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ABSTRACT
The maximum thermoelectric efficiency that is given by the so-called dimensionless figure of merit ZT is investigated here numerically
for various energy dependence. By involving the electrical conductivity σ, the thermopower α, and the thermal conductivity κ such that
ZT = α2

× σ × T/κ, the figure of merit is computed in the frame of a semiclassical approach that implies Fermi integrals. This formalism
allows us to take into account the full energy dependence in the transport integrals through a previously introduced exponent s that com-
bines the energy dependence of the quasiparticles’ velocity, the density of states, and the relaxation time. While it has been shown that an
unconventional exponent s = 4 was relevant in the context of the conducting polymers, the question of the maximum of ZT is addressed by
varying s from 1 up to 4 through a materials quality factor analysis. In particular, it is found that the exponent s = 4 allows for an extended
range of high figure of merit toward the slightly degenerate regime. Useful analytical asymptotic relations are given, and a generalization of
the Chasmar and Stratton formula of ZT is also provided.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0041224

Discovered nearly two centuries ago, the thermoelectric effects
that allow for the conversion of heat waste into electricity1 are nowa-
days a potential part of the strategy to meet sustainable develop-
ment.2,3 They have been widely investigated during the 1960s,4–7

and a renewed interest appeared in the last decades likely due to the
environmental concern and the growing number of new complex
materials.1,8–10 In this context, organic materials such as conducting
polymers11 have been identified12,13 as potential promising candi-
dates to compete with conventional inorganic thermoelectric mate-
rials.14 With their low cost, abundant elements, large processability,
and flexibility, they could bring new opportunities to develop unex-
pected applications such as thermoelectric textiles, for instance.15

Furthermore, the spectacular results reported in some conducting
polymers14,16 with high thermoelectric efficiency have stimulated
more systematically both electrical conductivity and thermopower
measurements.17–19 In particular, an unconventional scaling relation
between the thermopower and the electrical conductivity such that
α∝ σ−1/s with s = 4 has been pointed out by several groups in a
wide variety of conducting polymers as a function of doping.20–23

While some models have accounted for this quasi-universal law over
a restricted range of parameters,24 a successful demonstration of the
latter power law has been given in the frame of a charge transport

model with s = 3.25 More recently, this approach has been extended
in order to explain the exponent s = 4 by considering that charge car-
riers could behave as Dirac quasiparticles, namely, massless pseudo-
relativistic particles.26 This has required us to take into account all
the energy dependence in the transport integrals by showing that s
is, in fact, the sum of the exponents of the power law energy depen-
dence of the relaxation time τE, the quasiparticles’ velocity vx,E, and
the density of states gE as defined in the following:

τE = τ0 × (E/Eτ)
θ, v2

x,E = v2
0 × (E/Ev)

ν,
gE = g0 × (E/Eg)

γ.

Then, it has been demonstrated that s = (θ + ν + γ). The characteris-
tic energies Eτ , Ev, and Eg and the constants τ0, v0, and g0 have been
introduced in order to focus on energy dependence.26 In the frame of
this formalism, the semi-classical treatment of the Boltzmann equa-
tion25,26 allows us to formulate the transport coefficients in terms of
Fermi integrals Fs(μ̃), which include both non-degenerate (insulat-
ing) and degenerate (metallic) regimes. In particular, the electrical
conductivity σ and the thermopower α can be written as a function
of Fs(μ̃) according to Eq. (1), with the reduced chemical potential
μ̃ = μ/kBT,
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σ = σE0 × s × Fs−1(μ̃), α =
kB

q
(
(s + 1) × Fs(μ̃)

s × Fs−1(μ̃)
− μ̃),

with

Fs(μ̃) = ∫
∞

0

xs

ex−μ̃ + 1
dx, (1)

whereas some approximations of Fermi integrals Fs(μ̃) provide ana-
lytical relations if ∣μ̃∣ ≫ 1; these general formulations are especially
useful in order to investigate numerically the transport coefficients
in the intermediate regime.

For non-relativistic free electrons (ν = 1) in three dimensions
(γ = 1/2), it follows that s = 3/2 + θ. If they are scattered by acous-
tic phonons above the Debye temperature or by screened ionized
impurities, then θ = −1/2 and s = 1.6 If they undergo polar scattering
from optical phonons, then θ = 1/2 and s = 2,27 and if they are scat-
tered by unscreened ionized impurities, then θ = 3/2 and s = 3.25,26

In addition, it has been shown that, for Dirac quasiparticles (ν = 0)
in three dimensions (γ = 2), the relaxation time due to scattering by
unscreened ionized impurities varies quadratically as a function of
energy, namely, θ = 2 and then s = 4.26 Therefore, the general for-
mulations of the transport coefficients according to Eq. (1) allow
us to investigate numerically, for different charge carriers, densities
of states, and scattering mechanisms, the maximum thermoelectric
efficiency as a function of s varying from 1 up to 4 as reported
thereafter.

By calculating the Fermi integrals Fs−1(μ̃), the normalized elec-
trical conductivity σ/σE0 can be computed as a function of the
reduced temperature kBT/∣μ∣ as displayed in Fig. 1(a) for the various
investigated exponents s. Whatever the exponent s is, the insulating
behavior is here recovered with the increasing electrical conductiv-
ity with temperature (μ < 0) and the metallic one is observed with
the decreasing electrical conductivity with temperature (μ > 0). By
using the corresponding limits, it can be demonstrated that a stan-
dard activated behavior is found for the electrical conductivity in the
non-degenerate regime if μ̃≪ −1, while a power law dependence is
expected if μ̃≫ 1 in the degenerate one,

σμ̃≫1 = σE0 × μ̃s, σμ̃≪−1 = σE0 × Γ(s + 1) × eμ̃

with the well known Γ function. Interestingly, Fig. 1(a) also dis-
plays the asymptotic behavior of σ as μ̃→ 0 with the convergence
of the electrical conductivity from both metallic and insulating sides
toward a common value. Thus, the latter indicates the maximum
conductivity that can be reached in the insulating state as well as
the minimum metallic conductivity.

On the other hand, the use of the corresponding Fermi inte-
grals according to Eq. (1) allows us to plot in Fig. 1(b) the tem-
perature dependence of thermopower, in absolute value, for the
various investigated exponents s. Once more, the low temperature
behaviors in both regimes are here recovered with the increasing T-
linear thermopower in the metallic state if μ̃≫ 1 and the decreasing
thermopower if μ̃≪ −1 as 1/T in the insulating one such that

αμ̃≫1 =
π2

3
×

kB

e
×

s
μ̃

, αμ̃≪−1 =
kB

e
× ((s + 1) − μ̃).

In a close analogy with the electrical conductivity, the thermopower
in Fig. 1(b) converges from both metallic and insulating regimes

FIG. 1. (a) Normalized electrical conductivity σ/σE0
and (b) absolute value of

the thermopower α as a function of the reduced temperature kBT/∣μ∣ for various
integer exponents s ranging from 1 up to 4.

toward a common value at high temperatures. The latter asymptotic
value is seen to increase with the exponent s from nearly 205 μV/K
for s = 1 up to nearly 442 μV/K for s = 4 in the limit μ̃→ 0 by illus-
trating that stronger energy dependence favors higher thermopower.
Nevertheless, one must emphasize that a high thermopower is a
priori not sufficient to reach the best thermoelectric efficiency since
the latter involves through the figure of merit ZT two other transport
coefficients, namely, both the electrical and thermal conductivities σ
and κ.

It is, therefore, of fundamental interest to investigate the
Lorentz number that is defined as L = κe/(σ × T), with the elec-
tronic thermal conductivity κe, and that can also be related to Fermi
integrals in both regimes according to the following equation:25

L = (
kB

e
)

2

× [
(s + 2) × Fs+1(μ̃)

s × Fs−1(μ̃)
−
(s + 1)2

× F2
s (μ̃)

s2 × F2
s−1(μ̃)

].

If μ̃≫ 1, the Lorentz number recovers, whatever the exponent
s is, the well known metallic limit π2

/3 × (kB/e)2 in agreement with
the Wiedemann–Franz law as seen in Fig. 2(a). The power expansion
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FIG. 2. (a) Dimensionless Lorentz number [in unit of (kB/e)2] and (b) figure of
merit ZT without lattice contribution (κl = 0) as a function of the reduced chemical
potential μ̃ for various integer exponents s ranging from 1 up to 4.

of the Fermi integrals in this strongly degenerate regime allows us to
retain the first order correction to the Wiedemann–Franz law as a
function of s. This leads to Eq. (2) that accounts for the change in
curvature as a function of μ̃ as displayed in Fig. 2(a) between s = 1 or
2 and s = 3 or 4. In particular, the lowering of L with decreasing μ̃ for
s = 1 is here recovered such that Lμ̃≫1 = (

kB
e )

2
× π2

3 × (1 −
π2

3 × μ̃−2
)

as emphasized by Fistul.6 On the other hand, the equivalent limit
in the insulating state is found to be strongly s-dependent. Actu-
ally, by considering the approximate form of the Fermi integrals
Fs(μ̃≪ −1) ≈ Γ(s + 1) × eμ̃ combined with the property Γ(s + 1)
= s × Γ(s), one can easily find Eq. (3),

Lμ̃≫1 = (
kB

e
)

2

×
π2

3
× (1 +

π2

15
×

s
μ̃2 × (3s − 8)), (2)

Lμ̃≪−1 = (s + 1) × (
kB

e
)

2

. (3)

The latter equation (3) implies, thus, that the Lorentz number
increases with s in the insulating regime as well illustrated in Fig. 2(a)
as (s + 1). By combining the thermopower displayed in Fig. 1(b)
and the Lorentz number in Fig. 2(a), an electronic figure of merit,
namely, without lattice thermal conductivity, can be inferred such
that ZT = α2

/L. It is worth mentioning that, since the Lorentz num-
ber does not depend on σE0 , the latter figure of merit only depends
on the reduced chemical potential and the exponent s. The varia-
tion of ZT as a function of μ̃ displayed in Fig. 2(b) represents then
a theoretical maximum figure of merit in the frame of the investi-
gated exponents s. It is also interesting to note that, for a given s,
the observed behavior is mainly governed by the variation of ther-
mopower with its continuous increase with the decrease in μ̃ as
suggested in Fig. 1(b). The influence of the exponent s is, however,
less obvious. Actually, the figure of merit is enhanced for a higher
exponent s in the metallic regime due to higher thermopower, but a
crossing point appears in the slightly non-degenerate regime from
which ZT is higher for lower exponents s. The latter behavior is,
in fact, a consequence of the evolution of the Lorentz number in
Fig. 2(a) with its noticeable decrease for lower exponents s, while, in
the insulating regime, the thermopower tends to be more and more
s-independent as μ̃ decreases (αμ̃≪−1 →

kB
e × ∣μ̃∣). Thus, it results that

a higher exponent s will favor a higher figure of merit in the metal-
lic regime, whereas a lower exponent s will favor a higher figure
of merit in the insulating regime as suggested from the asymptotic
expressions of ZT,

ZTμ̃≫1 =
π2

3
×

s2

μ̃2 , ZTμ̃≪−1 =
((s + 1) − μ̃)2

s + 1
→

μ̃2

s + 1
.

Of course, the thermal conductivity of the lattice κl needs to be
taken into account in real materials and the definition of the figure of
merit must include it such that ZT = α2

× σ × T/(κe + κl). As identi-
fied by Chasmar and Stratton earlier,4 it may be useful to introduce
the so-called material quality factor B as defined in the following
equation in order to express the figure of merit:25,27

ZT =
α2

L + (kB/e)2

B×s×Fs−1(μ̃)
, with B = (

kB

e
)

2

×
σE0 × T

κl
. (4)

According to its definition, B is dimensionless and the figure of merit
will be higher if the material quality factor is as large as possible.
It means that the figure of merit will tend to the one displayed in
Fig. 2(b) if B→∞. Furthermore, the asymptotic expressions of ZT
including the material quality factor can be given in both regimes as

ZTμ̃≫1 =

π2

3 × s2
× μ̃−2

1 + π2

15 × μ̃−2 × s × (3s − 8) + ( π2

3 × B × μ̃s)
−1 , (5)

ZTμ̃≪−1 =
((s + 1) − μ̃)2

(s + 1) + (B × eμ̃ × Γ(s + 1))−1 . (6)

The above equations appear as a generalization to an arbitrary
exponent s of the figure of merit provided by Chasmar and Strat-
ton4 earlier with s = θ + 3/2 (note that θ = ν in their original paper).
In the degenerate regime, Eq. (5) mainly predicts rather low ZT val-
ues, and it should be considered a rough approximation for s higher
than 2 because it should require rigorously to include higher order
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correction terms in both α and L due to the presence of μ̃−s in the
denominator. In the non-degenerate regime, Eq. (6) appears able to
predict higher ZT values if μ̃ is only moderately negative, while B
is high enough in order to prevent the term B × eμ̃ from lowering
ZT. In such a condition, ZT will get closer to its previously discussed
asymptotic expression and could thus reach values higher than 1.
Actually, more negative μ̃ values would require a huge material qual-
ity factor that seems unlikely due to the finite lattice thermal conduc-
tivity in the real system. This is the reason that explains why high ZT
values cannot be reached in strongly non-degenerate materials.

In order to discuss more quantitatively the thermoelectric effi-
ciency, the figure of merit has been computed for various material
quality factors ranging from 7.4 ×10−6 up to 12 for each exponents.
Figure 3(a) shows the results obtained for s = 4 by including the

FIG. 3. (a) Figure of merit ZT with s = 4 for various material quality factors B and
(b) maximum figure of merit ZTmax for distinct exponents s as a function of the
reduced chemical potential μ̃. Note that the same material quality factors have
been used for the different exponents s.

figure of merit with B→∞ as already displayed in Fig. 2(b). These
results illustrate the influence of finite material quality factor on ZT,
namely, the B-factor basically truncates the increase in the figure of
merit with decreasing μ̃ by inducing a maximum. This effect is even
more pronounced if B is low, which leads to lowering the ZT max-
imum due to a shift toward higher chemical potentials. The overall
results are then summarized in Fig. 3(b) by showing the variation
of the ZT maximum as a function of μ̃ for the distinct exponents
s investigated. One recovers here the same trend as in Fig. 2(b)
with higher ZT maxima in the metallic regime for higher expo-
nents s and a crossing point in the slightly non-degenerate regime
around μ̃ ≈ −4. It is also demonstrated that the maximum of the
figure of merit can only be higher than 1 in an intermediate regime
with ∣μ̃∣ < 4, namely, slightly either degenerate or non-degenerate
for exponents s up to 4. The restriction to a slightly non-degenerate
regime originates from the previously discussed condition concern-
ing B × eμ̃, which strongly lowers ZT if μ̃ is too negative since B
cannot be arbitrarily high.

Furthermore, it is also interesting to plot in Fig. 4 the maxi-
mum ZT as a function of B in order to compare the values of ZT
for a given B as a function of s. This highlights that a larger figure
of merit can be reached if s is high for a given B and that a same ZT
can be found for higher s with low material quality factor, namely,
with higher lattice thermal conductivity, for instance. As displayed in
Fig. 4, the highest ZTs are expected for a large material quality fac-
tor and values such as ZTmax ≈ 20 could be reached with B = 12 for
s = 4. Since large material quality factors require low κl, this raises
the question of the lowest accessible lattice thermal conductivity.
It is worth mentioning that several successful attempts to calcu-
late the high temperature lattice thermal conductivity have already
been made, by including, in particular, the anharmonicity of lattice
vibrations.5 As a consequence, they involve the Grüneisen param-
eter28 and the thermal expansion coefficient29 that are not always
known, but a simpler approach can be sufficient to discuss the order

FIG. 4. Maximum figure of merit ZTmax as a function of the material quality factor
B for various integer exponents s ranging from 1 up to 4.
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of magnitude of κl. At a classical level, the lattice thermal conduc-
tivity is proportional to the specific heat per unit volume Cv, the
sound velocity vs, and the mean free path of phonons l such that
κl ≈

1
3 × Cv × vs × l. Above the Debye temperature TD, the specific

heat is expected to be constant, and for a mono-atomic cubic unit
cell, Cv = 3 × kB/a3, with the interatomic spacing a. According to
Debye theory, the dispersion relation of acoustic phonons is linear,
with vs as the slope, and then kB × TD = h̵ × vs × kD, with the Debye
wave vector kD ≈ π/a. Note that the latter is actually a bit higher in
the Debye model for a cubic lattice, but it is here believed that this
approximation is sufficient to discuss the order of magnitude. So, the
sound velocity is expected to vary as vs ≈ 2 × a × kB × TD/h. Since
the phonons’ mean free path is decreasing with T at high temper-
ature but cannot be lower than the interatomic spacing, one infers
that l ≥ a. By combining these relations, a simple low lattice ther-
mal conductivity limit can be given such that κl ≥ 2 × kB

kB×TD
h×a . The

latter suggests then that low Debye temperature and large inter-
atomic spacing will favor a low lattice thermal conductivity. For
instance, if one considers the low value TD ≈ 50 K with a ≈ 0.15
nm, one infers κl ≥ 0.2 W m−1 K−1. Despite its simplicity, this result
seems to agree quite well with the order of magnitude of the lowest
thermal conductivity observed in solids at room temperature30 and
also roughly with the measured thermal conductivity in conducting
polymers.

By considering now the values of the material quality factor
required to reach ZTmax = 10, namely, from 0.6 for s = 4 up to 35
for s = 1 (not shown in Fig. 4), one deduces with κl ≈ 0.2 W m−1 K−1

the values of the electrical conductivity parameter σE0 ranging from
nearly 5 ×104 S/m for s = 4 up to 3 ×106 S/m for s = 1. These val-
ues allow then to calculate the corresponding electrical conductivity
from Fig. 1(a) with the use of the chemical potential associated with
ZTmax in Fig. 3(b), which lies between −3 and −4 depending on s.
Surprisingly, it leads to the nearly common value σ ≈ 6 × 104 S/m
(ρ ≈ 1.5 mΩ cm) at room temperature for whatever s. Even if such
a value is rather high for a non-degenerate system, it remains below
the Mott minimum metallic conductivity,31 and thus, it appears real-
istic in a slightly non-degenerate material. As a matter of fact, one
may emphasize that this is typically the range of the electrical con-
ductivity measured in the conventional thermoelectric materials of
the Bi2Te3 family. In the case of conducting polymers characterized
by the exponent s = 4, these results show that the figure of merit
will exceed 1 at room temperature if σE0 is higher than 66 S/m with
κl ≈ 0.2 W m−1 K−1. In particular, the value σE0 ≈ 0.6 S/m found in
the oriented PBTTT26 is expected to lead to a ZT of the order of
0.1 by optimizing the doping. Even if such a value is still lower than
1, it is very promising and it shows that the electrical conductivity,
σE0 , still needs to be improved in order to reach a higher figure of
merit.

Therefore, it seems that values of figure of merit as high as
10 may be reachable experimentally in materials characterized by
lattice thermal conductivity of the order of 0.2 W m−1 K−1 by fine-
tuning the doping in order to locate the chemical potential between
−3 and −4. This numerical investigation has also demonstrated
that higher figures of merit are expected in materials with stronger
energy dependence, namely, with a large exponent s, and that their
range can extend toward the slightly degenerate regime up to μ̃ = 4
if s = 4, for instance. With their low lattice thermal conductivity,
large s exponent, and the possibility of fine-tuning the doping, the

conducting polymers appear definitely as very promising thermo-
electric materials. The experimental challenge is now to succeed in
enhancing even more their electrical conductivity in order to fulfill
all the requirements.
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