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Abstract

Davydov-Yetter cohomology classifies infinitesimal deformations of tensor categories
and of tensor functors. Our first result is that Davydov-Yetter cohomology for fi-
nite tensor categories is equivalent to the cohomology of a comonad arising from the
central Hopf monad. This has several applications: First, we obtain a short and con-
ceptual proof of Ocneanu rigidity. Second, it allows to use standard methods from
comonad cohomology theory to compute Davydov-Yetter cohomology for a family of
non-semisimple finite-dimensional Hopf algebras generalizing Sweedler’s four dimen-
sional Hopf algebra.
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1 Introduction
Tensor categories are ubiquitous in many problems in algebra, representation theory, quan-
tum topology and mathematical physics. Considerable effort was spent to better under-
stand their properties, especially for the subclass of fusion categories over the field of
complex numbers (see e.g. [ENO]), which are semisimple finite tensor categories. In par-
ticular, there is only a finite number of fusion categories (up to equivalence) corresponding
to a fusion ring and only a finite number of braidings for a given fusion category. This is
a consequence of the so-called Ocneanu rigidity, the fact that fusion categories admit only
trivial deformations of their monoidal structure.

In contrast to fusion categories, non-semisimple finite tensor categories are much less
understood. The main motivation for this paper is to have a better understanding of the
deformation theory of such categories and of tensor functors between them. We recall
that infinitesimal deformations of tensor categories and tensor functors are controlled by
Davydov-Yetter (DY) cohomology, see [CY, Da, Y1, Y2] or in this text Definition 3.4,
which is the cohomology of a complex associated to a tensor functor F : C → D, and
will be denoted by H•DY (F ). In particular, the third Davydov-Yetter cohomology group
of the identity functor on a tensor category C classifies infinitesimal deformations of the
associator up to an equivalence. Infinitesimal deformations for the monoidal structure of
tensor functors are classified by the second DY cohomology group of the respective functor.
Deformations of braidings in C can be also studied via deformations of appropriate tensor
functors from C × C to C, see details in [Y1, Thm. 2.18].

For tensor functors F between (multi)-fusion categories, we have the following vanishing
theorem

Hn
DY (F ) = 0 , for all n > 0.

This immediately implies the abscence of infinitesimal deformations. This fact is known
as Ocneanu rigidity and it is proven in [ENO, Sec. 7] using weak Hopf algebras.

We know that for non-semisimple categories the Ocneanu rigidity in the above form can
not hold in general. This is easy to see in the following example from Hopf algebras. Let
H be a finite-dimensional Hopf algebra over a field k, H−mod the finite tensor category of
finite dimensional H-modules and F the forgetful functor. Then in this case, the groups
Hn
DY (F ) are isomorphic to the nth Hochschild cohomologies HHn(H∗, k) of the dual Hopf

algebra H∗. The latter are the extension groups ExtnH∗(k, k), and there are indeed many
examples where these groups are nonzero, e.g. for Sweedler’s four dimensional Hopf algebra.
For other functors like the identity functor – the case we are mostly interested in – a direct

2



calculation of Hn
DY (id) is quite involved and there are no general (explicit) results, as for

the forgetful functor, or at least non-trivial examples. We however provide an example in
this paper that shows the DY cohomologies for the identity functor can not be in general
zero.

A key result of this paper is a reformulation of the DY cohomology theory via a more
classical comonad cohomology theory [BB]. The advantage of such a reformulation is
that we can use then standard results from the comonad cohomology theory to prove
useful properties of DY cohomologies and even to provide explicit calculations in the Hopf
algebra cases. For a finite tensor category C and F = idC, the comonad G in question is an
endofunctor on the Drinfeld center Z(C) of C constructed via the adjunction F a U where
U : Z(C)→ C is the forgetful functor and F : C → Z(C) is the free functor, i.e. G = F ◦U .
We prove that the DY cohomology of C is equivalent to the comonad cohomology of G.
This is formulated in Theorem 3.11 for general (exact) tensor functors F .

The above adjunction also defines the corresponding monad Z = U ◦ F on C that can
be realized via the coend

Z(V ) :=

∫ X∈C
X∨ ⊗ V ⊗X , (1.1)

and the free functor F is then just the induction functor corresponding to the monad Z.
We also note that Z is the well known central Hopf monad [DS, BV2, Sh3], and when

applied to the tensor unit I, Z(I) is the canonical Hopf algebra object in C if C is braided.
This algebra was also a central object of studies in understanding fundamental properties
of factorizable tensor categories, e.g. in the mapping class group representations [Ly, KL,
Sh1, FS, GR] associated to C.

Comonad cohomology theory for a comonad G has properties similar to standard ho-
mological algebra. For example, a variant of the comparison theorem (or fundamental
lemma) of homological algebra holds for any additive category and “coefficient" functors,
for details see [BB, B] or in this text Theorem 2.13. This theorem is a major tool for
computation of cohomology groups. The only difference from the standard homological
algebra is that one replaces the notions of projectiveness and exactness by the notions
of G-projectiveness and G-exactness, respectively, see Definition 2.4. The comonad co-
homology of G-projective objects – similar to projective objects in homological algebra –
always vanishes (Proposition 2.12). Combined with the reformulation of Davydov-Yetter
cohomology in Theorem 3.11, this fact implies a short and conceptual proof of Ocneanu
rigidity for fusion categories and their tensor functors, see Corollary 3.18. More precisely,
we first introduce a more general formulation of Davydov-Yetter cohomology where the
coefficients (Definition 3.3) are objects in the Drinfeld center, and then show that all these
coefficients are G-projective, and thus the cohomology groups in positive grades vanish.

In Section 4, we consider the special case of finite tensor categories that are representa-
tion categories of finite dimensional Hopf algebras. In Section 4.1, we describe the comonad
G for the case F = id and its bar resolution, then in Section 4.2 we describe G-projective
modules in Hopf algebraic terms and relate them to H∗ projectiveness, see Corollaries 4.8
and 4.9. In Section 4.3, we show how to reformulate the Davydov-Yetter cohomology of the
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forgetful functor as the Davydov-Yetter cohomology of the identity functor with non-trivial
coefficients (Theorem 4.11).

Ocneanu rigidity does not hold for non-semisimple finite tensor categories. As we show
in this paper, there are examples of finite tensor categories with non-trivial DY cohomology.
In general, these can hint towards finite deformations and, thus, be an indispensable tool to
study continuous families of tensor categories. In particular, Section 5 is concerned with a
family of non-semisimple Hopf algebras over the field C of complex numbers that generalize
Sweedler’s four dimensional Hopf algebra: the so-called bosonization of the k-dimensional
commutative super Lie algebra ΛCk which is Bk := ΛCk o C[Z2]. We apply our reformu-
lation of the DY cohomology as the comonad cohomology for the case of Bk−mod – the
category of finite dimensional modules over Bk. The only technical part is a construction
of a G-projective resolution which is G-exact, with the final result (see Theorem 5.1)

dimHn
DY (Bk−mod) =

{
0 for n odd(
k+n−1
n

)
for n even,

(1.2)

which turned out to agree with dimHn
DY (UBk), where UBk : Bk−mod → VecC is the for-

getful functor. These results are to the best of our knowledge the first known examples of
finite tensor categories with non-trivial Davydov-Yetter cohomology of the identity functor.
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2 (Co)monads and their cohomology theories
In this section, we recall some basic definitions about monads and then summarize results
from [BB] on the cohomology theory of comonads. Most of the material in this section is
standard, and a reader familiar with the subject can skip it.

2.1 Monads and comonads

Definition 2.1 (Monads). A monad (sometimes called triple) on a category C consists of
the following data:

• An endofunctor T : C → C,

• a natural transformation unit η : id→ T and
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• a natural transformation multiplication µ : T 2 := T ◦ T → T .

These are subject to the following relations for all X ∈ C:

T 3(X) T 2(X)

T 2(X) T (X)

T (µX)

µT (X)

µX

µX

T (X) T 2(X) T (X)

T (X)

ηT (X)

id
µX

T (ηX)

id

A comonad (sometimes called a cotriple1) (G,∆, ε) is a functor G : C → C with natural
transformations called counit ε : G→ id and comultiplication ∆: G→ G2. These have to
satisfy the above diagrams with reversed arrows.

We need the notion of T -modules (which are sometimes also called T -algebras).

Definition 2.2. Given a monad on a category C, the category T−mod of T -modules
consists of objects being pairs (X, βX) with X ∈ C and βX : T (X) → X, such that the
following diagrams commute:

T 2(X) T (X)

T (X) X

µX

T (βX)

βX

βX

X T (X)

X

ηX

id
βX

(2.1)

Furthermore, a morphism of T -modules f : (X, βX) → (Y, βY ) is a morphism f : X → Y
in C such that the diagram

T (X) T (Y )

X Y

T (f)

βX βY

f

commutes. T−mod is sometimes called the Eilenberg-Moore category of T .

In what follows, for a T -module (X, βX) we will also use the notation

X := (X, βX). (2.2)
1See e.g. [W, Sec. 8.6]
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Example 2.3. A simple example of a monad is provided by a monoid (A,m, u) in a
monoidal category C. The associated monad consists of the endofunctor TA : C → C such
that TA(X) = A⊗X and the natural transformations

µX = (m⊗ idX) ◦ αA,A,X : A⊗ (A⊗X)→ (A⊗ A)⊗X → A⊗X, (2.3)
ηX = u⊗ idX : X → A⊗X, (2.4)

where α denotes the associator of C. Analogously, to every comonoid in a monoidal category
one can associate a comonad.

A source of monads and comonads are pairs of adjoint functors. More precisely, given a
pair of adjoint functors F a U , with F : C → D (left adjoint) and U : D → C (right adjoint)
and unit η : idC → U ◦ F and counit ε : F ◦ U → idD of the adjunction, then T := U ◦ F
admits a canonical structure of a monad on C and G := F ◦U admits a canonical structure
of a comonad on D. Here, unit and counit of the monad T and comonad G are η and ε,
respectively. The corresponding multiplication and comultiplication are defined as

µ : T 2 = U ◦ F ◦ U ◦ F
U(εF(?))−−−−−→ U ◦ F = T,

∆: G = F ◦ U
F(ηU(?))−−−−−→ F ◦ U ◦ F ◦ U = G2. (2.5)

However, given a monad T on a category C, there is usually more than one way to construct
a pair of adjoint functors such that T is induced by this adjunction. The adjunction
corresponding to T is defined via the forgetful functor

U : T−mod→ C, U(X) := X (2.6)

and the free functor

F : C → T−mod, F(X) := (T (X), µX). (2.7)

Then we have T = U ◦ F . In the following, denote by

GT := F ◦ U (2.8)

the associated comonad on T−mod. Notice that for (X, βX) ∈ T−mod

GT : (X, βX) 7→ (T (X), µX) and G2
T : (X, βX) 7→

(
T 2(X), µT (X)

)
.

Then, the comultiplication and counit of GT are given on components by

∆X : (T (X), µX)
ηT (X)−−−→

(
T 2(X), µT (X)

)
,

εX : (T (X), µX)
βX−→ (X, βX). (2.9)
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2.2 G-projective objects

Here, we discuss the notion ofG-projective that is needed later for the comonad cohomology
theory.

Definition 2.4. Let (G,∆, ε) be a comonad on an additive category C. An object X ∈ C
is called G-projective if there exists a morphism s : X → G(X) in C such that εX ◦s = idX .

The following lemma yields a criterium to identify G-projective objects.

Lemma 2.5. Let (G,∆, ε) be a comonad on an additive category C. The following state-
ments hold:

1. Every object of the form G(X) for some X ∈ C is G-projective.

2. Direct summands of G-projective objects are G-projective.

Proof. By definition of a comonad, we have εG(X) ◦∆X = idG(X). This already proves the
first statement. To prove the second one, let X ⊕ Y be G-projective, with X, Y ∈ C, i.e.
there is a morphism s : X ⊕ Y → G(X ⊕ Y ) such that εX⊕Y ◦ s = idX⊕Y . Recall that the
counit ε : G→ id is a natural transformation. Denote the canonical embedding of X into
X ⊕ Y with iX : X → X ⊕ Y and the canonical projection onto X with pX : X ⊕ Y → X.
Then it follows that

εX ◦G(pX) ◦ s ◦ iX = pX ◦ εX⊕Y ◦ s ◦ iX = pX ◦ iX = idX , (2.10)

where the first equality holds because ε is a natural transformation. Thus, X is G-
projective.

Using Lemma 2.5 and Definition 2.4 of G-projective objects we get the corollary:

Corollary 2.6. Let (G,∆, ε) be a comonad on an additive category C. An object X is
G-projective if and only if it is a retract of G(Y ) for some Y , i.e. if X can be realised as
a direct summand in G(Y ).

The next lemma provides further examples of G-projective objects.

Lemma 2.7. Given an adjunction F a U defining a comonad G on D. If the right adjoint
U is faithful, then every projective object in D is also G-projective.

Proof. Recall that G is equipped with a counit ε : G→ id. We need the technical fact that
εX is an epimorphism for every X ∈ D: It follows from [M, Sec. IV.3, Thm. 1] that the
counit ε is component-wise an epimorphism if the right adjoint of the involved adjunction
is faithful. This allows us to use the lifting property of a projective object P ∈ D to lift
idP : P → P to sP : P → G(P ) such that εP ◦ sP = idP :

P

G(P ) P

idP

εP

sP

7



This is just the definition of G-projectiveness (compare Definition 2.4).

2.3 Comonad cohomology

A comonad on an additive category gives rise to a cohomology theory via the construction
of [BB]. It uses the notion of G-exactness:

Definition 2.8. Let (G,∆, ε) be a comonad on an additive category C.

• A sequence X i−→ Y
j−→ Z in C is called G-exact if j ◦ i = 0 and

HomC(G(A), X)→ HomC(G(A), Y )→ HomC(G(A), Z) (2.11)

is exact for all A ∈ C.

• A sequence
. . .→ Pn → . . .→ P1 → P0 → X → 0 (2.12)

is called a G-resolution of X if Pi is G-projective for i ≥ 0 and the sequence is
G-exact.

Definition 2.9. Given a comonad (G,∆, ε) on an additive category C and an objectX ∈ C,
the following sequence in C is called the bar resolution of X associated to G:

. . .
dn−→ Gn(X)

dn−1−−−→ . . .
d2−→ G2(X)

d1−→ G(X)
d0:=εX−−−−→ X → 0, (2.13)

where

dn :=
n∑
i=0

(−1)iGn−i (εGi(X)

)
. (2.14)

Given an abelian category D and an additive functor E : C → D, the homology of X
associated to G with coefficients in E is defined as the homology of the complex

. . .
E(dn)−−−→ E(Gn(X))

E(dn−1)−−−−−→ . . .
E(d2)−−−→ E(G2(X))

E(d1)−−−→ E(G(X)) −→ 0. (2.15)

We denote the cochain groups by Cn(X,E)G = E(Gn+1(X)) and the corresponding ho-
mology groups by Hn(X,E)G with n ≥ 0. Similarly, for an additive functor E : Cop → D
we define cochain complexes and cohomology: C•(X,E)G and H•(X,E)G.

We note that from this definition it follows that H•(X,E)G is functorial in the vari-
able X (by using naturality of dn) and in the variable E, as stated in [BB, p.3].

The following statement was proven in [BB], and we give a proof for completeness.

Lemma 2.10. The bar resolution is a G-resolution.
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Proof. Every object in the sequence (except possibly X) is G-projective by Lemma 2.5 (1).
It is G-exact as well, as can be seen as follows: For A ∈ C and for the complex of abelian
groups

· · · → HomC
(
G(A), Gn+1(X)

) d∗n−→ HomC (G(A), Gn(X))
d∗n−1−−−→ HomC

(
G(A), Gn−1(X)

)
→ . . . ,

(2.16)
with d∗n(f) = dn ◦ f , we define a family of maps

hn : HomC (G(A), Gn(X)) −→ HomC
(
G(A), Gn+1(X)

)
(2.17)

via hn(f) := (−1)nG(f)◦∆A. A simple calculation shows that this is a homotopy contrac-
tion: (

d∗n ◦ hn + hn−1 ◦ d∗n−1

)
(f) =

n∑
i=0

(−1)n+iGn−i (εGi(X)

)
◦G(f) ◦∆A

+ (−1)n−1G

(
n−1∑
i=0

(−1)iGn−1−i (εGi(X)

)
◦ f

)
◦∆A

=(−1)2nεGn(X) ◦G(f) ◦∆A

=f ◦ εG(A) ◦∆A = f, (2.18)

where the first equality in the last line is due to naturality of ε, while the last equality is
by the counit axiom of a comonad. The existence of a homotopy contraction implies that
the complex is quasi-isomorphic to the zero complex.

Example 2.11 (Hochschild cohomology). Hochschild cohomology provides an example of
a comonad cohomology. For an associative algebra A over a commutative ring k, consider
the adjunction for the forgetful functor U : A ⊗ Aop−mod → k−mod and its left adjoint.
This adjunction yields a comonad on A⊗ Aop−mod that is defined as follows:

G(V ) := A⊗ Aop ⊗k V, (2.19)

with the counit εV : a ⊗ v 7→ a.v, for a ∈ A ⊗ Aop and v ∈ V . We also note that in this
case a module is G-projective if and only if it is projective in A⊗ Aop−mod.

It is easy to check that the bar resolution (2.13) is the (standard) bar resolution of the
A ⊗ Aop-module X, see also [W, Sec. 8.6.12]. Therefore, applying the coefficient functor
HomA⊗Aop(?,M) for an A ⊗ Aop-module M to the bar resolution (2.13) with X = A and
taking cohomology yields Ext•A⊗Aop(A,M) which is the Hochschild cohomology of A with
coefficients in M .

The following statements are proven in [BB, Sec. 4.2 & Sec. 4.3].

Proposition 2.12. Let (G,∆, ε) be a comonad on an additive category C. Given a G-
projective object P ∈ C, then Hn(P,E)G = 0 for all n > 0 and all coefficient func-
tors E : C → D where D is abelian.

9



The fundamental lemma of homological algebra also generalizes to comonad cohomol-
ogy:

Theorem 2.13 (Comparison theorem). Given a G-projective complex (i.e. all objects ex-
cept possibly X are G-projective)

. . . P1 → P0 → X (2.20)

and a G-exact complex
· · · → Y1 → Y0 → Y. (2.21)

Then, every morphism f : X → Y can be extended to a morphism of complexes

a . . . P1 P0 X 0

a . . . Y1 Y0 Y 0

f1 f0 f

(2.22)

All extensions are pairwise chain homotopic. In particular, different G-resolutions of the
same object lead to isomorphic (co)homologies.

For a given monad T on C, we now consider the comonadGT on T−mod defined in (2.8).
Furthermore, we consider the special case where the contravariant coefficient functor is

E = HomT−mod(?,Y),

for Y ∈ T−mod. Then, the complex (2.15) admits a canonical reformulation. The following
proposition was proven in the section “nonhomogeneous complex” of [B, p. 19-21].

Proposition 2.14. Given an additive category C, a monad (T, µ, η) on C and two T -
modules X = (X, βX) and Y = (Y, βY ), then the complex C• (X,HomT−mod(?,Y))G for
G = GT is isomorphic to the complex with the cochain groups HomC(T

n(X), Y ), with
n ≥ 0, and with the differential

∂(f) := f ◦ T n (βX) +
n∑
i=1

(−1)if ◦ T n−i
(
µT i−1(X)

)
+ (−1)n+1βY ◦ T (f) , (2.23)

where f ∈ HomC(T
n(X), Y ).

Sketch of proof. Recall from Definition 2.9 the cochain groups

Cn
(
X,HomT−mod(?,Y)

)
G

= HomT−mod

(
Gn+1(X),Y

)
. (2.24)
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We have the following isomorphism

HomC
(
T n(X), Y

)
= HomC

(
T n(X),U(Y, βY )

)
∼= HomT−mod

(
F(T n(X)), (Y, βY )

)
= HomT−mod

(
F ◦ (U ◦ F) ◦ . . . ◦ (U ◦ F(X)), (Y, βY )

)
= HomT−mod

(
F ◦ U ◦ F ◦ . . . ◦ U ◦ F ◦ U(X, βX), (Y, βY )

)
= HomT−mod

(
(F ◦ U) ◦ . . . ◦ (F ◦ U)(X, βX), (Y, βY )

)
= HomT−mod

(
Gn+1(X, βX), (Y, βY )

)
= Cn(X,HomT−mod(?,Y))G, (2.25)

where the only non-trivial map is the adjunction isomorphism, and the last equality is
by definition of the cochain groups. One can also check that the above isomorphism is a
cochain map.

3 Davydov-Yetter cohomology as a comonad cohomol-
ogy

In this section, we introduce Davydov-Yetter cohomology with coefficients, thereby gener-
alizing the original notion [CY, Da, Y1, Y2]. We show that Davydov-Yetter cohomology
can be reformulated as comonad cohomology of a generalization of the central Hopf monad
(Theorem 3.11). After providing a detailed proof, we showcase the power of this point of
view with a short and conceptual proof of Ocneanu rigidity.

3.1 Conventions

Let k denote a field and Veck is the category of finite dimensional k-linear vector spaces. A
tensor category will always mean a rigid, k-linear, abelian monoidal category such that the
monoidal product is bilinear. We call a category finite if it is k-linear and equivalent to the
category of finite dimensional representations of a finite dimensional k-algebra. By a finite
tensor category we mean a tensor category which is finite as an abelian category. Notice
that we do not assume the tensor unit to be simple in contrast to e.g. [EGNO] or [ENO]. In
fact, our definition of a finite tensor category is what is called a finite multi-tensor category
in [EGNO].

Recall that a monoidal category C is called rigid if every object V ∈ C has a left dual
∨V and a right dual V ∨ together with left and right (co)evaluation maps

evV : V ∨ ⊗ V → I , coevV : I → V ⊗ V ∨, (3.1)
ẽvV : V ⊗ ∨V → I , c̃oevV : ∨V ⊗ V → I, (3.2)
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satisfying the standard axioms. We will use the following graphical notations:

evV =

V ∨ V

, coevV =

V V ∨

, (3.3)

ẽvV =

V ∨V

, c̃oevV =

∨V V

.

Here, string diagrams must be read upwards. General morphisms will be presented by
coupons, see e.g. Remark 3.6.

A tensor functor F : C → D between tensor categories is a k-linear monoidal functor,
i.e. equipped with a natural isomorphism ψV,W : F (V ) ⊗ F (W ) → F (V ⊗ W ) and an
isomorphism η : F (IC)→ ID satisfying the usual commuting diagrams. Often, if it follows
from the context, we supress the subscript and use the notation I for both monoidal units
IC and ID. Given a functor F : C → D, we denote via

F×n : C × · · · × C → D × · · · × D, n ≥ 0, (3.4)

the functor that is defined by applying F component-wise, and where F×0 is the identity
endofunctor on Veck. We reserve F n for the composition F ◦ · · · ◦ F , assuming C = D. By
slight abuse of this notation, we denote with

⊗n : C × · · · × C → C (3.5)

the functor that acts on objects X1, . . . , Xn ∈ C as

⊗n(X1, . . . , Xn) = X1 ⊗ (X2 ⊗ (. . .⊗Xn) . . .),

for n ≥ 2. Furthermore, we use the convention ⊗1 = idC and ⊗0 : Veck → C is the additive
functor that sends the ground field k to the tensor unit in C.

As usual, we denote ends and coends via the integral notation, i.e. an end and a coend
of a functor J : Cop × C → D are denoted respectively by∫

X∈C
J(X,X) and

∫ X∈C
J(X,X). (3.6)

3.2 Davydov-Yetter cohomology with coefficients

Davydov-Yetter cohomology for a monoidal functor targeting a tensor category was devel-
oped in [Y1] and [Y2] based on work in [CY] and independently in [Da]. We will introduce
the case of a more general complex with ‘coefficients’. These will be objects in the central-
izer of a monoidal functor (compare also [Sh3, Sec. 3]).
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Definition 3.1. Let F : C → D be a monoidal functor between monoidal categories and
X ∈ D. We say that a natural isomorphism ρX : X ⊗ F (?)→ F (?)⊗X is a half-braiding
relative to F if the diagram

X ⊗ F (V )⊗ F (W ) X ⊗ F (V ⊗W )

F (V )⊗X ⊗ F (W )

F (V )⊗ F (W )⊗X F (V ⊗W )⊗X

idX ⊗ ψV,W

ρXV ⊗ idF (W )

idF (V ) ⊗ ρXW

ψV,W ⊗ idX

ρXV⊗W

(3.7)

commutes for all V,W ∈ C and ρI = id, and for simplicity we assumed that D is strict.

Definition 3.2. The centralizer Z(F ) of F is the category where objects are pairs (X, ρX)
and morphisms f : (X, ρX)→ (Y, ρY ) are morphisms f : X → Y in D such that the diagram

X ⊗ F (V ) F (V )⊗X

Y ⊗ F (V ) F (V )⊗ Y

ρXV

f ⊗ idF (V ) idF (V ) ⊗ f

ρYV (3.8)

commutes for all V ∈ C. The special case of C = D and F = id is called Drinfeld center of
C and denoted by Z(C).

It is well known that the category Z(F ) admits the canonical structure of a monoidal
category [Maj2, Sh3]. In particular, the tensor unit in Z(F ) is I = ID together with the
half-braiding

σX : I ⊗ F (X)
∼=−→ F (X)

∼=−→ F (X)⊗ I. (3.9)

We will denote the tensor unit in Z(F ) by I = (I, σ).
From now on for brevity, we will supress coherence isomorphisms of monoidal categories

and functors, that is, we work with strict monoidal categories and monoidal functors.

Definition 3.3 (Davydov-Yetter complex). Let F : C → D be a monoidal functor, where
C is a monoidal category and D is a tensor category and let

X = (X, ρX), Y = (Y, ρY ) ∈ Z(F ).

The Davydov-Yetter complex of F with coefficients X and Y and denoted by C•DY (F,X,Y)
consists of the following data:
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• Cochain vector spaces for n ≥ 0:

Cn
DY (F,X,Y) := Nat

(
X ⊗ (⊗n ◦ F×n), (⊗n ◦ F×n)⊗ Y

)
. (3.10)

• Differential

δn(f)X0,...,Xn :=
(
idF (X0) ⊗ fX1,...,Xn

)
◦
(
ρXX0
⊗ idF (X1)⊗···⊗F (Xn)

)
+

+
n∑
i=1

(−1)ifX0,...,Xi−1⊗Xi,...,Xn+ (3.11)

+ (−1)n+1
(
idF (X0)⊗···⊗F (Xn−1) ⊗ ρYXn

)
◦
(
fX0,...,Xn−1 ⊗ idF (Xn)

)
.

Here, for n = 0 the cochain spaces are C0
DY (F,X,Y) = HomD(X, Y ), recall our conventions

on ⊗0 and F×0, and the differential takes the form

δ0(f)X0 :=
(
idF (X0) ⊗ f

)
◦ ρXX0

− ρYX0
◦
(
f ⊗ idF (X0)

)
. (3.12)

For the following complexes, we also use the notations

C•DY (F ) := C•DY (F, I, I) , C•DY (C,X,Y) := C•DY (idC,X,Y) , C•DY (C) := C•DY (idC),

and call them Davydov-Yetter complex of F , and Davydov-Yetter complex of C with coeffi-
cients in X and Y, and Davydov-Yetter complex of C, respectively.

The fact that the right hand side of (3.11) is a natural transformation follows from
naturality of f and naturality of the half-braidings ρX and ρY . It is also straightforward
to check that δn+1 ◦ δn = 0. The statement for trivial coefficients is well-known [Da, Y1],
while the general case follows by a very similar calculation and using the half-braiding
property (3.7).

Definition 3.4 (Davydov-Yetter cohomology). The cohomology of the cochain complex
C•DY (F,X,Y) is called Davydov-Yetter cohomology2 and denoted by

H•DY (F,X,Y) := H•
(
C•DY (F,X,Y)

)
.

We denote the special cases by

H•DY (F ) := H•DY (F, I, I) , H•DY (C,X,Y) := H•DY (idC,X,Y) , H•DY (C) := H•DY (idC).

Remark 3.5. In the non-strict version of (3.11), the coherence isomorphisms of C,D
and F can be inserted without much additional effort. For a formulation with coherence
isomorphisms and trivial coefficients, we refer to [Y1] and [Y2].

2We also use shorter DY cohomology.
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Remark 3.6. The differential defining the Davydov-Yetter complex in (3.11) can be written
using graphical notation:

δn(f)X0,...,Xn =

X F (X0) F (X1) F (Xn)

f

ρXX0

F (X0) F (X1) F (Xn) Y
. . .

. . .

+
n∑
i=1

(−1)i

X F (Xi−1 ⊗Xi) F (Xn)

f

F (X0) F (Xn) Y

. . . . . .

. . .

+ (−1)n+1

X F (X0) F (Xn−1) F (Xn)

F (X0) YF (Xn)

f

ρYXn

. . .

. . .

. (3.13)

Remark 3.7. As it is often the case in cohomology theories, low degrees of Davydov-Yetter
cohomology have concrete interpretations [CY, Da, Y1]. In particular,

• H0
DY (F,X,Y) consists of those elements in HomD(X, Y ) which are also morphisms

in the centralizer Z(F ), recall (3.8);

• H1
DY (F ) consists of derivations of F : η ∈ Nat(F, F ) such that

ηX⊗Y = ηX ⊗ id + id⊗ ηY

modulo the inner derivations of F . By inner derivations here we mean those deriva-
tions η that can be written as ηX = f ⊗ idF (X) − idF (X) ⊗ f for some f ∈ EndD(ID);

• H2
DY (F ) classifies first order infinitesimal deformations of the monoidal structure

of F up to equivalence. Obstructions to extensions of them to finite deformations live
in H3

DY (F );

• H3
DY (C) classifies up to equivalence first order infinitesimal deformations of the as-

sociator of a tensor category C, and obstructions are controlled by H4
DY (C).

3.3 The central monad and its variants

Let F : C → D be a strict monoidal functor between strict rigid monoidal categories C
and D. If for every V ∈ D the object

ZF (V ) :=

∫ X∈C
F (X)∨ ⊗ V ⊗ F (X) (3.14)

exists, then the functor ZF (?) : D → D has the natural structure of a monad [DS, Sh3].
Indeed, let

iFX(V ) : F (X)∨ ⊗ V ⊗ F (X)→ ZF (V ). (3.15)
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denote the universal dinatural transformation associated to V ∈ D. We know from the
Fubini theorem for coends [M, Prop. IX.8] that the object

Z2
F (V ) := (ZF ◦ ZF )(V ) =

∫ (X,Y )∈C×C
F (Y )∨ ⊗ F (X)∨ ⊗ V ⊗ F (X)⊗ F (Y ) (3.16)

exists and is a coend with the universal dinatural transformation

i
(2)
(X,Y )(V ) : (FY )∨ ⊗ (FX)∨ ⊗ V ⊗ FX ⊗ FY → Z2

F (V )

defined as
i
(2)
(X,Y )(V ) = iFY

(
ZF (V )

)
◦
(
id(FY )∨ ⊗ iFX(V )⊗ idFY

)
, (3.17)

where for brevity we replace F (X) by FX, etc. Recall that F is a (strict) tensor functor,
therefore we have the dinatural transformation

iFX⊗Y (V ) : (FY )∨ ⊗ (FX)∨ ⊗ V ⊗ FX ⊗ FY → ZF (V ). (3.18)

Then, the multiplication for ZF is defined as the unique family of morphisms

µFV : Z2
F (V )→ ZF (V )

such that
µFV ◦ i

(2)
(X,Y )(V ) = iFX⊗Y (V ). (3.19)

Furthermore, the unit is defined as

ηFV : V → ZF (V ), ηFV := iFID(V ). (3.20)

Definition 3.8. The above defined monad (ZF , µ
F , ηF ) is called the central monad of the

monoidal functor F .

Remark 3.9. For F = id, we denote (Z, i) := (Zid, i
id). This special case is called the

central monad of the category C.

The central monad always exists for exact functors F : C → D between finite tensor
categories. This follows from the following fact proven in [KL, Cor. 5.1.8.]: Let C and D be
finite k-linear, abelian categories and J : Cop×C → D a functor that is k-linear and exact in
each variable, then the coend

∫ X∈C
J(X,X) exists. Thus, for J(X, Y ) = F (X)∨⊗V ⊗F (Y )

we obtain that ZF exists.
The monad ZF can be further equipped with the structure of a bimonad. We recall that

a monad T is called bimonad if it admits a natural transformation ΨV,W : T (V ⊗W ) →
T (V )⊗T (W ) and a morphism α : T (I)→ I satisfying axioms of a comonoidal functor (for
details, see e.g. [BV1, Sec. 2]). A bimonad structure on T is equivalent to the structure
of a k-linear monoidal category on T−mod. Here, the tensor unit is (I, α) and it will be
denoted by I. For T = ZF , the structural morphism α : ZF (I)→ I that we will denote by
αF is the unique morphism satisfying

αF ◦ iFX(I) := evF (X). (3.21)
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The comultiplication ΨF for ZF is the unique natural transformation fixed by

ΨF
V,W ◦ iFX(V ⊗W ) =

(
iFX(V )⊗ iFX(W )

)
◦
(
id(FX)∨ ⊗ idV ⊗ coevFX ⊗ idW ⊗ idFX

)
. (3.22)

Furthermore, ZF−mod is rigid [Sh3] and thus ZF is a Hopf monad [BV1].
From here on, we will supress the superscript in the structural maps if the functor F

is clear from the context.
The central Hopf monad ZF of F is closely related to the centralizer Z(F ) from Defi-

nition 3.2. The following can be found in [BV2, Thm. 5.12] for F = id and for general case
in [Sh3, Lem. 3.3] .

Proposition 3.10. Let F : C → D be a tensor functor between finite tensor categories such
that ZF exists. Its centralizer Z(F ) is isomorphic as a tensor category to ZF−mod.

We summarize the construction of the isomorphism from Proposition 3.10, given in [BV2]
in the case F = id. Given a pair (M,ρ) ∈ Z(F ) with M ∈ D and a half-braiding
ρX : M ⊗ F (X)→ F (X)⊗M . Then, the following diagram

FX∨ ⊗M ⊗ FX FX∨ ⊗ FX ⊗M

ZF (M) M

idFX∨ ⊗ ρX

evFX ⊗ idMiX(M)

!∃β (3.23)

defines a unique morphism β : ZF (M) → M due to universality of the coend ZF (M). It
is straightforward to prove that (M,β) is in ZF−mod. In particular, to check (2.1), which
is β ◦ ZF (β) = β ◦ µFM , it is enough to precompose both sides by i

(2)
(X,Y )(M) and apply

definitions of structural maps of ZF .
On the other hand, given a ZF -module structure β : ZF (M) → M , it can be shown

that the following defines a half-braiding on M :

ρX : M ⊗ FX coevFX⊗id−−−−−−→ FX ⊗ (FX)∨ ⊗M ⊗ FX id⊗iX(M)−−−−−−→ FX ⊗ZF (M)
id⊗β−−−→ FX ⊗M.

(3.24)
We note that the inverse to this half-braiding is

ρ−1
X = FX ⊗M id⊗c̃oevFX−−−−−−→ FX ⊗M ⊗ ∨(FX)⊗ FX

id⊗ρ∨(FX)⊗id
−−−−−−−−→ FX ⊗ ∨(FX)⊗M ⊗ FX
ẽvFX⊗id−−−−−→M ⊗ FX.

As described in Section 2, ZF can be obtained from an adjunction consisting of the
forgetful functor UF : ZF−mod→ D and the free functor FF : D → ZF−mod such that

ZF = UF ◦ FF . (3.25)
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The associated comonad GZF on ZF−mod as defined in (2.8) will be denoted for brevity
by

GF := FF ◦ UF . (3.26)

This allows us to formulate the following theorem: Davydov-Yetter cohomology of a
tensor functor F can be reformulated as the cohomology of the comonad GF , provided
that the comonad GF exists. In particular, this is the case for finite tensor categories and
exact functors between them.

Theorem 3.11. Let C and D be tensor categories and F : C → D a tensor functor such
that the functor ZF exists. Furthermore, let X = (X, ρX),Y = (Y, ρY ) ∈ Z(F ). Then, the
Davydov-Yetter complex C•DY (F,X,Y) from Definition 3.3 is isomorphic to the comonad
complex C•(X,HomZF−mod(?,Y))GF from Definition 2.9, for the comonad G = GF as de-
fined in (3.26) and where X and Y are identified with the corresponding objects in ZF−mod
as in (3.23).

We provide a proof below but first we note that the isomorphism of complexes in
Theorem 3.11 is a powerful tool for the computation of Davydov-Yetter cohomology as
will be demonstrated in Section 3.5 (Ocneanu rigidity) and in Section 5 in a class of
examples of non-semisimple Hopf algebras. A further advantage is that we obtain the
following immediate corollary from the fact that comonad cohomology is functorial in its
coefficients (recall the discussion after Definition 2.9).

Corollary 3.12. Given a tensor functor F : C → D such that the functor ZF exists, then
Davydov-Yetter cohomology defines a functor

Hn
DY (F, ?, !) : Z(F )op ×Z(F )→ Veck, for all n ≥ 0.

This corollary can be used to compare cohomologies for different coefficients by using
morphisms between them.

3.4 Proof of Theorem 3.11

The proof consists of a sequence of lemmas. We need first to relate Davydov-Yetter coho-
mology to the complex from Proposition 2.14 associated to the central monad ZF . This is
guided by the following sketch presented for F the identity functor and trivial coefficients:

Nat(⊗n,⊗n) ∼=
∫
X1,...,Xn

HomC(X1 ⊗ ...⊗Xn, X1 ⊗ ...⊗Xn) (3.27)

∼=
∫
X1,...,Xn

HomC(X
∨
n ⊗ ...⊗X∨1 ⊗X1 ⊗ ...⊗Xn, I) (3.28)

∼= HomC

(∫ X1,...,Xn

X∨n ⊗ ...⊗X∨1 ⊗X1 ⊗ ...⊗Xn, I

)
(3.29)

∼= HomC(Z
n(I), I), (3.30)
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for n > 0, while n = 0 case is trivial: the space of natural endotransformations of the
functor ⊗0 : k 7→ IC is isomorphic to End(IC). The isomorphism (3.27) is a special case of
the well known fact that

Nat(F,G) =

∫
X

Hom(F (X), G(X))

(compare e.g. [M, Chap. IX.5]). We note that (3.28) follows from the definition of right
duals and (3.29) follows from the fact that the Hom-functor preserves limits. We thus
get an isomorphism (3.30) between the cochain groups from Theorem 3.11 for F = id
and trivial coefficients. To show that this isomorphism is also an isomorphism of cochain
complexes (for general F and coefficients) is the main body of technical work in this section.

Proof of Theorem 3.11. We begin with a lemma which is a reformulation of Davydov-
Yetter cohomology similar to the composition of isomorphisms (3.27) & (3.28).

Lemma 3.13. Let F : C → D be a tensor functor between finite tensor categories for
which the functor ZF is well-defined. Moreover, let (X, ρX), (Y, ρY ) ∈ Z(F ). Then, the
Davydov-Yetter complex F : C → D with coefficients (X, ρX) and (Y, ρY ) is isomorphic to
the following complex: the cochain groups are

Dinat
(
(?∨ ◦ ⊗n ◦ F×n)⊗X ⊗ (⊗n ◦ F×n), Y

)
. (3.31)

For a dinatural transformation γ from (3.31),

γX1,...,Xn : F (Xn)∨ ⊗ ...⊗ F (X1)∨ ⊗X ⊗ F (X1)⊗ ...⊗ F (Xn)→ Y , (3.32)

the differential is

δ̃n(γ)X0,...,Xn := γX1,...,Xn ◦
(

idFX∨n⊗...⊗FX∨1 ⊗ evFX0 ⊗ idX⊗FX1⊗...⊗FXn

)
◦

◦
(

idFX∨n⊗...⊗FX∨0 ⊗ ρ
X
X0
⊗ idFX1⊗...⊗FXn

)
+

n∑
i=1

(−1)iγX0,...,Xi−1⊗Xi,...,Xn

+ (−1)n+1 (evFXn ⊗ idY ) ◦
(
idFX∨n ⊗ ρ

Y
Xn

)
◦
(
idFX∨n ⊗ γX0,..,Xn−1 ⊗ idFXn

)
(3.33)
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Remark 3.14. Similar to Remark 3.6, we can express the above differential graphically:

δ̃n(γ)X0,...,Xn =

ρXX0

F (Xn)∨F (X1)
∨ F (X0)

∨X F (X0)F (X1) F (Xn)

γ

Y

. . . . . .

+

n∑
i=1

(−1)i

F (Xn)∨ F (Xi−1 ⊗Xi)
∨ X F (Xi−1 ⊗Xi) F (Xn)

Y

γ

. . . . . . . . . . . .

+ (−1)n+1

F (Xn)∨ F (Xn−1)
∨ X F (Xn)F (Xn−1)

γ

ρYXn

Y

. . . . . .

where we omit indices in γ for brevity. We also note that for n = 0 the cochain spaces
are HomD(X, Y ) and in the differential δ̃0 above only first and last terms are present, and
the coupon with γ corresponds to a morphism from X to Y , i.e. the sources F (Xi) and
F (Xi)

∨, for i 6= 0, should be omitted in the picture of the differential.

Proof of Lemma 3.13. We first state the isomorphism of the cochain spaces. Using the
graphical conventions introduced above, the isomorphism on the components of a natural
transformation f ∈ Nat (X ⊗ (⊗n ◦ F×n) , (⊗n ◦ F×n)⊗ Y ) is the following canonical map:

Ψ :

F (X1)
. . .

F (Xn) Y

f

X F (X1)

. . .

F (Xn)

7−→
. . .

Y

f

. . .

F (Xn)∨ F (X1)
∨ X F (X1)

. . .

F (Xn)

(3.34)

where the dots indicate the evaluation on evF (Xk) : F (Xk)
∨⊗F (Xk)→ I for 2 ≤ k ≤ n−1.

The inverse map Ψ−1 is defined similarly using the coevaluation maps.
Using these maps, one can easily transport the differential via δ̃ = Ψ ◦ δ ◦Ψ−1 and ob-

tain (3.33). We write δn =
∑n+1

i=0 (−1)iδni and show this for δn0 . The transported differential
is on components

F (Xn)∨ F (X1)
∨ X F (X1) F (Xn)

Y

γ

. . . . . .

Ψ−1

7−→

F (X1) F (Xn) Y

X F (X1) F (Xn)

γ

. . . . . . . . . δn07−→ (3.35)
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F (X0)F (X1)F (Xn) Y

X F (X0) F (Xn) F (X1)

γ

ρXX0

. . . . . . . . .
Ψ7−→

ρXX0

F (Xn)∨F (X1)
∨ F (X0)

∨X F (X0)F (X1) F (Xn)

γ

Y

. . . . . .

(3.36)

The other summands can be computed similarly.

We can now construct a canonical isomorphism between the complex from Lemma 3.13
and the spaces HomD (Zn

F (X), Y ), which corresponds to isomorphism (3.29) in the outline.

Lemma 3.15. The complex presented in Lemma 3.13 is isomorphic to the complex with
cochain vector spaces HomD

(
Zn
F (X), Y

)
and the differential

∂n(f) := f ◦ Zn
F (βX) +

n∑
i=1

(−1)if ◦ Zn−i
F

(
µF
Zi−1
F (X)

)
+ (−1)n+1βY ◦ ZF (f), (3.37)

where βX and βY are defined as in (3.23) corresponding to ρX and ρY respectively.

Proof. We first define isomorphisms to the cochain groups (3.31) of the complex described
in Lemma 3.13. Recall that i(X) : F (?)∨ ⊗ X ⊗ F (?) → ZF (X) denotes the universal
dinatural transformations for the coend ZF (X). Let i(n)(X) denotes the universal dinatural
transformation for the coend Zn

F (X), recall (3.17) for n = 2. Given

γ ∈ Dinat
(
(?∨ ◦ ⊗n ◦ F×n)⊗X ⊗ (⊗n ◦ F×n), Y

)
,

we define γ̂ : Zn
F (X) → Y as the unique morphism that makes the following diagram

commute

F (Xn)∨ ⊗ ...⊗ F (X1)∨ ⊗X ⊗ F (X1)⊗ ...⊗ F (Xn) Zn
F (X)

Y

i
(n)
X1,...,Xn

(X)

γX1,...,Xn
!∃ γ̂

(3.38)

The inverse map can be written down explicitly. Given a morphism f : Zn
F (X) → Y , we

define the corresponding element f̃ from (3.31) component-wise via

f̃X1,...,Xn := f ◦ i(n)
X1,...,Xn

(X). (3.39)
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We write the differential in (3.37) as ∂n =
∑n+1

i=0 (−1)i∂ni and describe how the isomor-
phism f 7→ f̃ transports the corresponding summands of the differential from Lemma 3.13.
We begin with ∂n0 . For n = 0 and f ∈ HomD(X, Y ), we have the equality:

δ̃0
0(f) = f ◦ (evFX0 ⊗ idX) ◦ (idFX∨0 ⊗ ρ

X
X0

) = f ◦ βX ◦ iX0(X), (3.40)

where we used (3.23), recall also Remark 3.14. The right hand side of (3.40) factors
uniquely through the coend ZF (X) and defines the map ∂0

0 = f ◦ βX : ZF (X) → Y . We
similarly treat the n > 0 cases. Let now f ∈ HomD(Zn

F (X), Y ), then the unique ∂n0 (f) is
fixed by the following commuting diagram:

F (Xn)∨ ⊗ ...⊗ F (X0)∨ ⊗X ⊗ F (X0)⊗ ...⊗ F (Xn) Zn+1
F (X)

F (Xn)∨ ⊗ ...⊗ F (X0)∨ ⊗ F (X0)⊗X ⊗ ...⊗ F (Xn) Zn
F (X)

F (Xn)∨ ⊗ ...⊗X ⊗ ...⊗ F (Xn)

Y

id⊗ ρXX0
⊗ id

id⊗ evF (X0) ⊗ id

f̃X1,...,Xn

i
(n+1)
X0,...,Xn

(X)

i
(n)

X1,.
..,X

n
(X)

Z
n
F
(βX

)

f

∂n0 (f)

The vertical composition is just δ̃n0 (f̃). The above diagram consists of an upper pentagon
and a lower left triangle. The upper pentagon is simply the definition of Zn

F (βX), re-
call (3.23), while the lower left triangle is the definition of f̃ in terms of f , see (3.39). Since
both diagrams commute, the entire diagram commutes too. Comparing this diagram with
the diagram in (3.38), where γ is the vertical composition δ̃n0 (f̃), it fixes ∂n0 (f) uniquely as
the first term in (3.37).

For n > 0, the maps ∂ni (f) for 0 < i < n+1 are computed via the following commuting

22



diagram:

F (Xn)∨ ⊗ ...⊗ F (X0)∨ ⊗X ⊗ F (X0)⊗ ...⊗ F (Xn) Zn+1
F (X)

Zn
F (X)

Y

i
(n+1)
X0,...,Xn

(X)

i (n)
X

0 ,...,X
i−1⊗X

i ,...,X
n (X)

f̃X0,...,Xi−1⊗Xi,...,Xn

f

Z
n−

i

F

( µ
F
Z
i−

1

F

(X
)

)

∂ni (f)

Here, the upper triangle follows from the definition of the multiplication (3.19) of the
monad ZF , while the lower left triangle is the definition of f̃ from (3.39). Comparing the
above commuting diagram to (3.38) where γ = f̃ , it fixes the map ∂ni (f) uniquely as those
in the sum in (3.37).

Finally, we find for n ≥ 0 the term ∂nn+1(f) is computed via the commuting diagram

F (Xn)∨ ⊗ ...⊗ F (X0)∨ ⊗X ⊗ F (X0)⊗ ...⊗ F (Xn) Zn+1
F (X)

F (Xn)∨ ⊗ Y ⊗ F (Xn) ZF (Y )

F (Xn)∨ ⊗ F (Xn)⊗ Y

Y

idF (Xn)∨ ⊗ f̃ ⊗ idF (Xn)

idF (Xn)∨ ⊗ ρYXn

evF (Xn) ⊗ idY

i
(n+1)
X0,...,Xn

(X)

iXn
(Y )

βY

ZF
(f

)

∂nn+1(f)

This works analogous to the first diagram for ∂n0 : the upper triangle is by definition
of ZF (f), while the lower one is by definition (3.23) of βY .

We conclude the proof of Theorem 3.11 by observing that the differential ∂ obtained
in Lemma 3.15 is precisely of the form required in Proposition 2.14.

23



Remark 3.16. For the special case of trivial coefficients and F = idC, a reformulation of
Davydov-Yetter cohomology as a ‘Hochschild cohomology in tensor categories’ is stated in
[EGNO, Prop. 7.22.7]. The algebra in question is the ‘canonical algebra’ A in the tensor
category C�Cop, where � is the Deligne product, and it can be written as A =

∫ X∈C
X∨�X,

see [Sh2]. Therefore, due to Lemma 3.13 the Hochschild complex for A is isomorphic to
the complex introduced in Lemma 3.15.

3.5 Ocneanu Rigidity

An immediate application of Theorem 3.11 is a conceptual proof of Ocneanu rigidity. In this
subsection we assume additionally that the field k is of characteristic 0 and algebraically
closed. Ocneanu rigidity in the sense that Hn

DY (F ) = 0 for a tensor functor F between
fusion categories and for all n > 0 is proven in [ENO, Sec. 7], using semisimple weak
Hopf algebras. It is based on the construction of a homotopy contraction for the complex
defining Davydov-Yetter cohomology, which makes crucial use of a left integral µ of the
weak Hopf algebra such that µ(1) 6= 0. The proof does not hold for non-semisimple finite
tensor categories, including the case of weak Hopf algebra. The reason for this is that
Maschke’s theorem implies the absence of such left integrals for non-semisimple (weak)
Hopf algebras. As will be shown in Section 5, there are indeed examples of non-semisimple
finite tensor categories with non-trivial Davydov-Yetter cohomology.

Lemma 3.17. Let F : C → D be a tensor functor between semisimple finite tensor cate-
gories. Then ZF−mod is a semisimple finite tensor category.

Proof. That ZF−mod is a finite k-linear category was proven in [Maj2, Thm. 3.3] and
[Sh3, Thm. 3.4]. It also follows from the discussion in [Sh3, Sec. 3.3] that ZF−mod has a
canonical structure of a tensor category.

To show that ZF−mod is semisimple we use Maschke’s theorem for Hopf monads [BV1,
Thm. 6.5 & Rem. 6.2]. For a given Hopf monad T , the theorem states that the category
T−mod is semisimple if and only if T admits a normalized cointegral. We recall that a
cointegral for a bimonad T is a morphism Λ: I → T (I) such that

µI ◦ T (Λ) = Λ ◦ α, (3.41)

where α : T (I)→ I is the structural map of the bimonad T , recall the discussion above (3.21).
A cointegral of T is called normalized if

α ◦ Λ = idI . (3.42)

In our case of the Hopf monad T = ZF on D, a normalized cointegral will be denoted by

ΛF : ID → ZF (ID)

and it should satisfy (if exists)

µFID ◦ ZF (ΛF ) = ΛF ◦ αF and αF ◦ ΛF = idID , (3.43)
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where αF is the structural map of ZF from (3.21). Therefore, to prove semisimplicity of
ZF−mod it is enough to show existence of such a normalized cointegral ΛF .

We first recall that the Drinfeld center Z(C) of a fusion category C over an algebraically
closed field of characteristic 0 is semisimple, see e.g. [EGNO, Thm. 9.3.2], and is equivalent
to ZF−mod for F = id. Therefore, by Maschke’s theorem, the central Hopf monad Z
admits a normalized cointegral Λ := Λid satisfying (3.43) for F = id.

We claim that
ΛF := F (Λ) (3.44)

is a normalized cointegral for ZF for any tensor functor F : C → D between fusion cate-
gories. Indeed, we have that F is exact as it is an additive functor between semisimple
categories and therefore F preserves colimits. Coends are a special case of colimits, and
therefore for the coends ZF (V ) in (3.14) we can choose

ZF
(
F (M)

)
:= F

(
Z(M)

)
, M ∈ C,

and for the corresponding dinatural transformations (3.15)

iFX
(
F (M)

)
:= F

(
iX(M)

)
, X,M ∈ C.

With this choice and the fact that F is a strict tensor functor, we obtain for the corre-
sponding bimonad structure on ZF :

µFID = F (µIC) and ηFID = F (ηC)

and
ΨF
FV,FW = F (ΨV,W ) and αF = F (α).

Recall their definitions in (3.19), (3.20), (3.22) and (3.21), correspondingly. Moreover, we
have ZF (ΛF ) = F (Z(Λ)).

Recall now that (3.43) holds for F = id, then we have

µFID ◦ ZF (ΛF ) = F
(
µIC ◦ Z(Λ)

) (3.43)
= F (Λ ◦ α) = ΛF ◦ αF (3.45)

and similarly
αF ◦ ΛF = F (α ◦ Λ) = F (idIC) = idID . (3.46)

We have thus shown that F (Λ) is a normalized cointegral of ZF , as claimed above, and
therefore ZF−mod is semisimple by Maschke’s theorem for Hopf comonads.

As a corollary, we can now use the relation to comonad cohomology in Theorem 3.11
to obtain a new proof of the following generalization of Ocneanu rigidity.

Corollary 3.18 (Ocneanu rigidity with coefficients). Let F : C → D be a tensor functor
between semisimple finite tensor categories. Then, Hn

DY (F,X,Y) = 0 for all n > 0 and for
all X,Y ∈ Z(F ). In particular, we have Hn

DY (F ) = 0 for all n > 0.
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Proof. Every additive functor between semisimple categories is exact. Thus, the monad
ZF exists and by Theorem 3.11 we can formulate Davydov-Yetter cohomology of F as the
comonad cohomology associated to GF . By Proposition 2.12, the comonad cohomology of
a GF -projective object is 0. It thus suffices to prove that any coefficient X in ZF−mod is
GF -projective.

The right adjoint in FF a UF is the forgetful functor and therefore faithful. Hence
by Lemma 2.7, every projective object in ZF−mod is GF -projective as well. However, all
objects in ZF−mod are projective, because ZF−mod is semisimple by Lemma 3.17.

Remark 3.19. Lemma 3.17 and thus Corollary 3.18 remain true for any algebraically
closed field k in the case that dim C 6= 0. This is indeed the case where the Drinfeld
center Z(C) of a fusion category C remains semisimple (compare with the proof of [EGNO,
Thm. 9.3.2]).

4 Finite dimensional Hopf algebras
In this section, we apply constructions and results obtained in the two previous sections
to the case of Hopf algebras.

We consider a finite dimensional Hopf algebra (H,µ, 1,∆, ε, S) over a field k, where µ
denotes the algebra multiplication, 1 is the unit in H, ∆ is the comultiplication, ε is the
counit, and S is the antipode. We will use Sweedler’s notation for comultiplication:

∆(h) = h(1) ⊗ h(2).

By H−mod we denote the rigid category of finite dimensional (left) modules over H.
In Subsection 4.1, we describe the central monad Z and the corresponding comonad G for
the case C = H−mod and F = id, together with the bar resolution and the corresponding
Davydov-Yetter complex. In Subsection 4.2, we discuss the notion of G-projective modules
and relate them to H∗ projectiveness. In Subsection 4.3, we study the Davydov-Yetter
complex of the forgetful functor and reformulate it as Davydov-Yetter complex of the
identity functor with a non-trivial coefficient.

Let us introduce the following H-modules:

• The trivial module εV associated to a vector space V . The action is h.v = ε(h)v with
h ∈ H and v ∈ V .

• The regular module Hreg is the vector space H with the action being the left multi-
plication.

• The coregular module H∗coreg is the vector space H∗ with the action defined by

h.f = f(?h) .

• The coadjoint module H∗coad is H∗ as a vector space with the action

h.f = f
(
S(h(1))?h(2))

)
. (4.1)
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• The module (H∗⊗n ⊗ V )coad, for any V ∈ H−mod and n ≥ 1, with the action

h.(a1⊗ ...⊗an⊗v) = a1

(
S(h(1))?h(2n+1)

)
⊗· · ·⊗an

(
S(h(n))?h(n+2)

)
⊗h(n+1)v, (4.2)

for ai ∈ H∗, 1 ≤ i ≤ n, and v ∈ V . Notice that this module is in general not
isomorphic to the n-fold tensor product of H∗coad and V .

Furthermore, we note that the vector space H∗ admits a canonical Hopf-algebra structure
with the unit 1H∗ := ε and the multiplication µH∗ defined by

µH∗(f ⊗ g)(h) := (f ∗ g)(h) := f(h(2))g(h(1)) (4.3)

for h ∈ H, the comultiplication is ∆H∗ = µ∗ and the counit is defined by εH∗ : f 7→ f(1).

4.1 The central monad for H−mod

Recall for this subsection the definition of the central monad Z = Zid in Subsection 3.3.

Proposition 4.1. The central monad Z on H−mod is given by the following data:

• As a functor, it sends V to (H∗ ⊗ V )coad, i.e. Z(V ) = H∗ ⊗k V with H-action given
by

h.(f ⊗ v) = f
(
S
(
h(1)

)
?h(3)

)
⊗ h(2).v, (4.4)

for f ∈ H∗, h ∈ H and v ∈ V . It acts on a morphism ψ : V → W as Z(ψ) = idH∗⊗ψ.

• The multiplication µV : Z2(V )→ Z(V ) given by

µV (f ⊗ g ⊗ v) = (f ∗ g)⊗ v, (4.5)

with ∗ defined in (4.3), f, g ∈ H∗ and v ∈ V .

• The unit ηV : V → Z(V ) is given by ηV (v) = ε⊗ v.

Proof. The universal dinatural transformation is defined on components via

iX : X∨ ⊗ V ⊗X → H
∗ ⊗ V,

iX(f ⊗ v ⊗ x) = f(?.x)⊗ v, (4.6)

for f ∈ X∨, x ∈ X and v ∈ V . It was proven for the case V = I in [Ly, Sec. 3.3] and
[K, Lem. 3] that this indeed yields a dinatural transformation with the universal property.
The general case can be checked analogously. For the multiplication and the unit it is
straightforward to check that the defining equations (3.19) and (3.20) are satisfied.
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A statement analogous to Proposition 4.1 was made in [Sh4, Ex. 3.12] for the central
comonad.

In the Hopf algebra case, the Drinfeld center of H−mod is equivalent to the category of
finite dimensional modules over the Drinfeld double D(H). As a vector space, the Drinfeld
double3 of a finite dimensional Hopf algebra H is

D(H) := H∗ ⊗k H. (4.7)

This vector space admits an algebra structure with unit 1H∗ ⊗ 1 and multiplication such
that H∗ ⊗ 1 and 1H∗ ⊗H are subalgebras identified with (H∗, ∗) and (H, ·), respectively,
and

ψ · h := ψ ⊗ h , h · ψ := ψ
(
S(h(1))?h(3)

)
⊗ h(2) , h ∈ H, ψ ∈ H∗ , (4.8)

where we identify ψ ∈ H∗ with ψ ⊗ 1 and h ∈ H with 1H∗ ⊗ h.
The following Proposition follows from [DS].

Proposition 4.2. The categories D(H)−mod and Z−mod are isomorphic. More pre-
cisely, an object (V, β) ∈ Z−mod corresponds to the unique D(H)-module with the under-
lying space V and the following action:

(ψ ⊗ h).v = β(ψ ⊗ h.v), ψ ∈ H∗, h ∈ H, v ∈ V. (4.9)

where h.v denotes the H-action on V .
And conversely, a D(H)-module V corresponds to the underlying H-module with the struc-
ture of Z-module β : H∗ ⊗ V → V given by the action of the subalgebra H∗ ⊂ D(H)
on V .

Proof. We check that the action in (4.9) is indeed aD(H)-action. Recall the relations (4.8).
For ψ ∈ H∗ and h ∈ H, we have

ψ.(h.v) = β(ψ ⊗ h.v) = (ψ ⊗ h).v = (ψ · h).v , (4.10)

and

h.(ψ.v) = h.β(ψ ⊗ v) = β
(
ψ
(
S
(
h(1)?h(3)

))
⊗ h(2).v

)
=
(
ψ
(
S
(
h(1)?h(3)

))
⊗ h(2)

)
.v = (h · ψ).v (4.11)

by the fact that β : Z(V ) → V is an H-module homomorphism. Finally, we have for
ψ, φ ∈ H∗:

ψ.(φ.v) = β(ψ ⊗ φ.v) = β(ψ ⊗ β(φ⊗ v))
†
= β(ψ ∗ φ⊗ v) = (ψ ∗ φ).v, (4.12)

where † is due to commutativity of the left diagram in (2.1) (for T = Z) and we also
used (4.5).

3Our conventions here coincide with those of [Maj3, Sec. 7].
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We recall that D(H)−mod is monoidally equivalent to the Drinfeld center Z(H−mod).
Then the isomorphism in Proposition 4.2 is a corollary of Proposition 3.10 for F = id.

We can now reformulate Davydov–Yetter complex for H−mod with coefficients using
Lemma 3.15. Recall that for an H-module X we have Zn(X) = (H∗⊗n ⊗X)coad.

Corollary 4.3. Given D(H)-modules X and Y , the Davydov–Yetter complex of H−mod
with coefficients in X and Y is

Cn
DY (H−mod, X, Y ) ∼= HomH

(
(H∗⊗n ⊗X)coad, Y

)
(4.13)

with the differential

∂n(f)(a0 ⊗ · · · ⊗ an ⊗ x) =a0.f(a1 ⊗ · · · ⊗ an ⊗ x)

+
n∑
i=1

(−1)if
(
a0 ⊗ · · · ⊗ (ai−1 ∗ ai)⊗ · · · ⊗ an ⊗ x

)
+ (−1)n+1f(a0 ⊗ · · · ⊗ an−1 ⊗ an.x), (4.14)

with a0, a1, . . . , an ∈ H∗ and x ∈ X.

Remark 4.4. The differential ∂n in Corollary 4.3 is (−1)n+1 times the differential ∂n in
Lemma 3.15. The two complexes are isomorphic via the following isomorphism: The nth
cochains are multiplied by a sign, which is +1 if n is 1 or 2 modulo 4 and −1 otherwise.

Remark 4.5. The complex from Corollary 4.3 with trivial coefficients is (up to an isomor-
phism) the complex that was introduced in [ENO, Sec. 6] for weak Hopf algebras in order
to prove Ocneanu rigidity.

Recall the comonad G := Gid defined in (2.8) with the counit ε in (2.9) for T = Z. We
have for (V, β) ∈ Z−mod and n ≥ 1

Gn : (V, β) 7→
(

(H∗⊗n ⊗ V )coad, µH∗ ⊗ id
⊗(n−1)
H∗ ⊗ idV

)
. (4.15)

where the H-module (H∗⊗n ⊗ V )coad is defined in (4.2). Notice that from coassociativity
of the coproduct we have

(H∗ ⊗ (H∗ ⊗ V )coad)coad = (H∗⊗2 ⊗ V )coad. (4.16)

We note that using the isomorphism in Proposition 4.2, the H-module (H∗⊗n ⊗ V )coad

in (4.15) has also D(H) action where H∗ acts via µH∗ ⊗ idH∗⊗(n−1)⊗V . We now rewrite the
bar resolution (2.13) of G using this action.

Corollary 4.6. For X ∈ D(H)−mod, the bar resolution of X associated to G is a complex
in D(H)−mod of the form

. . .
dn−→ (H∗⊗n ⊗X)coad

dn−1−−−→ . . .
d2−→ (H∗⊗2 ⊗X)coad

d1−→ (H∗ ⊗X)coad
β−→ X → 0 (4.17)

with

dn = id⊗nH∗ ⊗ β +
n∑
i=1

(−1)i id
⊗(n−i)
H∗ ⊗ µH∗ ⊗ id

⊗(i−1)
H∗ ⊗ idX ,

and β is the action of H∗ ⊂ D(H) on X. For the trivial D(H) module, β is given by εH∗.
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4.2 G-projective modules as induced modules

By Theorem 3.11, we can compute Davydov–Yetter cohomologies using the bar resolu-
tion (4.17), or any other G-resolution. The G-resolutions are made of G-projective modules
– a certain class of modules over D(H). Here, we discuss what G-projectivity means in the
case of Hopf algebras. Due to Proposition 4.2, we will often identify objects from Z−mod
with those from D(H)−mod. We have thus to describe G-projective objects in terms of
D(H) modules.

We have the canonical embedding of Hopf algebras H → D(H), and have thus the
induction functor

Ind: V 7→ Ind
D(H)
H V := D(H)⊗H V . (4.18)

We note that as the vector space Ind(V ) is H∗⊗k V : indeed, D(H) is H∗⊗kH as a vector
space and thus the H tensorand goes through the balanced tensor product over H in (4.18)
and acts on V . The image of this action is V of course. We then recall that the D(H)
action on Ind(V ) is defined via multiplication:

ρInd(V ) : D(H)⊗D(H)⊗H V
µD(H)⊗idV−−−−−−−→ D(H)⊗H V. (4.19)

Let ψ ⊗ v ∈ H∗ ⊗k V and φ ∈ H∗, then the H∗-action on Ind(V ) = H∗ ⊗k V is given just
by multiplication on the left:

φ.(ψ ⊗ v) = (φ ∗ ψ)⊗ v , (4.20)

while the H-action on Ind(V ) is (recall the multiplication in (4.8))

h.(ψ ⊗ v) = (h · ψ)⊗ v = ψ
(
S(h(1))?h(3)

)
⊗ h(2).v, (4.21)

Comparing this D(H) action with the action on G(V )4 defined in (4.15) for n = 1, we
conclude with the following:

Proposition 4.7. Ind(V ) and G(V ) are isomorphic as D(H) modules.

And we thus get an immediate corollary (recall also Corollary 2.6):

Corollary 4.8. A D(H)-module is G-projective if and only if it is a direct summand of
the induced module Ind(V ) for some V ∈ H−mod.

Recall that we have the canonical embedding of algebras H∗ → D(H). We then note
from (4.20) that the H∗-module Ind(V )|H∗ is isomorphic to the direct sum (H∗)⊕ dim(V ),
where H∗ is the regular representation space of H∗. We thus conclude with the following
corollary:

Corollary 4.9. G-projective modules are projective as H∗-modules.

We note that G-projective modules are not necessarily projective as H-modules. An
important class of such G-projective modules appears in our example section 5 in con-
structing G-resolutions: as H-modules they are direct sums of one-dimensional modules,
and in particular, they are non-projective as D(H) modules.

4We use here and below a slight abuse of notations writing G(V ) instead of G(V, β) because the image
of G does not depend on the Z-module structure β.
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4.3 Cohomology of the forgetful functor

The representation category H−mod comes with a canonical fiber functor: the forgetful
functor

UH : H−mod→ Veck. (4.22)

It is well known that the Davydov-Yetter cohomology of the forgetful functor is isomorphic
to the Hochschild cohomology of the algebra (H∗, ∗) with the trivial bimodule coefficient
(see e.g. [ENO, Prop. 7.4]). In this subsection, we reformulate Hochschild cohomology
of (H∗, ∗) in a different direction: It is isomorphic to Davydov-Yetter cohomology of the
identity functor with a non-trivial coefficient. The following diagram displays the relations
between complexes made precise in this section:

DY of the forgetful functor Hochschild of (H∗, ∗)

DY of id with a coefficient Comonad of id with a coefficient

[ENO,Prop. 7.4]

Theorem 4.11

Theorem 3.11

where all arrows indicate isomorphisms of cochain complexes. We first explain what we
mean by non-trivial coefficient. For the H-module H∗coreg, we define the following map:

βc : Z
(
H∗coreg

)
→ H∗coreg, βc(f ⊗ g)(h) := f

(
S
(
h(1)

)
h(3)

)
g(h(2)) (4.23)

for f, g ∈ H∗ and h ∈ H.

Lemma 4.10. The linear map βc from (4.23) equips H∗coreg with the structure of a Z-
module.

Proof. We first check that βc defines an H-module homomorphism. For a ∈ H

βc(a.(f ⊗ g))(h) = f
(
S
(
a(1)

)
S
(
h(1)

)
h(3)a(3)

)
g
(
h(2)a(2)

)
= f

(
S
(
(ha)(1)

)
(ha)(3)

)
g
(
(ha)(2)

)
= a.βc(f ⊗ g)(h). (4.24)

We then directly verify the axioms (2.1) for a Z-action. The right diagram in (2.1) is

(βc ◦ η(f))(h) = ε
(
S
(
h(1)

)
h(3)

)
f(h(2)) = f

(
ε
(
h(1)

)
h(2)ε

(
h(3)

))
= f(h). (4.25)

We now check the left diagram of (2.1) by calculating both directions in the diagram. For
p, q, f ∈ H∗, we have

βc ◦ µH∗coreg(p⊗ q ⊗ f) =βc(µI(p⊗ q)⊗ f)(h)

=(p ∗ q)
(
S
(
h(1)

)
h(3)

)
f
(
h(2)

)
‡
=p
(
S
(
h(1)

)
h(5)

)
q
(
S
(
h(2)

)
h(4)

)
f
(
h(3)

)
(4.26)
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where ‡ follows from

∆⊗ id
(
S
(
h(1)

)
h(3) ⊗ h(2)

)
=S

(
h(1)

)
(1)
h(3)(1) ⊗ S(h(1))(2)h(3)(2) ⊗ h(2)

=S
(
h(2)

)
h(4) ⊗ S

(
h(1)

)
h(5) ⊗ h(3). (4.27)

The other direction is

βc ◦ Z(βc)(p⊗ q ⊗ f)(h) =βc(p⊗ βc(q ⊗ f))(h)

=p
(
S(h(1))h(3)

)
βc(q ⊗ f)

(
h(2)

)
=p
(
S
(
h(1)

)
h(5)

)
q
(
S
(
h(2)

)
h(4)

)
f
(
h(3)

)
. (4.28)

As both directions coincide the diagram commutes. This completes the proof.

Theorem 4.11. The Hochschild cochain complex C•HH(H∗, k) is isomorphic to the comonad
complex C•

(
(I, α),HomZ(H−mod)(?, (H

∗
coreg, βc))

)
G
.

As an immediate corollary of this theorem, using Theorem 3.11 we get that the Davydov-
Yetter complex of the forgetful functor C•DY (UH) is isomorphic to the Davydov-Yetter
complex of the identity functor with a non-trivial coefficient: C•DY (id, I,H), where H =
(H∗coreg, ρc) and ρc denotes the image of βc under the isomorphism explained in (3.24).

Before proving Theorem 4.11, we first prove the following two lemmas.

Lemma 4.12. The forgetful functor UH : H−mod → Veck has a right adjoint from Veck
to H−mod, with action V 7→ H∗coreg ⊗ εV . In particular, there is a natural family of
isomorphisms

HomH

(
X,H∗coreg

) ∼=−→ Homk (UH(X), k) , f 7→ f̄ := f(?)(1), (4.29)

for X ∈ H−mod.

Proof. It is straightforward to check that the inverse to the map in (4.29) is

g 7→ g̃, g̃(x)(h) := g(h.x), (4.30)

for g ∈ Homk(UH(X), k), h ∈ H and x ∈ X. Naturality in X for the map (4.29) is easy to
check.

With the identification of Corollary 4.3, we can reformulate Davydov-Yetter complex
of the forgetful functor on H−mod using Proposition 4.1.

Lemma 4.13. The Hochschild complex of the algebra (H∗, ∗) with trivial coefficients is
isomorphic to the complex with cochain groups HomH

(
(H∗⊗n)coad , H

∗
coreg

)
and differential

δ′(g)(a0 ⊗ · · · ⊗ an)(h) =a0

(
S
(
h(1)

)
h(3)

)
g(a1 ⊗ · · · ⊗ an)(h(2))

+
n∑
i=1

(−1)ig(a0 ⊗ . . .⊗ ai−1 ∗ ai ⊗ · · · ⊗ an)(h)+

(−1)n+1g(a0 ⊗ · · · ⊗ an−1)(h)an(1), (4.31)

where g ∈ HomH

(
(H∗⊗n)coad, H

∗
coreg

)
and h ∈ H and ai ∈ H∗ for 0 ≤ i ≤ n.
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Proof. Recall that the Hochschild complex is Homk(H
∗⊗n, k) with a differential δ =

∑n+1
i=0 (−1)iδi

that acts on cochains f via

δ0(f)(a0 ⊗ · · · ⊗ an) = a0(1)f(a1 ⊗ · · · ⊗ an)

δi(f)(a0 ⊗ · · · ⊗ an) = f(a0 ⊗ · · · ⊗ (ai−1 ∗ ai)⊗ · · · ⊗ an)

δn+1(f)(a0 ⊗ · · · ⊗ an) = f(a0 ⊗ · · · ⊗ an−1)an(1).

We directly transport this differential along the isomorphisms in Lemma 4.12. Let g ∈
HomH

(
(H∗⊗n)coad, H

∗
coreg

)
and we recall the definition of ?̄ and ?̃ notations from (4.29)

and (4.30), then

δ′(g)(a0 ⊗ · · · ⊗ an)(h) :=δ̃(ḡ)(a0 ⊗ · · · ⊗ an)(h)

=δ(ḡ)(h.(a0 ⊗ · · · ⊗ an))

=δ(ḡ)
(
a0

(
S
(
h(1)

)
?h(2n+2)

)
⊗ · · · ⊗ an

(
S(h(n+1))?h(n+2)

))
†
=a0

(
S
(
h(1)

)
h(3)

)
ḡ
(
h(2).(a1 ⊗ · · · ⊗ an)

)
+

n∑
i=1

(−1)iḡ (h.(a0 ⊗ · · · ⊗ (ai−1 ∗ ai)⊗ · · · ⊗ an)) (4.32)

+ (−1)n+1ḡ (h.(a0 ⊗ · · · ⊗ an−1)) an (1)

which equals the right hand side of (4.31). We show the equality † for the δi summands of δ
for 0 ≤ i ≤ n+ 1. For the first term it is straightforward, for the last term corresponding
to δn+1 we use the antipode and counit axioms. For the terms corresponding to δi for
1 ≤ i ≤ n, without loss of generality we show it for i = 1: for all b ∈ H the argument of ḡ
in δ1 is simplified as

a0

(
S
(
h(1)

)
?h(2n+2)

)
∗ a1

(
S
(
h(2)

)
?h(2n+1)

)
(b)⊗ · · · ⊗ an

(
S
(
h(n+1)

)
?h(n+2)

)
= a0

(
S
(
h(1)

)
b(2)h(2n+2)

)
a1

(
S(h(2))b(1)h(2n+1)

)
⊗ · · · ⊗ an

(
S
(
h(n+1)

)
?h(n+2)

)
= a0

(
S
(
h(1)

)
(2)
b(2)(h(2n))(2)

)
a1

(
S
(
h(1)

)
(1)
b(1)(h(2n))(1)

)
⊗ · · · ⊗ an

(
S
(
h(n)

)
?h(n+1)

)
= a0

((
S
(
h(1)

)
bh(2n)

)
(2)

)
a1

((
S
(
h(1)

)
bh(2n)

)
(1)

)
⊗ · · · ⊗ an

(
S
(
h(n)

)
?h(n+1)

)
= a0 ∗ a1

(
S
(
h(1)

)
bh(2n)

)
⊗ . . .⊗ an

(
S
(
h(n)

)
?h(n+1)

)
, (4.33)

where in the second equality we used that the antipode is a coalgebra anti-homomorphism.
We thus see from (4.33) that the argument of ḡ in δ1 is indeed h.(a0 ∗ a1 ⊗ a2 ⊗ . . .⊗ an)
as in (4.32). For the other summands in δ the calculation is similar. This completes the
proof.

We can now put everything together to prove Theorem 4.11.

Proof of Theorem 4.11. We observe that the cochain complex with the differential (4.31)
can be written as

δ′(g) = βc ◦ Z(g) +
n∑
i=1

(−1)ig ◦ Zi−1
(
µZn−i(I)

)
+ (−1)n+1g ◦ Zn(α), (4.34)
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where α : H∗coad → k is the canonical Z-module action on I defined by α(f) = f(1). This
is isomorphic to the complex from Proposition 2.14, setting βY = βc and βX = α, via the
isomorphism from Remark 4.4, which completes the proof.

The Davydov-Yetter complex of the identity functor is contained in the Davydov-Yetter
complex of the forgetful functor. This admits a simple expression in our reformulation.

Remark 4.14. Let i : I → H∗coreg be the canonical embedding of I defined by i : 1 7→ ε.
It is straightforward to check that it induces a Z-module map from (I, α) to (H∗coreg, βc).
Therefore, by Corollary 3.12 we have a map from Hn

DY (H−mod) to Hn
DY (UH), which is

just the map induced by the map of the corresponding cochain complexes.

5 Example: the Hopf algebras ΛCk o C[Z2]

The exterior algebras ΛCk are Hopf algebras in the symmetric category SVecC of complex
super vector spaces. Hence, their 2k+1-dimensional ‘bosonizations’ Bk := ΛCk o C[Z2] are
Hopf algebras in the usual sense, i.e. in the category of complex vector spaces. Compare
e.g. [AEG]. As an algebra they are generated by one group-like generator g and k skew-
primitive generators x1, . . . , xk being subject to the relations

gxi = −xig, x2
i = 0, xixj = −xjxi, g2 = 1, (5.1)

with 1 ≤ i, j ≤ k. This becomes a Hopf algebra with the following coalgebra structure and
antipode

∆(g) =g ⊗ g, ∆(xi) = 1⊗ xi + xi ⊗ g,
ε(g) =1, ε(xi) = 0,

S(g) =g, S(xi) = gxi. (5.2)

The first member of this family, B1, is also known as Sweedler’s 4-dimensional Hopf algebra.
In this section we will prove the following theorem.

Theorem 5.1. For the dimensions of the Davydov-Yetter cohomologies of the identity and
forgetful functor on the representation categories Bk−mod we have

dimHn
DY (Bk−mod) = dimHn

DY (UBk) =

{
0 for n odd,(
k+n−1
n

)
for n even.

(5.3)

Remark 5.2. In particular, we have H3
DY (Bk−mod) = 0. Hence, Bk−mod does not

admit non-trivial first order deformations. Nevertheless, H2
DY (Bk−mod) = (k+1)k

2
, which

implies the existence of non-trivial first order deformations of the identity functor, which
are furthermore unobstructed. We give few explicit examples in Remark 5.8. Already the
case of B1 shows that Ocneanu rigidity does not hold for general non-semisimple finite
tensor categories.
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The proof is based on our reformulation of DY cohomologies (Theorem 3.11) and the
representation theory of the Drinfeld double D(Bk). More precisely, we construct a (non-
trivial) G-resolution for the tensor unit (I, α) in D(Bk)−mod and then apply the functor
HomZ−mod(?, (I, α)), recall the isomorphism of categories in Proposition 4.2. By Theo-
rem 2.13, the resulting complex is quasi-isomorphic to the comonad G complex with trivial
coefficients in Theorem 3.11, and hence to the Davydov-Yetter complex of the identity
functor. We can use the same G-resolution in the case of the forgetful functor, but here
we apply the coefficient functor HomZ−mod(?, (H∗coreg, βc)).

Let
e± :=

1± g
2

(5.4)

denote the idempotents of the algebra Bk. The following are indecomposable modules over
Bk that we will make use of:

• The two one-dimensional simple modules I± with one generator v such that xi.v = 0
and g.v = ±v. We denote the trivial module with I = I+ as well.

• The projective covers P± of I±, they are given by

P± := Bk · e±

and they are 2k-dimensional.

The Drinfeld double D(Bk) has additional generators (those of the subalgebra B∗k)

yi := x∗i − (xig)∗ and h := 1∗ − g∗, (5.5)

where ?∗ denotes the dual basis elements of the basis in Bk:

{xi1 . . . xilgr | 1 ≤ i1 < · · · < il ≤ k, 0 ≤ l ≤ k, r ∈ Z2} .

These generators are subject to the following relations, recall (4.3) and (4.8),

h2 = 1, {yi, yj} = 0, {yi, h} = 0 (5.6)

and
[g, h] = 0, {yi, g} = 0, {xi, h} = 0, {xi, yj} = δi,j(1− hg) (5.7)

for all 1 ≤ i, j ≤ k and with {a, b} := ab + ba denoting the anticommutator. The last
relation implies that on any D(Bk)-module the action of the generator h is determined by
the actions of the other generators, and therefore we will often suppress it in the discussion.

The following are some indecomposable modules of D(Bk) that we will make use of
(compare [FGR, Prop. 3.10 & Sec. 3.7]5):

5We note that conventions on the Drinfeld double in [FGR] are slightly different but the two doubles
are isomorphic.
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• The two one-dimensional simple modules I± := Span(v) with xi.v = yi.v = 0 while
the action of g is given by ±1. Note that the action of h is then fixed by the
relations (5.7) to be g. In particular, we have for the tensor unit

I = I+ = (I, α).

• The projective (and injective) simple modules A± of dimension 2k are defined as

A± := Span
{
xi11 . . . x

ik
k v± | (i1, . . . , ik) ∈ Zk

2

}
, (5.8)

where v± is a cyclic vector such that yi.v± = 0 and g.v± = ±v±, and h.v± = ∓v±.
We note that A± considered as a Bk-module is isomorphic to P±.

• The modules B± are P± as Bk-modules and with the trivial action yi.v = 0 for all
v ∈ B±. In this case, we have that h acts as g. We note that these modules are
reducible but indecomposable.

• The modules C±: let f± = 1±h
2

denote the primitive idempotents of B∗k, then C± as a
B∗k-module is defined as

C± := B∗k · f± (5.9)

while the Bk action is fixed via xi.v = 0 for all v ∈ C± and g acts as h. These modules
are also reducible but indecomposable.

• We will use the notation B∗k,coad = (B∗k)coad for the coadjoint module defined as
in (4.1).

We have the following simple lemma.

Lemma 5.3. The modules A± and I± exhaust all simple D(Bk)-modules up to isomor-
phism. Their isomorphism class is uniquely determined by the action of the pair (g, h) on
the cyclic vector: (±,∓) corresponds to A± while (±,±) corresponds to I±.

In the following lemma we decompose theG-projective module (Z(I), µI) =
(
B∗k,coad, µI

)
.

Direct summands of this module are G-projective and we will use them as building blocks
for a G-resolution in Lemma 5.7.

Lemma 5.4. We have the following decomposition of D(Bk)-modules:

G(I) =
(
B∗k,coad, µI

) ∼= A(−)k ⊕ C+ (5.10)

and
G(I−) = (Z(I−), µI−) ∼= A(−)k+1 ⊕ C−. (5.11)
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Proof. To prove the decomposition of G(I) in (5.10), we first analyze the Bk-action in the
coadjoint representation. On the basis elements in B∗k, we have

g.(xi1 . . . xim)∗ = (−1)m(xi1 . . . xim)∗ g.(xi1 . . . ximg)∗ = (−1)m(xi1 . . . ximg)∗

and

xj.(xi1 . . . xim)∗ =0 for all j, (5.12)

xj.(xi1 . . . ximg)∗ =

{
2(−1)m−l+1(xi1 . . . x̂il . . . ximg)∗ for il = j

0 for il 6= j ∀l,
(5.13)

where the notation x̂il means that we omit the corresponding element. From this action,
we obtain the following Bk-submodules in a basis:

Bk.(x1 . . . xkg)∗ = Span {(xi1 . . . ximg)∗|1 ≤ i1 < i2 < · · · < im ≤ k}
∼= P(−)k (5.14)

and
Span {(xi1 . . . xim)∗|1 ≤ i1 < i2 < · · · < im ≤ k} ∼= I⊕2k−1

+ ⊕ I⊕2k−1

− . (5.15)

We note that the isomorphism in (5.14) is easy to establish after identifying the cyclic
vector w = (x1x2 . . . xkg)∗, where g acts by (−1)k, with the cyclic vector e(−)k of P(−)k

defined in (5.4). The isomorphism in (5.15) is obvious. We therefore have a decomposition
over the Bk subalgebra:

G(I)|Bk = P(−)k ⊕ I⊕2k−1

+ ⊕ I⊕2k−1

− . (5.16)

Next, we compute the actions of yi ∈ B∗k. Recall that B∗k acts via the multiplication on B∗k
defined by φ ∗ ψ = φ⊗ ψ ◦∆op for φ, ψ ∈ B∗k. We use the coproduct formula for the basis
elements of Bk

∆(xi1 . . . ximg
r) = (1⊗ xi1 + xi1 ⊗ g) . . . (1⊗ xim + xim ⊗ g)gr ⊗ gr (5.17)

=
∑
b∈Z×m2

xb1i1 . . . x
bm
im
gr ⊗ x1−b1

i1
gb1 . . . x1−bm

im
gbmgr, (5.18)

where r ∈ Z2, to calculate the products

yil .(xi1 . . . xil . . . xim)∗ = yil .(xi1 . . . xil . . . ximg)∗ = 0 (5.19)

and

yil .(xi1 . . . x̂il . . . xim)∗ =(−1)m−l(xi1 . . . xil . . . xim)∗,

yil .(xi1 . . . x̂il . . . ximg)∗ =(−1)m−l−1(xi1 . . . xil . . . ximg)∗.
(5.20)

With these explicit actions, we are now able to analyze the decomposition of G(I) over
D(Bk). We first note that B∗k acts on the direct summand P(−)k in (5.16) because of its

37



basis given in (5.14). We claim that the resulting D(Bk) module is isomorphic to A(−)k ,
recall its definition in (5.8). First, the resulting D(Bk) module has the cyclic vector w =
(x1x2 . . . xkg)∗ such that yiw = 0 for 1 ≤ i ≤ k. Secondly, this module has action of h = −g
and it is indecomposable. Due to the classification in Lemma 5.3, this module should have
A(−)k as a simple subquotient but they both have the same dimension. Therefore, the first
direct summand in (5.16) is indeed isomorphic to A(−)k . For the reader’s convenience we
also present the D(Bk) action schematically in the left part of Figure 1.

We now analyze the second part of (5.16). Again, from the yi actions in (5.19) and (5.20)
the summand I⊕2k−1

+ ⊕I⊕2k−1

− is closed under the action of B∗k. It has a cyclic vector 1∗ with
the action h.1∗ = 1∗. Moreover, the action of the subalgebra generated by yi, 1 ≤ i ≤ k,
is free as follows from (5.20). We therefore have that the resulting D(Bk)-module is a
projective module over B∗k isomorphic to B∗k.f+, i.e. we identify the cyclic vector 1∗ with f+.
Finally, the action of xi’s is trivial due to (5.12), and so the submodule is identified with C+,
recall the definition in (5.9) (see also the right part of Figure 1). This concludes the proof
of (5.10).

m = k

m = k − 1

m = k − 2

m

m = 0

(−)k

(−)k−1 . . . (−)k−1

(−)k . . . (−)k

. . . . . . . . .

+

⊕

(−)k

(−)k−1 . . . (−)k−1

(−)k . . . (−)k

. . . . . . . . .

+

Figure 1: Action of D(Bk) on G(I) = A(−)k ⊕ C+. The mth layer consists of 2
(
k
m

)
simple

(one-dimensional) Bk-subquotients having the same sign (the signs ± correspond to the g-action):(
k
m

)
of them in the left summand are spanned by basis elements (xi1 . . . ximg)∗, while

(
k
m

)
ones in

the right summand are spanned by (xi1 . . . xim)∗. The solid lines indicate the action of xi’s and
the dashed ones are for the yi’s action.

The analysis of the decomposition of G(I−) is completely analogous and we skip it.
Indeed, reproducing the above calculations in this case shows that G(I−) is isomorphic to
G(I)⊗ I−.

Corollary 5.5. The modules C+ and C− are G-projective.
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Proof. G(I±) and their direct summands are G-projective by Lemma 2.5. Therefore due
to Lemma 5.4, C± are G-projective.

Lemma 5.6. Let A be a k-algebra with an augmentation map ε : A → k, for a field k.
Assume we have an exact complex of k-vector spaces

R : . . .
fn+1−−→ kcn

fn−−→ kcn−1
fn−1−−→ . . .

f2−−→ kc1
f1−−→ kn0 → k → 0. (5.21)

Let εR denotes the corresponding complex of A-modules with kcn replaced by εk
⊕cn. Then

for any A-module M the complex HomA(M, εR) is also exact.

Proof. The cochain spaces of the complex HomA(M, εR) are

Cn := HomA(M, εk
⊕cn) ∼= HomA(M, εk)⊗ kcn , (5.22)

and cochain maps f̂n : Cn → Cn−1 are given by f̂n : φ 7→ fn ◦ φ for each φ ∈ Cn. Using
the isomorphism in (5.22), we can assume without loss of generality that φ = ψ ⊗ v for
some ψ ∈ HomA(M, εk) and v ∈ kcn . On such vectors f̂n(φ) = ψ⊗ fn(v), or f̂n = id⊗ fn6.
Therefore, we have an isomorphism of complexes:

HomA(M, εR) ∼= HomA(M, εk)⊗R,

with cochain maps of the form id⊗fn, and exactness of HomA(M, εR) follows from exactness
of R.

We can now construct the desired G-resolution:

Lemma 5.7. There is a G-resolution in D(Bk)−mod of the following form:

· · · → C⊕a3− → C⊕a2+ → C⊕a1− → C⊕a0+ → I → 0 (5.23)

with an =
(
k+n−1
n

)
.

Proof. We first construct an exact sequence of D(Bk)-modules of the form (5.23) and then
check that it is also G-exact. Since the action of xi on C± is trivial and g acts as h, it
suffices to construct an exact sequence in B∗k−mod.

We have from (5.6) and (5.7) that

B∗k = 〈y1, . . . , yk, h〉 ∼= ΛCk o C[Z2]

where ΛCk is the exterior algebra of Ck = Span{yi, 1 ≤ i ≤ k} and the isomorphism is
obvious. Under the isomorphism, the B∗k-modules C± are isomorphic to the vector space
ΛCk with ΛCk-action given by the multiplication ∧ on ΛCk and with the action h.1 = ±1.

6For brevity, we omit the conjugation by the isomorphism from (5.22).
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We recall the ‘Koszul resolution’ of the trivial module C over the exterior algebra7:

· · · → S2
(
Ck
)
⊗ ΛCk f̃2−→ S1

(
Ck
)
⊗ ΛCk f̃1−→ S0

(
Ck
)
⊗ ΛCk f̃0−→ C→ 0, (5.24)

where the subspaces Sn
(
Ck
)
of the symmetric algebra S

(
Ck
)
consist of elements of the

form of n-fold tensor products, and f̃i are ΛCk-module maps such that f̃i+1 ◦ f̃i = 0.
We are now able to construct a resolution of the form (5.23). Note that the action

of h endows the cochain spaces in (5.23) with Z2 grading. Let Π: C± → C∓ denotes the
corresponding parity shift operator, i.e. it is ΛCk-equivariant and sends 1 to 1. Then, the
above Koszul complex (5.24) can be extended to a Z2-equivariant one as follows:

· · · → S2
(
Ck
)
⊗ C+

f2−→ S1
(
Ck
)
⊗ C−

f1−→ S0
(
Ck
)
⊗ C+

f0−→ I → 0 (5.25)

where the tensor products are over C and we define

fn :=
(
idSn(Ck) ⊗ Π

)
◦ f̃n. (5.26)

The parity shift part in (5.26) is necessary in order to make the cochain maps even, indeed
the maps f̃n used in (5.24) are odd. We note that the complex (5.25) is just a projective
resolution of the trivial B∗k-module8. The formula for the multiplicities an in (5.23) then
follows from the fact that dimSn(Ck) =

(
k+n−1
n

)
.

In the remainder of the proof we show that the exact sequence in (5.25) is in fact a
G-resolution. All objects (except I) are G-projective by Corollary 5.5. We can further
check that the resolution is G-exact: If we apply the functor

HomD(Bk)

(
G(X), ?

) ∼= HomBk

(
U(X),U(?)

)
, (5.27)

with X ∈ D(Bk)−mod and via U forgetting the B∗k part of the D(Bk)-action, we obtain
the complex

. . .
f̂n+1−−→ HomBk

(
U(X),U(C(−)n)⊕an

) f̂n−→ HomBk

(
U(X),U(C(−)n−1)⊕an−1

) f̂n−1−−→ . . . (5.28)

where U(C±) are completely decomposed into copies of I and I−:

U(C±) ∼= I⊕2k−1 ⊕ I⊕2k−1

− . (5.29)

We note that the maps f̂n in (5.28) are given by post-composing with the maps from (5.25):
f̂n : φ 7→ fn ◦ φ. Therefore, as the cochain maps from (5.25) preserve the h-action, the
complex (5.28) decomposes into a direct sum of complexes, one with cochain spaces Cn =

HomBk(U(X), I⊕an2k−1
) and the other with Cn = HomBk(U(X), I⊕an2k−1

− ). It is therefore
enough to show exactness for each copy separately. Recall that the forgetful functor U is
exact and therefore its image on (5.25) is split on direct sum of two resolutions, one with
direct sums of I and the other with I−. They are both resolutions in vector spaces after
applying the fiber functor. Then applying Lemma 5.6 for each of these resolutions and the
case A = Bk and M = U(X) proves exactness of (5.28).

7This is the complex dual to the one in [E, Ex. 17.21 (c)] and composed with the augmentation map
ΛCk → C, yi → 0, 1→ 1.

8One can check that this is actually a minimal projective resolution.
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Finally, we can apply the general theory of comonad cohomology to prove the formula
in Theorem 5.1 for dimHn

DY (Bk−mod).

Proof of Theorem 5.1 for the identity functor. By Theorem 3.11, we can reformulate Da-
vydov-Yetter cohomology of the identity functor as the comonad cohomology of the co-
monad G for the case when the coefficients X = Y = I are the trivial D(Bk)-module.
Theorem 2.13 allows to use any G-resolution to compute the cohomologies. We compute
the comonad cohomology (and hence DY cohomology) by applying the respective coefficient
functor HomD(Bk)(−, I) to the G-resolution constructed in Lemma 5.7. The statement for
the identity functor in (5.3) follows immediately from observing that HomD(Bk)(C−, I) = 0
and HomD(Bk)(C+, I) = C.

Remark 5.8. We can write down generators of H2
DY (Bk−mod) explicitly. For a Hopf

algebra H, the algebra of natural transformations NatH−mod(⊗n,⊗n) is isomorphic to the
subalgebra in H⊗n that commutes with the n-fold coproduct ∆(n)(h) for any h ∈ H, as was
observed in [ENO, Sec. 6]. In the following table, f =

∑
i f

i
1⊗ · · · ⊗ f in ∈ H⊗n corresponds

to the natural transformation defined by ηf (v1 ⊗ · · · ⊗ vn) :=
∑

i f
i
1.v1 ⊗ · · · ⊗ f in.vn, for

vk ∈ Vk.

Hopf algebra Generators of H2
DY (Bk−mod)

B1 x⊗ xg
B2 x1 ⊗ x1g, x2 ⊗ x2g, x1 ⊗ x2g + x2 ⊗ x1g
B3 x1 ⊗ x1g, x2 ⊗ x2g, x3 ⊗ x3g,

x1 ⊗ x3g + x3 ⊗ x1g, x2 ⊗ x1g + x1 ⊗ x2g, x2 ⊗ x3g + x3 ⊗ x2g

These natural transformations define infinitesimal deformations of the monoidal structure
of the identity functor. Due to the fact that H3

DY = 0 in this case, the deformations have
no obstructions.

In the remainder of this section we prove the formula in Theorem 5.1 for the forgetful
functor, i.e. for dimHn

DY (UBk). Using Theorem 4.11 and the discussion after it, we compute
the DY cohomology of the forgetful functor via the DY cohomology of the identity functor
with second coefficient

(
B∗k,coreg, βc

)
, recall its definition in (4.23). In the following lemma

we decompose the D(Bk)-module corresponding to
(
B∗k,coreg, βc

)
.

Lemma 5.9. We have a decomposition of the D(Bk)-module
(
B∗k,coreg, βc

)
:(

B∗k,coreg, βc
) ∼= A(−)k+1 ⊕ B(−)k . (5.30)

Proof. We first analyze the action of the subalgebra Bk ⊂ D(Bk). The action of Bk on
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(
B∗k,coreg, βc

)
is just the coregular action. We have the following actions of xj and g:

g.(xi1 . . . xim)∗ =(xi1 . . . ximg)∗,

g.(xi1 . . . ximg)∗ =(xi1 . . . xim)∗,

xj.(xi1 . . . xim)∗ =

{
(−1)m−l(x1 . . . x̂il . . . xim)∗ for il = j

0 for il 6= j, 1 ≤ l ≤ m,

xj.(xi1 . . . ximg)∗ =

{
(−1)m−l+1(x1 . . . x̂il . . . ximg)∗ for il = j

0 for il 6= j, 1 ≤ l ≤ m.
(5.31)

It is clear that this is a free action and isomorphic to the regular Bk-module. Therefore,
B∗k,coreg as a Bk-module can be decomposed as

B∗k,coreg = P+ ⊕ P−, (5.32)

where in a basis we have the identification

P+
∼= Bk.

(
(x1 . . . xk)

∗ + (x1 . . . xkg)∗
)

, P− ∼= Bk.
(
(x1 . . . xk)

∗ − (x1 . . . xkg)∗
)
. (5.33)

The action of the subalgebra B∗k is given by βc : B∗k ⊗ B∗k → B∗k, recall (4.23). Using
the formula (5.18) twice, we get

yil .(xi1 . . . x̂il . . . xim)∗ =(−1)m−l(xi1 . . . xim)∗ + (−1)l−1(xi1 . . . ximg)∗,

yil .(xi1 . . . x̂il . . . ximg)∗ =(−1)l(xi1 . . . xim)∗ + (−1)m−l−1(xi1 . . . ximg)∗. (5.34)

In particular, we obtain on the basis elements of the Bk-submodules P+, P−:

yil .((xi1 . . . x̂il . . . xim)∗ ± (xi1 . . . x̂il . . . ximg)∗) (5.35)

=

{
0 for (−1)m = ∓
2(−1)l(±1)((xi1 . . . xim)∗ ∓ (xi1 . . . ximg)∗) for (−1)m = ±.

(5.36)

Hence, we can identify the cyclic vector v(−)k+1 := (x1 . . . xk)
∗ + (−1)k+1(x1 . . . xkg)∗ such

that the Bk submodule P(−)k+1
∼= Bk.v(−)k+1 becomes the module A(−)k+1 under the action

of B∗k ⊂ D(Bk). This follows again from the fact that this module is indecomposable and
admits the action g = −h, which implies that it contains A(−)k+1 as a simple submodule
due to Lemma 5.3. Simlarly P(−)k becomes B(−)k under the action of B∗k.

The comonad cohomology with the coefficient functor HomZ(Bk−mod)(?,Y) preserves
direct sums. Thus, we can simply neglect the summand A± in Y =

(
B∗k,coreg, βc

)
because

it is injective and makes the functor HomZ(Bk−mod)(?,A±) exact.

Corollary 5.10. We have

Hn
(
?,HomD(Bk)(!,A± ⊕ B∓)

)
G
∼= Hn

(
?,HomD(Bk)(!,B∓)

)
G

(5.37)

for all n > 0.
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Proof of Theorem 5.1 for the forgetful functor. The statement for the forgetful functor fol-
lows from the identities HomD(Bk)(C−,B−) = 0 and HomD(Bk)(C+,B−) ∼= C for odd k and
HomD(Bk)(C−,B+) = 0 and HomD(Bk)(C+,B+) ∼= C for even k.

Remark 5.11. The formula (5.3) for the Davydov-Yetter cohomology of the forgetful func-
tor can be obtained by using the following well known isomorphism for a Hopf algebra H
and an H-bimodule M :

HH•(H,M) ∼= Ext•H⊗Hop(H,M) ∼= Ext•H(k,Mad), (5.38)

where k is the trivial module and Mad is the adjoint representation corresponding to the
bimodule M . Specifically, for the trivial bimodule M = k, the latter is just Ext•H(k, k). The
Davydov-Yetter cohomology of the forgetful functor is isomorphic to the Hochschild coho-
mology of the dual Hopf algebra for M = k. It is thus enough to compute ExtnB∗k(I, I). This
can be done with standard homological algebra techniques. In fact, the minimal projective
resolution of the trivial module I is identical to the one in (5.23) restricted to the subalgebra
B∗k. The calculation is therefore analogous to the end of the proof of Theorem 5.1 for the
identity functor.
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