervous centers involved in the coupling of cardiovascular and respiratory rhythms. 

The brainstem autonomic network allows SARS-CoV-2 to trigger a neurogenic switch to 

hypertension and hypoventilation, which may act in synergy with aging- and AD-induced 

dysautonomias, along with an inflammatory “storm”. The lethal outcomes of COVID-19, like 

in AD and unhealthy aging, likely rely on a critical hypoactivity of the efferent vagus nerve 

cholinergic pathway, which is involved in lowering cardiovascular pressure and systemic 

inflammation tone. We further discuss the emerging evidence supporting the use of i) the non-

invasive stimulation of vagus nerve as an additional therapeutic approach for severe COVID-

19, and ii) the demonstrated vagal tone index, i.e., heart rate variability, via smartphone-based 

applications as a non-serological low-cost diagnostic of COVID-19. These two well-known 

medical approaches are already available and now deserve large-scale testing on human cohorts 

in the context of both AD and COVID-19.   
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The COVID-19 is a new infectious disease consisting primarily of acute respiratory 

distress, caused by a novel coronavirus Severe Acute Respiratory Syndrome CoronaVirus-2 

(SARS-CoV-2). COVID-19 is characterized by the high mortality rate among the older 

subjects: up to 22.9% in people above 90 years in Italy versus less than 2% in the general 

population [1]. The elderly population also suffers a higher prevalence of Alzheimer’s Disease 

(AD, 32% of people older than 84 years) than in younger subjects [2]. AD was recently 

demonstrated among major risk factors for COVID-19-related mortality [3, 4]. Furthermore, 

COVID-19 severity is statistically predicted by the APOE e4 genotype, one of the major genetic 

risk factors for AD [5]. The recent epidemiological data thus suggest a link between aging and 

AD regarding fatal outcomes of COVID-19 [6]. Another possible link between aging, AD, and 

COVID19 concerns a common range of dysfunctions of the autonomic nervous system, or 

dysautonomia, along with an increased systemic inflammation tone [7, 8]. The lethal outcomes 

of COVID-19 might be due to post-infection hypertension and hypoventilation, which is caused 

by nervous dysfunction of autonomic brainstem centers and reflexes. This present review 

focuses on the dysfunctions of the vital reflexes mediated by the autonomic system and ensuring 

the regulation of blood pressure, heart rate, and respiratory ventilation. These neural functions 

are altogether mediated by the vagus nerve and its brainstem centers, both known as a route for 

neuroinvasion by coronaviruses and a well-established neuroimmune interface [9]. This aspect 

of SARS-Cov-2-triggered neurogenic pathology has been overviewed in the published surveys 

of neurological associations of COVID-19 [10-12]. However, most of these previous reviews 

considered only co-morbidities such as meningitis, encephalopathies, Guillain-Barré syndrome 

of the peripheral nervous system, neuropathies, and increased cerebrovascular risk without 

considering neurodegenerative diseases, including AD [10]. Only a recent one has included 

autonomic dysfunction in an exhaustive description of all published symptoms, including 

respiratory and circulatory distresses [13]. Based on the growing body of knowledge, this 
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present review expands the recently provided evidence pointing to a pathological link between 

COVID-19 and AD [13] to underlying neural substrate involving the vagus nerve and its 

brainstem centers. We further propose to test a recent medical innovation such as non-invasive 

vagus nerve stimulation via external ear in COVID-19, an approach which has recently been 

proposed to improve cognitive disorders including AD [14]. We finally discuss clinical data 

supporting the testing of vagal tone index via heart rate variability as an asymptomatic 

diagnostic marker of infection by SARS-CoV-2.  

For the purpose of the present review, our methodology consisted in a bibliographic search 

crossing the following keywords: COVID-19, Alzheimer’s Disease, aging, pathophysiology, 

dysautonomia, SARS-CoV-2, neuroinvasion, Angiotensin-Converting-Enzyme-2, 

Angiotensin, vagal afferents, autonomic brainstem centers, lung, dorsal vagal complex, nucleus 

tractus solitarius, area postrema, cytokine storm, immunological reflex, cholinergic anti-

inflammatory pathway, cardiovascular, respiratory drive, vagal nerve stimulation, 

transauricular vagal nerve stimulation, auricular vagus nerve, heart rate variability.     

 

I- The vagus nerve as a route of SARS-Cov-2 invasion of the brainstem: implications for 

cardio-respiratory failure and uncontrolled inflammation. 

 The vagus nerve is the tenth (Xth) pair cranial nerve, which encompasses mostly viscero-

sensory afferents and parasympathetic efferents, to- and from discrete brainstem nuclei. The 

vagal viscerosensory afferents arise in all visceras as free and ramified nerve terminals 

belonging to glutamatergic neurons, the cell bodies of which are located in the nodose ganglion 

(close to the spinal cord in the neck) and project to the nucleus tractus solitarius in the brainstem 

(Figure 1) [15, 16]. The vagal efferents consist essentially in the axons of the large cholinergic 

neurons stacked in the dorsal motor nucleus of the vagus (Figure 1), that project to all visceras 

and trigger their actions via cholinergic, local neurons located in intravisceral ganglia [16]. The 
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synaptically interconnected afferents and efferents of the vagus nerve within the dorsal vagal 

complex of the brainstem yield reflex circuits that provide the anatomical substratum of the 

vital homeostatic regulations. This connectome is currently being revisited with brain imaging 

approaches, both in human subjects and in animal models [17]. 

 

A) The pathophysiology of COVID-19 

COVID-19 disease progression comprises three distinct but overlapping phases: an early 

infection phase, a pulmonary phase, and a severe hyper-inflammation phase [13, 18]. 

1.In the early infection phase, the virus infiltrates the upper airway tract, lung parenchyma, eyes 

and gut. From a recently published extensive survey of literature [13], the first symptoms appear 

in average 5.2 days after initial contamination and encompass fever, cough, dyspnea, fatigue, 

nausea, anosmia and ageusia. This initial phase is associated with innate immunity response, 

which is marked by an increased plasma concentration of C-Reactive Protein (CRP) and 

activation of monocytes and macrophages, along with a rise of plasmatic amyloid-A protein 

[13]. Activated monocytes and macrophages have been indeed detected in bronchial and 

alveolar epithelia by immunohistochemistry after ex-vivo infection of human biopsies with 

SARS-CoV-2 [19]. 

2.During the pulmonary phase, collateral tissue injury and subsequent inflammatory processes 

- vasodilation, increased endothelial permeability, and leukocyte recruitment - lead to further 

pulmonary damage, hypoxemia (with a frequent atypical clinical presentation called “happy 

hypoxemia” [20] where severe hypoxemia is associated neither with dyspnea nor abnormal lung 

compliance), and cardiovascular complications (see below, I-C).  

3.In a delayed hyperinflammatory phase occurring only in 10-20% of the patients, mainly older 

people, the host inflammatory response continues to amplify (even with diminishing viral loads) 

and yields a systemic inflammation along with cardio-respiratory dysregulation [21], 
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coagulopathy [22] and multiple organ failures. This outcome can lead to death within a period 

ranging from 6 to 41 days after the onset of COVID-19 symptoms (see above) [13]. This life-

challenging phase is likely to have a neurogenic origin, as indicated by case reports of COVID-

19 patients who deceased in hospital due to depressed respiratory ventilation after having 

recovered from pneumonia, and despite ongoing invasive mechanical ventilation [23]. 

Consistently, experimental infection of mice with a SARS-Cov-2-related virus was shown to 

trigger early depression of hypercapnic ventilator responses [24]. The symptoms of this late 

phase altogether indicate a dysfunction of the autonomic nervous system involving an increased 

sympathetic tone and a decreased parasympathetic tone (Table 1) [7]. The 

sympathetic/parasympathetic balance at the organism level is controlled by the dorsal vagal 

complex of the brainstem (see Figure 1 for details).   

This late phase involves a “cytokine storm” (also called macrophage activation syndrome), as 

observed in various infectious and non-infectious diseases, i.e., an excessive inflammatory 

response caused by a dysregulated host immune response [25]. The COVID-19 cytokine storm 

is marked in the systemic circulation by rises of CRP and of activated monocytes-macrophages, 

and affects multiple organs [26]. The mechanism underlying cytokine storm is the failure of 

inflammatory response regulation back to homeostasis, which normally results from the 

“inflammatory reflex” defined by Tracey as “a neural loop in which afferent inflammatory 

signals activate an opposing motor response of the vagus nerve that suppresses cytokine 

production in order to limit or prevent damage” [27]. 

 

B) Beyond the lung, SARS-Cov-2 displays tropism for the vagus nerve and its centers 

The initial event of COVID-19 is an infection of human cells by SARS-Cov-2 via 

stereospecific binding of its envelope S protein (SPIKE) to Angiotensin-Converting Enzyme-2 

(ACE2) at the cell membrane and subsequent internalization of the complex [28], which occurs 
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initially in the upper airway and the lung. ACE2 expression has indeed been demonstrated in 

all cell types of the human airway epithelium by tissue- and single-cell RNA-sequencing from 

bronchoscopy biopsies of 267 subjects [29]. The viral infection has been observed by applying 

SARS-CoV-2 particles from nasopharyngeal aspirate of a human COVID-19 patient, on ex-

vivo cultures of respiratory tract mucosae and in-vitro cultures of alveolar epithelial cells from 

healthy human donors [19]. In human biopsies, SARS-CoV-2 has been detected by 

immunohistochemistry in all differentiated cell types of the airway mucosa and of the alveolar 

epithelium, aging being related with increased ACE2 protein expression and decreased 

apoptosis effectors [30]. Its replication period is 2-4 days in both airway- and alveolar tissues 

[19]. The lung-originating infection, propagation, and viral multiplication rate have been 

confirmed and detailed in a transgenic mouse overexpressing the human ACE2 gene [31]. 

Importantly, in the human olfactory epithelium, ACE2 was recently revealed by 

immunohistofluorescence to be localized exclusively in the non-neuronal sustentacular cells, 

and not in the centrally projecting olfactory sensory neurons [32]. Consistently, single-cell 

transcriptomal analysis of the murine nasal mucosa lately revealed that SARS-CoV-2 entry 

genes are expressed exclusively in non-neuronal cells of the olfactory epithelium [33]. These 

observations render unlikely the nose-to-brain route of SARS-Cov-2 neuroinvasion that has 

been repetitively postulated since the beginning of Covid-19 pandemy.  

ACE2 is ubiquitously expressed in numerous other tissues, encompassing about 150 

different cell types [34]. Quantitative comparisons with transcriptomic assays and or 

comparative immunohistochemistry have all established that the highest ACE2 expressions are 

found in intestine, followed by testis, gallbladder, kidney, heart muscle, all far above lung and 

brain levels [34-36]. Remarkably, SARS-CoV-2 triggers ACE2 down-regulation from the 

infected cells’ plasma membranes and thus lowers tissue capacity to degrade the bioactive 

vasoconstrictor hormone angiotensin-II into its vasorelaxant and anti-inflammatory metabolite 
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angiotensin-(1-7), which in turn yields increased concentration of bioactive angiotensin-II 

locally in SARS-CoV-2-infected tissues [37].  

In the murine brain, extensive mapping of the ACE2 protein by immunohistochemistry 

showed that ACE2 is expressed exclusively by neurons, and not by glial cells, with the highest 

densities of ACE2 protein occurring in the three interconnected components of the dorsal vagal 

complex of the brainstem (Figure 1): i) the viscerosensory nucleus tractus solitarius (NTS), ii) 

the dorsal motor nucleus of the vagus (providing efferent innervation of all viscera, including 

the heart) and iii) the neuro-hemal structure: area postrema [38-40]. These ACE2-enriched 

structures of the posterior brain represent the superior autonomic nuclei [15, 41] i.e. the centers 

of the major homeostatic reflexes in mammals (including the baroreflex, the chemoreflex, and 

the inflammatory reflex, as detailed below). Importantly, the thresholds of these homeostatic 

reflexes are modulable via cellular plasticity mechanisms such as synaptic efficacies, 

neurotrophin signaling, axonal sprouting, and neurogenesis [42]. The vagal afferents from the 

lung arise from peripheral sensory endings that were observed by electron microscopy in direct 

juxtaposition with the alveolar epithelium in the adult rat, on the basal pole of and in-between 

the epithelial cells [43, 44]. These vagal sensory fibers belong to glutamatergic neurons having 

their perikarya in the peripheral nodose ganglion and projecting directly into the brainstem 

nucleus tractus solitarius [15]. Since SARS-CoV-2 displays neurotropic property, it could be 

uptaken by the vagal nerve endings of the lung alveolae up to the NTS [28], and probably spread 

away trans-synaptically in the nervous system [45]. Consistently, experimental infection of 

transgenic ACE2-overexpressing mice with another SARS-coronavirus, either by nasal 

inspiration or by transcranial injection, led to the specific expression of the viral antigen in 

neurons of the three components of the brainstem dorsal vagal complex by four days after 

infection [46], i.e., not much longer than the time lag for the initial replication in the lung [19, 

31]. This delay for SARS-CoV to migrate from the lung to the brainstem via the vagus nerve 
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to invade the NTS, seems likely to fit with the time-course of atypical hypoxemia and delayed 

acute respiratory distress syndrome in severe COVID-19 patients, as already suggested by Li 

et al. [47]. 

In line with this statement, the neurotropism of SARS-CoV-2 per se has been recently 

demonstrated in vitro, using cultures of neural cells from human induced pluripotent stem cells 

[48]. In these neural cells in vitro, moreover, SARS-CoV-2 infection was shown to significantly 

increase apoptotic death incidence by three times over controls at 1-3 days after infection [48]. 

The latter observations altogether suggest that the neuroinvasion of the brainstem dorsal vagal 

complex by SARS-CoV-2 in the course of COVID-19 can rapidly trigger neurodegeneration in 

this integrative center of the autonomic nervous system; this issue should now be assessed 

directly by histopathology on post-mortem brainstem samples from patients deceased with 

severe COVID-19.  

Besides, SARS-CoV-2 can also gain access to the dorsal vagal complex via blood 

circulation at the level of the area postrema (Figure 1), due to the lack of blood-brain-barrier in 

this neurohemal structure [15, 47].  

To sum up, the dorsal vagal complex of the brainstem can be a target of SARS-CoV-2 

because of its specifically high enrichment in ACE2, and could be reached readily by the virus 

through two distinct lung-to-brain routes: the vagus nerve and the blood circulation (Figure 2).   

 

C) The neurogenic dysautonomia of COVID-19: similarities with AD and aging  

In physiological conditions, both cardiorespiratory and immune responses, which are 

severely impaired in COVID-19, are tightly regulated by the autonomic system centers. 

Dysregulation of these physiological responses, known as dysautonomia, has been previously 

reported in AD as “damage to the autonomic nervous system that impairs function beyond 

compensatory mechanisms” [49]. In this section, we will first provide general principles behind 
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the physiological regulation of cardiorespiratory and immune functions (C-1) and then discuss 

the relevant dysregulations, i.e., dysautonomia in COVID-19 (C-2), AD (C-3), and aging 

without dementia (C-4). 

 

 C-1) General considerations: the central autonomic network 

Cardio-respiratory regulation is tightly dependent on the baroreflex and the 

chemoreflex, both involving the vagus nerve and its brainstem centers [50, 51]. The heart rate 

is tightly linked with the respiratory ventilation cycle since it accelerates during inspiration and 

decelerates during expiration [52] due to the respiratory sinus arrhythmia, which is itself driven 

by variations in vagal chronotropic drive [53]. The core breathing rhythm and pattern is 

determined by a neural pacemaker network in the brainstem: the pre-Bötzinger complex, which 

is interconnected with cardiovascular regulatory centers of the brainstem via the vagal viscero-

sensory NTS [54] (Figure 1). The steady-state synchrony of the cardio-respiratory rhythm in 

healthy adults was shown to arise from brainstem centers that altogether determine the vagal 

efferent activity [55]. The myocardium-innervating vagal efferent fibers arise from two distinct 

nuclei of the brainstem: the dorsal motor nucleus of the vagus and the nucleus ambiguous [52]. 

Using pharmacogenetic approaches in awake rats, it has been demonstrated that the neuronal 

activities of the dorsal motor nucleus of the vagus are required and sufficient to allow exercise-

related capacity and endurance adaptation [56].  

The dorsal vagal complex is a target of the hypertensive hormone angiotensin-II, which 

is a key component of systemic cardiovascular regulation [57, 58]. Specific angiotensin-II 

receptors include two subtypes with opposite physiological effects: AT1-R and AT2-R, which 

respectively mediate increase- and decrease of arterial pressure and heart rate (reviewed in 

[37]). Angiotensin-II binds to both AT1 and AT2 receptors, whereas ACE2-generated 

angiotensin-(1-7) binds only the vasorelaxant AT2-R and Mas receptor (Figure 2) [37]. The 
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vagal viscerosensory NTS, area postrema, and dorsal motor nucleus of the vagus (DMNV) are 

all enriched in the hypertensive AT1-R [59]; the hypotensive AT2-R occurs in NTS and DMNV 

[60] and the hypotensive Mas receptors in NTS only [61]. Angiotensin-II via AT1 receptors of 

NTS decreases baroreflex sensitivity and increases arterial blood pressure and heart rate [62], 

whereas experimental overexpression of AT2 receptors in NTS by pharmacogenetics improves 

baroreflex efficiency in the adult spontaneously hypertensive rat [63].  

In addition, the vagus nerve and its brainstem centers down-regulate inflammatory and 

immune responses via two neural connections: i) the noradrenergic projection from the vagal 

sensory nucleus NTS to the neuroendocrine paraventricular nucleus of the hypothalamus, 

stimulating the secretion of the anti-inflammatory glucocorticoid hormone via the 

hypothalamic-pituitary-adrenal axis, and ii) the cholinergic projection from the dorsal motor 

nucleus of the vagus to the spleen and activated immune cells, or cholinergic anti-inflammatory 

pathway (CAP) [64]. Indeed, in vivo electrical stimulation of the vagus nerve prevents the acute 

inflammatory response to bacterial toxin injection. Moreover, in vitro, the synthesis of the 

major pro-inflammatory cytokine Tumor Necrosis Factor-alpha (TNF-alpha) by macrophage 

cultures is inhibited by the neurotransmitter acetylcholine [65]. Reciprocally, the surgical 

section of the vagus nerve (or vagotomy) resulted in vivo in enhanced TNF-alpha production 

and excessive response to endotoxin administration [65]. Furthermore, vagus nerve stimulation 

reduces inflammation in several experimental models inducing pro-inflammatory cytokines by 

activating the alpha7-nicotinic acetylcholine receptor of macrophages [66]. In mice deficient 

for the latter receptor, endotoxin-induced TNF-alpha production is increased, and electrical 

vagus stimulation fails to reduce serum TNF-alpha levels [66]. More precisely, such 

macrophage-inhibiting action of the vagus nerve is mediated by acetylcholine-secreting, splenic 

T-lymphocytes, as demonstrated in a mouse model [67].  
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The efferent immunosuppressor component of the vagus nerve arises from the DMNV 

(Figure 1). It is recruited physiologically in the course of microbial infections or systemic 

inflammation, by afferent stimulation of vagal sensory fibers that express receptors for pro-

inflammatory cytokines and project on the viscerosensory NTS (Figure 1), in the context of the 

classical “inflammatory reflex” [64, 68]. In the adult mice, implantation of cuff electrodes at 

the surface of the cervical vagus nerve and computerized neural-to-noise analysis of electrical 

discharge pattern allowed to identify vagal subsets of sensory fibers [69]. These fibers respond 

to specific cytokines (especially pro-inflammatory ones) in a dose-dependent manner [69]. It 

should be stressed that the progress in understanding the mechanisms behind neuro-immune 

communication has allowed for decoding vagal activity patterns in relation to specific diseases 

[70].  

Altogether, the dorsal vagal complex of the brainstem is an integrative center involved in 

both cardiorespiratory regulation and post-inflammation return to homeostasis.  

 

  C-2) Dysautonomia in COVID-19 

The first acute consequence of SARS-CoV-2 neuroinvasion into the dorsal vagal 

complex consists of lowering the tissue concentration of its receptor ACE2 and therefore yields 

a local increase in angiotensin-II concentration (see above). This hypertensive hormone acts 

primarily in the dorsal vagal complex to raise blood pressure and heart pumping, which are 

subsequently potentiated in COVID-19. In parallel, tissue concentration of the ACE2-generated 

inhibitory feedback metabolite of angiotensin-II: angiotensin-(1-7) decreases [37]. This 

angiotensinergic imbalance in the superior autonomic center has been established to cause or 

worsen a decline in baroreflex sensitivity and switch cardiovascular regulation to hypertension 

[58]. Reciprocally, experimental overexpression of ACE2 by gene transfer into the NTS of an 
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adult spontaneously hypertensive rat was shown to significantly improve the baroreceptor heart 

rate reflex above controls [71]. 

The delayed cardiorespiratory symptoms in severe COVID-19 cases include heart 

palpitations, arrhythmias, myocardial injury, hypertension, chest tightness, and ventilatory 

dysfunction [72, 73]. Furthermore, in COVID-19 patients, the regulation of respiratory 

ventilation displays aberrant responses to afferent hypoxia stimuli from the peripheral 

chemoreceptors (the carotid bodies) [20]. This symptom indicates a drop in the NTS relay of 

chemoreflex, which may be due to SARS-CoV-2-triggered neurodegeneration (see above 

section I-B).   

A neurogenic model of direct SARS-Cov-2 impact on the brainstem autonomic centers 

has been recently modelized using a computational approach [74]. Also, most of the clinical 

characteristics of severe COVID-19, including the “cytokine storm” [26, 75] during the third 

phase of SARS-CoV2 infection, can be explained by dysregulation of the CAP pathway [76, 

77]. 

 

C-3) Dysautonomia in Alzheimer’s Disease 

Interestingly, the recently reported COVID-19-related autonomic dysfunction has been 

characterized in AD for three decades [7] and proposed to develop in the preclinical phase of 

the disease [78]. The most common symptoms of AD-associated dysautonomia are cardiac 

failure or infarction [79], blood pressure dysregulation [80], decreased baroreflex function [81], 

bronchopneumonia [82], parasympathetic drive hypofunction [83], altered pain perception and 

reactivity [84] and orthostatic hypotension [7]. In AD patients, lower cognitive performance 

(especially regarding memory) was related to significantly higher cardiac sympathetic and 

lower parasympathetic function, independently of age, sex, academic years, diabetes, 

hypertension, and cholinesterase inhibitor use [85].  



14 

 

These symptoms are attributed to neurodegeneration, including neurofibrillary 

pathology, that have been mapped in the brainstem centers: in the dorsal motor nucleus of the 

vagus (which fits with the parasympathetic hypofunction) and to various extents in the NTS, 

nucleus ambiguous, pre-Bötzinger complex [49, 86-88]. This brainstem neuropathology 

appears at the Braak’s stage VI of AD, i.e., at mid-course of a 20-25 year-long pathological 

process [88].    

 

C-4) Dysautonomia in aging without dementia 

Aging is classically associated with cardiovascular decline and morbidity, which 

involve decreased parasympathetic activity, blunted baroreflex sensitivity [89], and decline of 

vagally-modulated heart rate variability [90]. In addition, aging is associated with a systemic 

rise of inflammation, known as “inflammaging”, and is “macrophage-centered” [8, 91]. Since 

macrophages are both a major source of systemic inflammation and the main target of the 

cholinergic anti-inflammatory pathway, inflammaging is likely to result from the hypofunction 

of the CAP. Strengthening the CAP has indeed been proposed as a new therapeutic perspective 

in aging-related disorders [92]. 

 

  In summary, the dysautonomia is associated with COVID-19, AD, and 

dementia-free aging, which all share some similarities (Table 1). It is particularly noteworthy 

that the baroreflex in AD patients is chronically reduced, which can underlie the much higher 

incidence of severe COVID-19 in this sub-population [6]. The failure of the CAP is shared by 

COVID-19, AD, and dementia-free aging, although along a very different timecourse (chronic 

in AD and aging versus acute in COVID-19), which likely corroborates aging and or AD as 

major risk factors for COVID-19-related mortality. The survey of underlying mechanisms and 
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pathways helps now to propose original, non-serological tools for COVID-19 therapy and or 

diagnostic.    

 

II-Auricular vagus nerve stimulation as an innovative therapeutic tool in COVID-19  

Auricular stimulation of the vagus nerve is a non-invasive approach that is increasingly 

used in therapeutic handling of pharmaco-resistant epilepsy, depression, and other diseases 

[93]. This therapy relies on the anatomy of the vagus nerve. Indeed, the common cranial trunk 

of this nerve includes a cervical sensory branch from the ear [94-96].   

 

A) Vagus nerve stimulation (VNS) as a polyvalent tool in human clinics 

VNS in human patients relies on the permanent implant of a cuff electrode on the left vagus 

nerve (to avoid cardiac side-effects) at the neck level, which is connected by a subcutaneous 

wire to a pacemaker-like programmable electronic device. This intervention was approved three 

decades ago by the Food and Drug Administration (FDA) for treatment-resistant patients with 

epilepsy and major depressive disorder. The appropriate treatment consists typically in daily 

30-second stimulation at 1mA output current with a 20Hz frequency of 500 microsecond pulses 

during several months [97]. The parameters of the vagus nerve stimulator are adjusted during 

in-office visits by treating physicians to optimize therapeutics by-side effects. VNS also proved 

beneficial in various cardiovascular and inflammatory diseases [98].  

In the AD field, the above-discussed invasive VNS has already been applied during 6-12 

months on cohorts of AD patients and yielded significant cognitive-enhancing effects [14, 99, 

100].  

 Studies in animal models demonstrated that VNS resets the baroreflex setpoint and induces 

inhibition of sympathetic efferents [101, 102], which was also recorded in humans [103]. Of 

interest, when considering the COVID-19 pandemic, VNS could impact not only on systemic 
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inflammation but also on the coagulant-anticoagulant balance, as suggested by VNS application 

in endotoxemia rats [104]. In a clinically relevant porcine model of progressive sepsis, VNS 

significantly attenuated multiple organ dysfunctions (with partial or complete prevention of 

hyperlactatemia, hyperdynamic circulation, cellular myocardial depression, shift in 

sympathovagal balance toward sympathetic dominance, cardiac myocardial dysfunction and 

reduction of activated monocytes), thus reducing vasopressor and fluid resuscitation 

requirements [105]. 

Therefore, it is likely that VNS could attenuate the clinical manifestations of severe 

COVID-19, as recently suggested [75]. However, VNS requires an invasive surgical procedure 

for electrode implantation (see above), not an option in COVID-19 pandemics. Conversely, a 

non-invasive modality of vagus nerve stimulation has been developed, making it more 

accessible as a possible first-line treatment option (see next section).   

 

B) Non-invasive vagus nerve stimulation, as a novel therapeutic approach for COVID-

19? 

Transcutaneous vagus nerve stimulation (tVNS) is a non-invasive procedure consisting 

of electrical current application through surface electrodes at select locations, most commonly 

targeting either the cervical branch of the vagus nerve in the neck or the auricular branch of the 

vagus nerve [106]. Considering these two techniques (cervical or auricular) of tVNS, the 

cervical location makes selective transcutaneous stimulation of the vagus nerve fibers difficult, 

because of the presence of both afferent and efferent fibers [107]. By contrast, the auricular 

branch of the vagus nerve is an exclusively afferent, sensory nerve that innervates part of the 

skin of the outer ear [94-96]. Hence, trans-auricular vagus nerve stimulation (taVNS) targets 

only the afferent arm of the vagus nerve.  
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The optimal location and electrical stimulation parameters providing the greatest tVNS 

therapeutic effect can be efficiently assessed with heart rate variability (HRV) monitoring. 

HRV, a biomarker for efferent vagal activation [108], is easier to assess with taVNS than with 

cervical tVNS [107]. taVNS is mostly used in pharmaco-resistant epilepsy, depression, 

hypertension, and other diseases [93, 105-107]. A recent study has validated the use of taVNS 

to inhibit both peripheral and central inflammation and suggested a link between taVNS 

suppression of inflammation and effectiveness in reducing depression severity [109]. Closer to 

COVID-19 symptoms, a prospective randomized study on 100 respiratory distressed patients 

undergoing lobectomy via thoracotomy showed that taVNS could significantly decrease IL-6 

and IL-10 levels, reduce the incidence of postoperative pneumonia and shorten duration of 

hospitalization time [110]. Since drugs commonly prescribed to psychiatric patients could 

protect them from SARS- CoV-2 infection [111], taVNS suppression of neuroinflammation 

and depression may turn out to be also neuroprotective in the context of COVID-19. So far, 

however, to the best of our knowledge, only two studies using taVNS (Gammacore) in 

COVID-19 patients [112, 113] have been published reporting: i) a clinical respiratory benefit 

in two ambulatory COVID-19 patients using cervical tVNS [112]; ii) an ongoing prospective, 

randomized controlled study on tVNS in patients with moderate to severe COVID-19 

respiratory symptoms [113]. Based on this emerging awareness, an International Consortium 

on Neuromodulation for COVID-19 (ICNC) has been created in early 2020, in order to “provide 

global leadership for the rapid advancement and clinical adoption of neuromodulation 

technologies to treat emerging infectious diseases” [114]. 

Experimental animal studies confirmed the benefits of tVNS by using endotoxemic 

rodent models and shed light on underlying mechanisms [115, 116]. Remarkably, taVNS also 

reduced cognitive dysfunction in a postoperative model of aged rats [117] and in a murine 
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model of AD [118] via a decrease of neuroinflammation. In human clinics, however, taVNS 

has not been tested so far in AD [14, 119].  

It remains now to test taVNS impact on AD symptoms in human cohorts, as already 

suggested for COVID-19 [75]. 

 

III- Ambulatory monitoring of auricular vagal tone through Heart Rate Variability 

provides an attractive pre-diagnosis tool in COVID-19 pandemic 

Clinical trials of COVID-19 therapy [77] would undoubtedly benefit from HRV 

monitoring. HRV is defined as an irregularity of the length of consecutive heart cycles, which 

reflects the ability of the cardiovascular system to adapt to different situations in everyday life 

[120]. HRV is calculated based on the R-R interval of the classical PQRS electrocardiogram 

wave [121]. In the last decades, HRV analysis has emerged as a new useful tool for assessing 

the changes in autonomic tone that impact on cardiovascular function. HRV is now both 

considered as an excellent read-out of taVNS [108] and a physiologic marker that provides 

better and more accurate early warning signs of disease states [122]. Moreover, HRV 

monitoring based on real-time measurements is easy to get at the bedside.  

The most common way of measuring HRV is either time-domain analysis or frequency 

domain analysis. Parameters calculated from the measurements are related to the functions of 

both the sympathetic and parasympathetic nervous system [122], which altogether correspond 

to “autonomic function”. The reduction of the fluctuations of the length of consecutive heart 

cycles has been shown to be associated with pathological conditions, especially in case of 

inflammation [123, 124]. 

As a consequence, measurements of changes in autonomic function is crucial in the 

clinical follow-up of different diseases as well as of the therapeutic efficacy. Several large 

epidemiological studies have shown that low HRV is a common risk factor for mortality and 
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morbidity, in particular in Acute Respiratory Distress Syndrome (ARDS) [125] and sepsis [126-

128]. 

In line with pioneer observations of Claude-Bernard, Thayer and Lane have proposed 

that HRV could also be an index of the level to which the brain generates an adaptive peripheral 

body’s response to environmental changes [129]. A very recent study confirms that HRV 

analysis provides insight into a “brain-heart-axis” in old patients with mild cognitive 

impairments, suggesting that this autonomic assessment could help to identify subjects at higher 

risk of adverse health outcomes, especially among AD patients [130]. 

Moreover, in addition to the insight in brain-heart axis, HRV appears useful for early 

screening of infection, with a significant predictive value since HRV alteration is detectable 

before clinical diagnosis [120] as well as for its very good sensitivity, though low specificity 

[131, 132]. It is noteworthy that correlations between HRV drop and the onset of sepsis have 

been found in neonates up to 4 days prior to clinical diagnosis of systemic inflammatory 

syndrome [133]. Moreover, in the same clinical trial, after treatment and recovery from sepsis, 

HRV returned to its baseline value [133]. Remarkably, combining HRV monitoring with 

artificial intelligence-based analysis allows to efficiently predict the onset of sepsis [134]. Since 

life-threatening forms of COVID-19 involve a systemic inflammatory surge similar to sepsis, 

future HRV assessment in a large cohort of COVID-19 and healthy subjects is worth doing. 

Indeed, HRV monitoring is now possible not only in intensive care units [135], but also at a 

populational level due to the wide use of smartphones and both iOS and Android HRV 

applications [136, 137]. Notably, a few years ago, a study suggested that such ambulatory 

monitoring of heart rate in 43 individuals up to 2 years could allow early sepsis detection with 

100% sensitivity [138]. Thus, population-wide longitudinal HRV digital monitoring might 

enable early screening of SARS-CoV2 infection worldwide.  
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Conclusion 

Altogether, the vagus nerve seems to be “a conduit for neuroinvasion” by SARS-COV-

2, “a diagnostic tool and a therapeutic pathway” for COVID-19 (Figure 2). The essential role 

of the vagus nerve in the autonomic regulation of vital functions and neuro-immune processes 

provides a rationale for non-invasive and affordable therapeutic innovations, which should be 

exploited more broadly by public health policies, for AD as well as for COVID-19 and for 

pandemics that may arise in future [139]. The available experimental and clinical data point to 

the need for immediate large-scale testing of a bioelectronic medical strategy for severe 

COVID-19 diagnosis and treatment. In addition, because of the similarities of AD-related 

dysautonomia with the short term, life-threatening dysautonomia in severe COVID-19, the 

innovative achievements developed for COVID-19 in this context may turn out to help 

ameliorate cognitive deficits of AD patients.  
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Table 1. Comparative dysautonomia in severe COVID-19, Alzheimer’s Disease, 

nondemented aging. 

 

Legends for Table 1: Arrows pointing up and down respectively mean increase and decrease. 

Double arrows indicate major variations. Arrows with dashed line indicate minor variations. 

(+) and (-) mean presence and absence respectively.  
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Symptoms                                                         Severe            Alzheimer’s     Non-demented 

                                                                        COVID-19             disease                aging 

 

Arterial blood pressure 

 

Heart rate 

 

Cardiac failure risk 

 

Baroreflex sensitivity 

 

Respiratory ventilation 

 

Chemoreflex sensitivity 

 

Parasympathetic cholinergic tonus 

 

Sympathetic tonus 

 

NTS relay 

 

Heart rate variability 

 

Systemic inflammation 

 

Pro-inflammatory cytokine release 

 

Anti-inflammatory cytokine release 

 

Orthostatic hypotension                                        -                           + 

Constipation                                                          -                           + 

Urinary incontinence                                             -                           + 

Dysphagia, swallowing dysfunction                     -                           + 

Impaired pain perception                                      -                           + 
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Figure captions 

 

Figure 1. Neuroanatomical connectivity of the dorsal vagal complex in human brainstem: 

the “vital node” of pioneer physiologists. Round symbols represent neuronal perikarya. 

Arrows with blunt end symbolize axonal presynaptic endings. Abbreviations: AP: area 

postrema; CAP: cholinergic anti-inflammatory pathway; CNS: central nervous system; 

DMNX: dorsal motor nucleus of the vagus; NTS: nucleus tractus solitarius; PNS: peripheral 

nervous system; IVth: fourth intracerebral ventricle.   

 

Figure 2. The vagal routes of SARS-CoV-2 neuroinvasion. 

In COVID-19, SARS-CoV-2 can gain access to the ACE2-rich dorsal vagal complex either via 

blood at the level of the neuro-hemal structure area postrema, or via intraneuronal transport 

through the vagal sensory innervation of the lung alveaolar epithelium. SARS-CoV-2 binding 

to ACE2 in the dorsal vagal complex yields decreased tissue concentration of ACE2, which in 

turn increases the ratio between local concentrations of angiotensin-II above its counter-

regulatory angiotensin-(1-7) metabolite. This imbalance in the superior autonomic centers 

worsens the aging-related decline in baroreflex sensitivity and cardiovascular function. 

Concomitantly, SARS-CoV-2 invasion of the brainstem counteracts the efferent arm of the 

inflammatory reflex, leading to multi-organ failure through a cytokine storm. Non-

medicamentous stimulation of the auricular vagus nerve is likely to restore vagus nerve 

functions compromised by SARS-CoV2 infection. Green plain circles represent neuronal 

perikarya; the yellow arrow indicates the therapeutic auricular vagus nerve stimulation (see 

text). 
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