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Abstract: This paper presents a novel way to switch dual-behavior resonator (DBR) filters without
any additional active surface-mount components. By using a semiconductor substrate, we were
able to simultaneously co-design the filters and semiconductor distributed doped areas (ScDDAs)
with integrated N+PP+ junctions as active elements. These ScDDAs act as electrical vias in the
substrate, which makes it possible to have an open-circuited resonator in the OFF state and a
short-circuited resonator in the ON state, and, consequently, to control the transmission zeroes of the
filters. This method offers degrees of freedom as the dimensions and positions of these doped areas
can be chosen to obtain the best performances. In this study, four filters were simulated and fabricated
to spotlight different possibilities for the dimensions and positions of the ScDDA to control the low-
or high-frequency transmission zero of the filters. The simulations were in very good agreement with
the measured results. All the filters present insertion losses lower than 2 dB in the OFF and ON states,
a great flexibility in the frequency choice, and good agility compared with the state of the art.

Keywords: bandpass filter (BPF); co-design; DBR filter; microstrip filter; reconfigurable filter; ScDDA;
switchable filter

1. Introduction

In the era of the Internet of Things and Internet of Everything, communication systems
are omnipresent. It has never been as complicated as it is today, therefore, to obtain satisfactory
tradeoffs between electrical and thermal performances, integrability, and cost. A system has to support
increasing numbers of applications and its components such as antennas or filters consequently need
reconfigurable functionalities. Filters have to select each desired frequency band related to the targeted
applications. There exist many discrete reconfigurable filters making it possible to switch a filter
from bandpass to bandstop [1–4], between different bandwidths [5–7] or between different frequency
bands, sometimes with multi-states, i.e., with a combination of states of several active elements [8–16].
However, if active surface-mount components (SMCs) such as PIN diodes, RF MEMS or varactor
diodes are used to effect such changes, the filters can have issues related to parasitic effects induced by
these active components and their associated bias networks. Whole filter performances may thus be
decreased by these parasitic effects, which are potentially exacerbated as the frequency increases.
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Moreover, while the frequency spectrum becomes increasingly congested, basing filters on
dual-behavior resonators (DBR) can provide narrow-band filters [17,18]. Previous studies have shown
the interest of making these components tunable [19–22] by using additional lines at the end of each
stub, PIN diodes, varactors, or KTN ferroelectric thin-films in order to reach a center frequency agility
of up to 32%. However, drawbacks have been reported, like a high control voltage, dependence of the
transmission zeroes, and occasional high losses caused by the active SMCs.

In order to counter these issues, reconfigurable RF components can be co-designed using
semiconductor distributed doped areas (ScDDAs), such as in [23–27]. By designing a tunable RF
device with ScDDAs, we can obtain a tunability comparable to that of classical technology with SMCs
while avoiding the need for other components. Indeed, ScDDAs are semiconductor junctions acting as
electrical vias in the substrate thickness, i.e., they are integrated active components in the substrate.
This method offers flexibility in terms of dimensions and positions of the active elements and avoids
the drawbacks of adding SMCs.

In this context, the aim of the present paper is to propose narrow-band filters such as DBR ones
using ScDDAs. This offers filter designers more possibilities for the control of the frequency zeroes and
means to achieve good tradeoffs in terms of electrical performances, integrability, and cost.

In this paper, Section 2 deals with the switchable DBR concept. Then, Section 3 explains the
co-simulation method and the measured results on a first demonstrator. Finally, in Section 4, the flexibility
and degrees of freedom are discussed and compared with the state of the art and three other DBRs.

2. Switchable DBR Theory

DBRs are based on the parallel association of two bandstop structures that can be two open-ended
stubs, a quarter wavelength long, at a specific frequency (Figure 1a). Each resonator has its own
specific length to give a transmission zero. By appropriately selecting these transmission zeroes (TZ),
a bandpass filter can be obtained.
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option is to short-circuit a stub as shown in Figure 2a; the LF transmission zero LF1 becomes LF2, thus 
modifying the central frequency from 5.7 GHz to 3.2 GHz (Figure 2b) in the OFF and ON states, 

Figure 1. (a) Dual behavior resonator (DBR) design in the OFF state with two open-ended stubs linked
to the two frequencies LF1 and HF1; (b) example of simulated results with the two transmission zeroes
for a central frequency of 5.6 GHz.

Thus, the longer resonator in Figure 1a is for the low-frequency (LF1) transmission zero and the
shorter one is for the high-frequency (HF1) transmission zero. Figure 1b shows an example of simplified
simulated results, i.e., without end effects or dielectric losses, obtained using the Advanced Design
Systems (ADS) electronics software from Keysight Technologies©, where the two TZ make a 5.7 GHz
bandpass filter possible. Then, if one resonator is short-circuited, this modifies the transmission zero
and, consequently, the central frequency of the bandpass filter.
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By using one active element, there are two alternative ways to create a switchable DBR. The first
option is to short-circuit a stub as shown in Figure 2a; the LF transmission zero LF1 becomes LF2,
thus modifying the central frequency from 5.7 GHz to 3.2 GHz (Figure 2b) in the OFF and ON
states, respectively. The second option is to short-circuit the high-frequency resonator (Figure 3a);
the high-frequency transmission zero HF1 becomes HF2, which makes it possible to switch the central
frequency from 5.7 GHz in the OFF state to 2.5 GHz in the ON state (Figure 3b).
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3. Switchable DBR Demonstrator

Based on the switchable DBR concept, our objective here was to co-design a DBR and its active
element on a high-resistivity silicon (HR-Si) substrate. Indeed, a high resistivity was chosen to
minimize the losses of the propagating waves in the substrate. Furthermore, the advantage of using
this kind of substrate, i.e., a semiconductor, is that it makes it possible to design transmission lines
and ScDDAs at the same time and thus to co-design a switchable DBR. We can, therefore, optimize
electrical performances of the two states and enhance the integrability by using a low-cost technology
compatible with mass-production.
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3.1. Design and Modeling

A P-type silicon substrate was chosen with a 675 µm thickness and doped with boron with a
resistivity of 2500 Ω·cm. The active element was an N+PP+ junction with a surface doping of around
3 × 1019 atoms/cm3 for the two N+ and P+ regions and doping depths of around 3 µm. Figure 4 shows
the switchable DBR design with its integrated active element, located at the end of the HF resonator.
The length ×width dimensions of the low- and high-frequency stubs are noted LstubHF ×WHF and
LstubLF ×WLF, respectively, and the dimensions of the doped area are noted LDOP ×WDOP. The lengths
and widths of the two resonators were calculated to obtain a low-frequency transmission zero at
4.8 GHz and a high-frequency transmission zero at 7.2 GHz, based on the synthesis in [17]. The access
line widths were dimensioned to have a 50 Ω characteristic impedance and their lengths were chosen
to be sufficiently long to be easily measured. The DBR dimensions are listed in Table 1.
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Table 1. Dimensions of Switchable DBR1.

Access LF Resonator HF Resonator ScDDAs

Length L01 = 3.74 mm
L02 = 4 mm LstubLF = 5.46 mm LstubHF = 3.8 mm LDop = 0.2 mm

Width W0 = 0.56 mm WstubLF = 0.84 mm WstubHF = 0.31 mm WDop = 0.31 mm

This demonstrator was simulated using an HFSSTM electromagnetic simulator to predict its
behavior. The semiconductor losses were taken into account using the substrate resistivity in the
calculation loss tangent as follows:

tanδ =
1

ρωε0εr
+ 0.0018 (1)

where ρ is the resistivity, ω is equal to 2π f req, ε0 is the vacuum dielectric permittivity and εr is the
silicon dielectric permittivity, equal to 11.9.

The active element was simulated using two 3 µm deep layers of 7.1 × 105 S/m conductivity,
corresponding to the conductivity of heavily doped areas. Between these two layers, i.e., between the
top and the bottom sides, within the substrate itself, a resistivity of 2500 Ω·cm in the OFF state and a
resistivity of 0.1 Ω·cm in the ON state, which was estimated using AtlasTM from Silvaco© when the
junction was forward biased. Figure 5 presents the electromagnetic simulated results of the switchable
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DBR1 demonstrator in OFF and ON states. In the OFF state, the two transmission zeroes at 4.8 GHz
and 7.2 GHz make it possible to obtain a bandpass filter at 5.52 GHz. When the N+PP+ is simulated
in forward bias, the high-frequency transmission zero is switched to DC allowing a transmission
frequency band at 2.44 GHz. The simulated insertion losses are 0.9 dB at 5.52 GHz in the OFF state and
2.01 dB at 2.44 GHz in the ON state.Electronics 2020, 9, x FOR PEER REVIEW 5 of 11 
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3.2. Fabrication and Measurements

This demonstrator was fabricated with only two masks: one for the doping steps and one for the
metallization steps of the upper side. The manufacturing steps are detailed in [27].

Figure 6 shows a photograph of the switchable DBR1 demonstrator, placed between two SMA
connectors for measurement. The two RF cables and DC source were connected to an R&S® ZVA 67
Vector Network Analyzer (VNA). The DC bias voltage was applied with the RF signal. Because the DC
ground was connected to the RF ground, a negative voltage was required to forward bias the N+PP+

junction. A Short Open Load through (SOLT) calibration was performed to remove the losses of the
cables but not the losses from the SMA connectors.
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Figure 6. Photograph of switchable DBR1.

The measured results are presented in Figure 7. In the OFF state, with a zero-bias voltage, the two
transmission zeroes are measured at 4.83 GHz and 7.2 GHz, which implies a central frequency at
5.58 GHz with an insertion loss level of 1.97 dB. In the ON state, the lowest frequency transmission zero
stays relatively constant, whereas the high-frequency transmission zero is moved to the DC frequency
so the central frequency is switched to 2.55 GHz with a bias voltage of −1.5 V. The insertion loss level is
then 1.9 dB.
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Figure 8a,b show comparisons of the simulated and measured results in the OFF and ON states.
A good agreement was obtained overall, with slight differences that could be due to the substrate
resistivity (given by the manufacturer as between 1 kΩ·cm and 10 kΩ·cm), the SMA connector losses
themselves and the losses related to connection defects, i.e., the gap that exists between the connector
and the substrate because these are separate elements.

Electronics 2020, 9, x FOR PEER REVIEW 6 of 11 

 

Figure 8a,b show comparisons of the simulated and measured results in the OFF and ON states. 
A good agreement was obtained overall, with slight differences that could be due to the substrate 
resistivity (given by the manufacturer as between 1 kΩ·cm and 10 kΩ·cm), the SMA connector losses 
themselves and the losses related to connection defects, i.e., the gap that exists between the connector 
and the substrate because these are separate elements. 

 
(a) 

 
(b) 

Figure 8. Comparison of simulated and measured results of switchable DBR1. (a) in the OFF state; (b) 
in the ON state. 

4. Discussion 

The co-design approach used in the present study offers great flexibility and accuracy for the 
dimensioning and positioning of the doped areas, thanks to the semiconductor process. In order to 
show an overview of the possibilities, three other demonstrators (Figure 9) with different doped 
lengths and widths were designed and characterized. These switchable DBRs had the same metal 
layout as the first demonstrator DBR1, only the dimensions (listed in Table 2) of the doped areas 
(located at the end of the resonator) were modified. 

    
(a) (b) (c) (d) 

Figure 9. Top views of switchable DBRs. (a) DBR1 with doped area dimensions of 0.2 mm × 0.314 mm. 
(b) DBR2 with doped area dimensions of 1 mm × 0.314 mm. (c) DBR3 with doped area dimensions of 
0.2 mm × 0.836 mm. (d) DBR4 with doped area dimensions of 2 mm × 1.5 mm. Measured results of 
switchable DBR1 in the OFF and ON states. 

Table 2. Dimensions of the ScDDAs of the four demonstrators. 

 ScDDA of DBR1 ScDDA of DBR2 ScDDA of DBR3 ScDDA of DBR4 
Length LDop = 0.2 mm LDop = 1 mm LDop = 0.2 mm LDop = 2 mm 
Width WDop = 0.31 mm WDop = 0.31 mm WDop = 0.84 mm WDop = 1.5 mm 

Figure 8. Comparison of simulated and measured results of switchable DBR1. (a) in the OFF state;
(b) in the ON state.

4. Discussion

The co-design approach used in the present study offers great flexibility and accuracy for the
dimensioning and positioning of the doped areas, thanks to the semiconductor process. In order to
show an overview of the possibilities, three other demonstrators (Figure 9) with different doped lengths
and widths were designed and characterized. These switchable DBRs had the same metal layout as the
first demonstrator DBR1, only the dimensions (listed in Table 2) of the doped areas (located at the end
of the resonator) were modified.
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Table 2. Dimensions of the ScDDAs of the four demonstrators.

ScDDA of DBR1 ScDDA of DBR2 ScDDA of DBR3 ScDDA of DBR4

Length LDop = 0.2 mm LDop = 1 mm LDop = 0.2 mm LDop = 2 mm
Width WDop = 0.31 mm WDop = 0.31 mm WDop = 0.84 mm WDop = 1.5 mm

Figure 10a,b show comparisons of the simulated and measured results of switchable DBR2 in the
OFF and ON states. As for DBR1, a good agreement was obtained overall. It has a longer ScDDA than
DBR1 on the HF stub, with 1 mm length. Therefore, compared with DBR1, the central frequency is
the same in the OFF state, i.e., equal to 5.53 GHz, with a 0 V bias voltage. The insertion loss level is
1.97 dB. In the ON state, with a −1.2 V bias voltage, the highest transmission zero is moved to DC and
the transmission frequency band is at 2.6 GHz, with an insertion loss level of 1.95 dB. The bias voltage
is lower than for DBR1 because the doped area is longer.
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Switchable DBR3 has an ScDDA with a doped length of 0.2 mm, located at the end of the LF
resonator. Figure 11a,b show comparisons of the simulated and measured results of switchable DBR3

in the OFF and ON states. These figures show a commutation in the central frequency from 5.53 GHz
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in the OFF state, with a 0 V bias voltage, to 3.23 GHz in the ON state, with a −1.5 V bias voltage.
The insertion loss levels are 1.98 dB and 1.68 dB, respectively.
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The last demonstrator, DBR4, has a wider and longer ScDDA than DBR3. This implies a capacitive
effect in the OFF state, which explains why the resonant frequency, at 5.2 GHz, is lower than for the
other demonstrators (Figure 12a). It also has a shorter resonator in the ON state, which gives a resonant
frequency of 3.8 GHz in the ON state (higher than with DBR3) (Figure 12b), with a bias voltage of −1 V.
The insertion losses are 1.94 dB and 1.95 dB in the OFF and ON states, respectively.Electronics 2020, 9, x FOR PEER REVIEW 8 of 11 

 

 
(a) 

 
(b) 

Figure 12. Comparison of simulated and measured results of switchable DBR4. (a) in the OFF state; 
(b) in the ON state. 

Moreover, with a 5.52 GHz filter in the OFF state, the central frequency in the ON state can be 
selected between 2.44 GHz and 5 GHz by choosing the length of the doped area and short-circuiting 
the LF- or HF- stub (Figure 13). The ratio can be between 1:1.1 and 1:2.25, which offers many 
possibilities depending on the application. The greater the doped area surface, the lower the bias 
voltage. Thus, if the bias voltage is not an issue, the size can be minimized while maintaining the 
switched frequency. This can be a good solution in the case of multiple states, such as in [25]. 

 

Figure 13. Central frequency of a switchable DBR in the ON state depending on the doped area length, 
for a central frequency of 5.52 GHz in the OFF state. 

Table 3 shows a comparison between the state-of-the-art and the results of the present study. 
Our work shows a great agility, with the best tradeoff between the highest frequency ratio and good 
performances, i.e., low losses, without any additional components. 

Table 3. Comparison between previous two-state switchable filters and this work. 

Ref. 
Freq. 

(GHz)$$$$ 
LF Band 

Freq. 
(GHz)$$$$ 
HF Band 

IL 
(dB)$$$$ 
LF Band 

IL 
(dB)$$$$ 
HF Band 

Active 
Components 

Frequency 
Ratio 

[8] 1.94 2.43 3.84 3.35 PIN diodes 1:1.25 
[9] 1.06 1.51 1.7 1.7 PIN diodes 1:1.42 

[10] 1.92 2.08 3.94 3.07 PIN diodes 1:1.08 
[10] 2.03 4.47 24.46 3.77 PIN diodes 1:2.2 
[11] 2.53 4.9 3.77 2.64 PIN diodes 1:1.94 
[12] 1.2 1.5 2.1 2.21 PIN diodes 1:1.25 
[13] 0.90 1.25 1.8 1.9 PIN diodes 1:1.38 
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(b) in the ON state.

Moreover, with a 5.52 GHz filter in the OFF state, the central frequency in the ON state can be
selected between 2.44 GHz and 5 GHz by choosing the length of the doped area and short-circuiting the
LF- or HF- stub (Figure 13). The ratio can be between 1:1.1 and 1:2.25, which offers many possibilities
depending on the application. The greater the doped area surface, the lower the bias voltage. Thus,
if the bias voltage is not an issue, the size can be minimized while maintaining the switched frequency.
This can be a good solution in the case of multiple states, such as in [25].



Electronics 2020, 9, 2021 9 of 11

Electronics 2020, 9, x FOR PEER REVIEW 8 of 11 

 

 
(a) 

 
(b) 

Figure 12. Comparison of simulated and measured results of switchable DBR4. (a) in the OFF state; 
(b) in the ON state. 

Moreover, with a 5.52 GHz filter in the OFF state, the central frequency in the ON state can be 
selected between 2.44 GHz and 5 GHz by choosing the length of the doped area and short-circuiting 
the LF- or HF- stub (Figure 13). The ratio can be between 1:1.1 and 1:2.25, which offers many 
possibilities depending on the application. The greater the doped area surface, the lower the bias 
voltage. Thus, if the bias voltage is not an issue, the size can be minimized while maintaining the 
switched frequency. This can be a good solution in the case of multiple states, such as in [25]. 

 

Figure 13. Central frequency of a switchable DBR in the ON state depending on the doped area length, 
for a central frequency of 5.52 GHz in the OFF state. 

Table 3 shows a comparison between the state-of-the-art and the results of the present study. 
Our work shows a great agility, with the best tradeoff between the highest frequency ratio and good 
performances, i.e., low losses, without any additional components. 

Table 3. Comparison between previous two-state switchable filters and this work. 

Ref. 
Freq. 

(GHz)$$$$ 
LF Band 

Freq. 
(GHz)$$$$ 
HF Band 

IL 
(dB)$$$$ 
LF Band 

IL 
(dB)$$$$ 
HF Band 

Active 
Components 

Frequency 
Ratio 

[8] 1.94 2.43 3.84 3.35 PIN diodes 1:1.25 
[9] 1.06 1.51 1.7 1.7 PIN diodes 1:1.42 

[10] 1.92 2.08 3.94 3.07 PIN diodes 1:1.08 
[10] 2.03 4.47 24.46 3.77 PIN diodes 1:2.2 
[11] 2.53 4.9 3.77 2.64 PIN diodes 1:1.94 
[12] 1.2 1.5 2.1 2.21 PIN diodes 1:1.25 
[13] 0.90 1.25 1.8 1.9 PIN diodes 1:1.38 

Figure 13. Central frequency of a switchable DBR in the ON state depending on the doped area length,
for a central frequency of 5.52 GHz in the OFF state.

Table 3 shows a comparison between the state-of-the-art and the results of the present study.
Our work shows a great agility, with the best tradeoff between the highest frequency ratio and good
performances, i.e., low losses, without any additional components.

Table 3. Comparison between previous two-state switchable filters and this work.

Ref. Freq. (GHz)
LF Band

Freq. (GHz)
HF Band

IL (dB)
LF Band

IL (dB)
HF Band

Active
Components

Frequency
Ratio

[8] 1.94 2.43 3.84 3.35 PIN diodes 1:1.25
[9] 1.06 1.51 1.7 1.7 PIN diodes 1:1.42

[10] 1.92 2.08 3.94 3.07 PIN diodes 1:1.08
[10] 2.03 4.47 24.46 3.77 PIN diodes 1:2.2
[11] 2.53 4.9 3.77 2.64 PIN diodes 1:1.94
[12] 1.2 1.5 2.1 2.21 PIN diodes 1:1.25
[13] 0.90 1.25 1.8 1.9 PIN diodes 1:1.38
[14] 3.7 4 2.6 2.6 Vanadium-di-oxide 1:1.08

This study
DBR1

2.55 5.58 1.97 1.9 Integrated ScDDA 1:2.19

This study
DBR2

2.6 5.53 1.97 1.95 Integrated ScDDA 1:2.13

This study
DBR3

3.23 5.53 1.98 1.68 Integrated ScDDA 1:1.71

This study
DBR4

3.8 5.2 1.94 1.95 Integrated ScDDA 1:1.37

Although devices of this kind present measurement difficulties due to their fragility and size and,
therefore, require measurement by SMA connectors without the possibility of soldering, the devices
tested here show good performances in both states, with the same losses overall. Indeed, in the ON
state, even though the demonstrators have different surface areas, their equivalent resistance values
can be roughly the same with different bias voltages.

5. Conclusions

This paper shows a novel method for switching DBR filters without any additional components.
Four demonstrators were characterized, offering a large range of reconfigurability without sacrificing
performances, i.e., a low switching voltage, low losses, and a high level of integrability, all obtained
with a well-known manufacturing process (the same as for semiconductor components), with a reduced



Electronics 2020, 9, 2021 10 of 11

number of masks and steps. Such a co-design offers flexibility in terms of positioning and dimensioning
of the ScDDAs, which implies a good agility, with a large range of choice for the ratio: between 1:1.1
and 1:2.25.
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