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ABSTRACT. This paper proposes an efficient methodology to monitor the 
formation of cracks in concrete after non-destructive ultrasonic testing of a 
structure. The objective is to be able to automatically detect the initiation of 
cracks early enough, i.e. well before they are visible on the concrete surface, 
in order to implement adequate maintenance actions on civil engineering 
structures. The key element of this original approach is the wavelet-based 
multiresolution analysis of the ultrasonic signal received from a sample or a 
specimen of the studied material subjected to several types of solicitation. This 
analysis is finally coupled to an automatic identification scheme of the types 
of cracks based on artificial neural networks (ANNs), and in particular deep 
learning by convolutional neural networks (CNNs); a technology today at the 
cutting edge of machine learning, in particular for all applications of pattern 
recognition. Wavelet-based multiresolution analysis does not add any value in 
detecting fractures in concrete visible by optical inspection. However, the 
results of its implementation coupled with different CNN architectures show 
cracks in concrete can be identified at an early stage with a very high accuracy, 
i.e. around 98%, and a loss function of less than 0.1, regardless of the 
implemented learning architecture. 
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INTRODUCTION 
 

ince its creation, concrete, the flagship material of civil engineering structures, has been the basis of construction 
techniques, whether industrial (factories, warehouses, ...) or hydraulic (dams, dikes, ...), but also of infrastructures such 
as transportation (bridges, tunnels, ...) or urban infrastructure (aqueducts, ...). This success is due to several factors: 

concrete is an economical material, easy to work with, resistant to compressive stress, durable, sound and heat insulating, 
and it contributes to architecture through the shapes, textures and colors it provides [1]. Coupled with a reinforcement 
usually made of steel, reinforced concrete can compensate for the low tensile strength of concrete.  
 
The service life of reinforced concrete structures is conditioned by the response to chemical (e.g. carbonation, corrosion, 
etc.), physical (e.g. freeze-thaw cycle) and mechanical (e.g. overloading) aggressions of the environment, as well as by the 
capacity of the constituent materials to protect themselves against these aggressions.  In this work, we are interested in the 
corrosion of reinforcement which is one of the main causes of degradation of reinforced concrete structures [2].  This 
corrosion induces a modification of the steel-concrete bond, a reduction in section of the steel bars, a decrease of the 
ductility of the steel as well as a peripheral damage of the concrete due to the pressure of the corrosion products. More 
precisely, Bhaskar et al. showed that when the porous zone at the interface between steel and concrete (a zone whose volume 
depends on the surface of the reinforcement, the water/cement mass ratio and the degree of hydration) is completely filled 
by the corrosion products, pressures are exerted on the concrete cover and can generate cracks [3]. As shown in Figure 1, 
monitoring the propagation of these cracks is therefore essential to stop them from reaching critical sizes that could lead to 
the reduction of the bearing capacity of the concrete or reinforced concrete structure or even to its failure [4–8]. This 
research topic is still of great interest and recent studies have shown that it is possible to limit interfacial micro-cracks in 
concrete and its composites subjected to dynamic loads, for instance by adding fly ash and/or silica fume at a rate of a few 
thenths of the weight of the cement [7, 8]. 
 

 
Figure 1: Examples of cracks in reinforced concrete structures [provided by the authors]. 
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Visual inspection of civil engineering structures is now complemented by high-performance, high-definition scanner or 
photogrammetry surveys, and artificial intelligence (AI), in particular deep neural networks, can detect defects, classify them 
and propose a diagnosis. The Internet of Things (IoT) and new generations of sensors (e.g. fissurometers, inclinometers) 
make it possible to instrument infrastructure and continuously monitor a number of structural health indicators from 24/7 
control centers [6]. 
There are many methods to evaluate the detection of anomalies in materials or components of a civil engineering structure. 
Non-destructive testing (NDT), which is a long-standing, common and mandatory practice in many industries such as 
aeronautics or aerospace, is an important category [10]. NDT methods consist in causing a disturbance in the material to be 
studied, here of an ultrasonic nature, and recording its response. This response to the ultrasonic excitation is a function of 
the state of the material or the component of the structure to be controlled. These techniques are therefore important tools 
to help detect cracks, characterize the degree of corrosion of reinforcement in reinforced concrete, determine the thickness 
of concrete slabs, etc. [11, 12]. However, a critical point of this type of method is the extraction of relevant information on 
the state of the material from its response. Multiresolution analysis (MRA) is the original method implemented in this work 
to extract this key information by decomposing the signals at different levels of resolution. In particular, we will use wavelets, 
i.e. an extension of Fourier analysis, as an analytical tool to mathematically describe the increment of information required 
to move from a coarser approximation of the material response to a higher resolution approximation. Wavelet-based 
multiresolution analysis, which has received significant attention in recent years in various fields, is therefore a powerful tool 
for efficiently representing signals and images at multiple levels of detail [13, 14]. The last key point of the work described 
in this paper is to build a classifier to detect cracks from the images obtained at the spatial scale. In this regard, an automatic 
crack type identification scheme, based on artificial neural networks (ANNs), is proposed. Crack detection techniques based 
on deep ANNs, i.e. deep learning, are currently under active research due to their renowned outstanding performance [15]. 
In particular, some authors have recently proposed improved convolutional neural networks (CNNs) that can extract crack 
patches in an image with 99% accuracy [16].  
The structure of this article is as follows. First, we will point out the fundamental concepts, as well as the experimental 
procedures, associated with each of the three key points of the method proposed here: non-destructive ultrasonic testing to 
obtain an ultrasonic signal identifying the defect; multiresolution wavelet-based analysis to preserve the important elements 
of the signal, i.e. the cracks, at high resolution and produce a scalogram localizing the defect; and finally classification by 
CNNs. The results obtained will then be analyzed and discussed. Finally, we will emphasize the originality of this work, 
namely the multiresolution analysis based on wavelets, as input to the deep neural network, which allows us to obtain a high 
level of classification accuracy, independently of the chosen CNN architecture. 
 
 
RESEARCH SIGNIFICANCE AND PROPOSED METHODOLOGY 
 
Research signification 

his work solves the important problem of detecting the onset of cracks inside concrete structures. These cracks are 
optically invisible from the outside and may propagate unexpectedly until structure failure.  
In some sensitive infrastructures, such as nuclear power plants, dams or bridges, a concrete failure can lead to very 

serious disasters. Although this type of disaster remains unusual, each occurrence can generate serious human, 
environmental and technical consequences. This is why it is important to have a protocol for detecting and monitoring 
cracks in their early stages in order to secure structures of vital interest. 
What is interesting is to know the cost of our proposed protocol to practically evaluate its implementation in the field.  
The cost of our investigations is low since all that is required is an on-site portable ultrasonic device and an ordinary 
processor, either a DSP card or a laptop computer since we are implementing an architecture that has already learned to 
detect and track possible internal cracks or the beginnings of cracks. 
To quantify the hardware implementation of our approach, we recall the instruments used: 
The instrument used is the Pundit PL-200. It allows first class ultrasonic pulse velocity tests to examine the quality of 
concrete: to estimate the compressive strength of concrete or to measure the surface velocity and the depth of cracks.  
Our software supports settings directly accessible in real time from the measurement screen.  
The developed software is implemented on an electronic board with DSP or directly implemented in a laptop. 
The global cost of all this instrumentation is about $5,000.00. 
 

T 
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Methodology 
The methodology implemented in this paper is composed of three main steps (see Figure 2) that we will detail in the rest of 
this section.  
The objective of the proposed methodology is the detection and monitoring of internal cracks in concrete structures.  
Such cracks will be detected by ultrasonic NDT and analyzed by the wavelet transform providing a spatially scaled image 
allowing to localize the crack in space and at each resolution. 
The resulting multi-resolution image is then subjected to a deep learning-based crack/non-crack classification process 
(AlexNet, VGG16). 
This methodology comprises three steps: 
The first step consists of performing a non-destructive ultrasonic test (NDT) on aging concrete samples of different 
compositions. The objective is to collect the ultrasonic signal received.  
In the second step, a wavelet-based multiresolution analysis is conducted on the received ultrasound signal. This is the key 
step of the work presented in this article since it will allow to highlight the initiation of cracks within the material. From the 
multi-resolution analysis, a B-scan mapping will then be obtained. Finally, the obtained image will be the input of a deep 
learning algorithm based on Convolutional Neural Networks (CNNs). Two well-known architectures in the literature, 
namely AlexNet and VGG16, will be tested.  
AlexNet won the ImageNet competition in 2012, and VGG16 won the same competition in 2014. These are the two 
networks that were used in our experiments due to the fact that they are behind the explosive emergence of Deep Learning. 
They will be the basis for evaluating the performance of our approach for crack detection in concrete structures. 
Other neural networks exist, as powerful as AlexNet and VGG16 and maybe more, which are used in pattern recognition. 
However, the goal of this work is not to find the network that will give the best accuracy in detecting an internal crack in 
concrete from optical images. Indeed, the aim is to demonstrate that with wavelet-based multiresolution analysis, the 
detection of a crack in concrete at an early stage will be very accurate independently of the type of deep learning architecture 
used. 
 

 
 

Figure 2: Methodology for effective monitoring of cracks in concrete after non-destructive ultrasonic testing. 
 
 
 



 

                                                                  A. Arbaoui et alii, Frattura ed Integrità Strutturale, 58 (2021) 33-47; DOI: 10.3221/IGF-ESIS.58.03 
 

37 
 

EXPERIMENTAL PROCEDURE 
Preparation of concrete specimens 

n this section, the four main steps in the preparation of concrete specimens will be detailed, i.e. fabrication, casting, 
curing and end grinding.  
As shown in Figure 3 a, the following raw materials were used to manufacture the concrete specimens:  
 cement (Sour El-Ghozlane cement plant in Algeria) dosed at 350 kg/m3; 
 sand (Bou-Sâada sand in Algeria) characterized by a grain size between 200 µm and 500 µm;   
 three types of gravel i.e., grain size 3/8 mm, grain size 8/15 mm and grain size 15/25 mm. 

Five batches of standardized size specimens, corresponding to five different concrete mixes (see Table 1), were made. Each 
batch is composed of one cubic specimen of 150 mm side and six cylindrical specimens of 160 mm diameter and 320 mm 
height. Each of the thirty-five specimens dedicated to this study was cast in a galvanized steel mold on a vibrating table (see 
Figure 3 b. The final mass of a concrete specimen is 15 kg. 
As shown in Figure 3 c, each specimen was stored at 20 °C and 98% humidity in a curing chamber for 28 days to simulate 
the fabrication of concrete columns. 
Finally, as shown in Figure 3 d, a “Deluxe Hi-Kenma TSURU-TSURU” type end grinding machine from the manufacturer 
MARUI & CO., LTD. was then used so that each concrete specimen had a perfect surface, i.e., low roughness after 
machining. 
   

 
Figure 3: Main steps in the manufacture of concrete specimens: a) Raw materials; b) Casting; c) Curing; d) End grinding [provided by the 
authors].  
 

Batch No. 
Characteristic 
strength [MPa] 

Water/cement 
ratio 

Cement 
[kg.m-3] 

Sand 
[kg.m-3] 

Gravel  
[kg.m-3] 

1 10 1.20 150 1,016 1.11 
2 15 0.80 225 954 1.11 
3 20 0.65 277 911 1.11 
4 25 0.62 290 900 1.11 
5 30 0.55 327 870 1.11 

 

Table 1: Proportion of constituents of the five batches of concrete mixtures and associated characteristic compressive strengths. 

I 
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Ultrasonic tests on concrete specimens 
There are many standardized processes related to NDT that can be classified into two categories: the first allowing to 
evaluate the strength and its variation in time; the second to evaluate characteristics other than strength (e.g. dimensions of 
structural elements, corrosion, dampness etc.) [10], [17–20]. In the first category, we find sclerometric methods [21] (whether 
static or dynamic), acoustic methods [22, 23] (e.g. ultrasound) or pull-off methods [24] which are semi-destructive. In the 
second category, the techniques are much more numerous: we can mention, among others, acoustic methods [25, 26] (e.g. 
acoustic emission, echo, ultrasonic, impact echo), electromagnetic methods [27] (e.g. continuous wave eddy current testing), 
physical methods [28] (e.g. methods based on measuring thermal properties, electric methods such as linear polarization 
resistance) or radiological methods [29] (e.g. techniques based on X-rays). Unfortunately, civil engineering cannot benefit 
from all the technical advances of NDT in the mechanical industries because the nature of the materials used and the 
concerns differ. Unlike metals, concrete is a composite material that originally contains a large number of defects in the 
form of small cavities, pores and gaps. It is also a material whose mechanical properties are not rigorously reproducible, 
even under the best conditions.  
Moreover, these properties degrade more or less rapidly over time due to increased service loads, climatic conditions, alkali-
aggregate reaction, etc. Therefore, only acoustic techniques, infrared thermography, penetrant testing and corrosion rate 
measurement (e.g. linear polarization) methods are generally used in civil and mechanical engineering. Many authors have 
designated acoustic NDT methods, used individually (e.g. ultrasonic tomography or impact-echo, both used individually) or 
in combination (e.g. impulse response combined with impact-echo), as particularly well suited for testing structures or 
building materials, especially concrete. 
In this article, we have implemented an acoustic method based on the measurement of the ultrasonic pulse velocity. This 
type of method is only suitable for the study of concrete consistency, discontinuities, cracks and crack depth but is not 
reliable for strength determination, except for the determination of Poisson's ratio and Young's modulus with reasonable 
accuracy [30]. By correlating ultrasonic pulse velocity and the concrete compressive strength, this latter can also be 
determined. The equipment used to perform the tests is the Pundit® PL-200 from Proceq (see Figure 4).  

 
Figure 4: Experimental procedure for ultrasonic pulse velocity tests. 

 
Two P-wave ultrasonic pulse velocity transducers with a frequency of 54 kHz are used. The ultrasonic pulse velocities are 
between 100 Vpp and 400 Vpp. The pulse echo range is from 0.1 µs to 1,200 µs. A 7 inch 800 × 480 pixel touch screen 
with very high resolution is available with the equipment to analyze the measured waveforms.  
To determine the compressive strength, a 2,000-3,000 kN one-piece compression testing machine from 3R is used (see 
Figure 5).  
According to Table 1, with the five batches of concrete mixtures made, the estimated values of compressive strength are 
10 MPa, 15 MPa, 20 MPa, 30 MPa and 35 MPa. 
The cylindrical specimens were first tested ultrasonically, using 54 kHz longitudinal and transverse wave transducers. This 
method consists in measuring the transit time of an ultrasonic pulse passing through the concrete sample under test. The 
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higher the speed, the better the quality of the concrete in terms of density, uniformity, homogeneity, etc. The axial 
compression tests were performed immediately after the ultrasonic tests.  
 

 
 

Figure 5: Experimental procedure for compressive tests. 
 
Wavelet-based multiresolution analysis 
Wavelets are an interesting analytical tool to describe mathematically the increase in information required to go from a 
coarse approximation to a higher resolution approximation. Through a multiresolution analysis (MRA), a signal can be 
decomposed and reconstructed as a series of approximations of decreasing scale, completed by a series of details [13]. To 
illustrate this concept, let us consider an image built from a succession of approximations; the details enrich this image. 
Thus, thanks to the MRA based on wavelets, the coarse vision becomes finer and more precise. 
Engineers, practitioners and researchers are confronted daily with increasingly difficult technological problems at multiple 
scales of analysis, in terms of classification, segmentation, detection of contours or parameters of interest, noise reduction 
or elimination, compression for transmission or storage, synthesis or reconstruction, etc. This concerns many fields such as 
astrophysics [31], finance [32], fluid mechanics [33], thermodynamics [34], medicine and biology [35–37], multimedia [38], 
telecommunications [39, 40], signal and image processing, and of course, the monitoring of cracks and detection of fractures 
in materials [41–46]. MRA based on wavelets can thus become an essential tool for solving the difficulties encountered in 
the above-mentioned fields. 
This tool, sometimes described as miraculous, produces an immediate, easily interpretable and exploitable result. However, 
for specific applications requiring the extraction of targeted information, it is clear that advanced methods will have to be 
developed and “merged” in order to effectively utilize existing techniques or to optimize the analyses (for example in 
compression) by taking into account edges or contours, using 2nd and 3rd generation wavelets such as peaks, curves [47], 
contours [48], bands [49], etc. Indeed, these anisotropic wavelets are automatically oriented and extended by unifying the 
geometry of a given edge or contour. This conceptualization of MRA is comparable to a camera that moves closer to a 
subject or uses a zoom lens to distinguish details, and further away to capture larger features– the famous concept of the 
mathematical microscope. 
The principle of wavelet-based MRA is illustrated in Figure 6. Three levels of resolution are considered here. At the first 
level of resolution, the signal S  is decomposed into an approximation 1A  and a detail 1D . At the second level of resolution, 

the 1A  approximation is decomposed into an 2A  approximation and a 2D  detail. Finally, at the third level of resolution, 

the 1A  approximation is in turn decomposed into an 3A  approximation and a 3D  detail. Thus, the signal S  can be 
expressed as shown in (1). 
 

   3 3 2 1S A D D D                                                      (1) 
 
Let   t  denote a reference pattern called the mother wavelet. It is generally requested that   t  has jointly highly 

concentrated time and frequency supports.   t  satisfies (2), when n  controls the number of oscillations of   t . This 

relation means that   t  is orthogonal to polynomial components of degree less than n . 
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Figure 6: Principle of wavelet-based multiresolution analysis with three levels of resolution.  
 

     


0,    0pt t dt p n                                                                           (2) 

 

The wavelet transform  ,XW u s  of a signal X  at time u  and scale s  is defined by (3), where  *  denotes the complex 

conjugate of  . 
 

       
 



*,X
t u

W u s X t dt
s

                                                                        (3) 

 
Looking closely at equations (2) and (3), it is clear that  ,XW u s  will be insensitive to the most regular behaviors of the 

signal assimilated to a polynomial of degree less than n  (the number of vanishing moments of  ). Conversely,  ,XW u s  

takes into account the irregular behavior of polynomial tendencies. This important property plays a central role in the 
detection of signal singularities, especially in the detection and tracking of cracks. 
The discrete wavelet transform (DWT) is given by (4). 
 

           , 2 , 2 ,    ,j j
X Xd j k W u k s j k                                                (4) 

 

Clearly, to reduce or eliminate redundancy, the family   


2, ,j k j k
 must be an orthonormal basis of   2 , where 

  2  denotes the vector space of one-dimensional measurable, square-integrable functions. This property of the wavelet 

makes it possible to obtain a fast wavelet transform. 
The fast wavelet transformation is calculated by a cascade of low-pass filtering by h  and high-pass filtering by g  followed 

by a downsampling (or decimation) by a factor of 2 (see Figure 7). In Figure 7, ja  (or  ,Xa j k , where k  is time) and jd  

(or  ,Xd j k , where k  is time) are referred to as approximation coefficients and wavelet coefficients (or details) of the 

signal at level j , respectively. Moreover, the symbol  represents the decimation by a factor of 2, i.e., keeping every 

other sample. The impulse response of the mirror low-pass filter is     h k h k  and that of the mirror high-pass filter is                  

    g k g k . These two impulse responses are linked by        1 1kg k h k  whose coefficients are obtained directly 

from the chosen wavelet   [13]. 
Figure 8 shows an example of signal decomposition over three levels of resolution using MATLAB. Note that the original 
signal has 1,000 samples while the detail (and approximation) signals have been decimated by a factor of 2 at each resolution 
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level. Thus, after 3 levels of resolution, from a signal of 1,000 samples, we arrive at the 3A  approximation and the 3D  
detail, which each have only 125 samples. 
 
 

 
 

Figure 7: Principle of fast wavelet transform or multiresolution analysis.  
 
In this study, the investigative ultrasonic signal scalogram will be used to determine and analyze cracks in concrete. The 
scalogram of the signal  x t  can be defined using (5). 

 

         2
, ,       ,X XS j k d j k j k                                                                                      (5) 

 
Figure 9 shows an example of scalogram of a signal representing three cracks in a concrete specimen, one of which (the 
central crack) is in an advanced state that could lead to an imminent rupture. 
 

 
Figure 8: Example of decomposition of a signal on three levels of resolution using MATLAB.  

 
Detecting cracks in concrete using deep neural networks 
In recent years, artificial intelligence has become a necessity because of its groundbreaking innovations in many areas, 
including pattern recognition in construction and structural engineering [50]. Deep learning methods, which use consecutive 
hidden layers of information processing organized in a hierarchical manner, have become essential for representation, 
learning and classification. Considered today in the Top 10 of the most efficient and flexible deep learning techniques, 
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convolutional neural networks (CNNs) are particularly well suited for tasks such as image recognition, image analysis, image 
segmentation, video analysis or natural language processing [51, 52]. However, this type of machine learning requires the 
use of sufficiently large input database for training and testing to ensure the highest possible accuracy of the recognition 
process [53]. 
A CNN architecture is typically characterized by the presence of multiple convolutional blocks–each consisting of a 
convolution layer, an activation function and a pooling layer– and a fully connected layer [54]. A convolutional layer, which 
is a key element of the method, performs a convolution operation on the output of the previous layers using a set of filters, 
also called kernels, to extract the features that are important for classification, i.e. in this case the “crack” and “non-crack” 
classes. 

 

 
Figure 9: Example of scalogram of a signal representing three cracks in a concrete specimen.  

 
A CNN architecture is typically characterized by the presence of multiple convolutional blocks–each consisting of a 
convolution layer, an activation function and a pooling layer– and a fully connected layer [54]. A convolutional layer, which 
is a key element of the method, performs a convolution operation on the output of the previous layers using a set of filters, 
also called kernels, to extract the features that are important for classification, i.e. in this case the “crack” and “non-crack” 
classes. 
There are many CNN architectures, including AlexNet, VGG16, Inception and ResNet, and their performances are regularly 
compared by many authors [55, 56]. In this article, two different pre-trained CNN models, i.e. AlexNet and VGG16, are 
experimented. The objective is to demonstrate that the wavelet-based MRA is the key component of the proposed approach 
which guarantees a very high level of accuracy in the classification, independently of the type of CNN architecture used.  
Since its introduction in 2012, in the framework of the ImageNet Large Scale Visual Recognition Challenge (ILSVRC 2012), 
the AlexNet architecture has already become a very popular CNN architecture and has obtained good results in many 
applications such as computer vision [51], [57]. AlexNet is not a complex architecture when compared to other major CNN 
architectures, such as ResNet, that have emerged in recent years [58]. It is also easy to implement with TensorFlow and 
Keras. As shown in Figure 2, AlexNet consists of five convolutional layers that use kernels to scan the input image by 
performing convolution operations. The first two convolution layers use a (11 × 11) and (5 × 5) size filter, respectively; the 
last three layers each use a (3 × 3) kernel. Some of these convolutional layers (i.e., the first two layers and the last layer) are 
followed by max-pooling (i.e., a subsampling operation usually applied after a convolutional layer, where the maximum 
values are taken). At this stage, the model is composed of more than 1.7 million parameters. Each convolution layer uses 
the rectifier linear unit (ReLU) activation function. Unlike the sigmoid activation function, which is frequently used for a 
binary classification network, ReLU increases the non-linear properties of the decision function and the global network 
without affecting the receiver fields of the convolution layers. At the output of the convolutional layers, a flattening step is 
necessary to create a single vector containing the main characteristics of the crack to be identified. Initially intended to 
classify 1,000 categories, we have modified the AlexNet architecture so it handles only two possible classes, i.e. images with 
and without cracks. This architecture ends with three fully connected layers (the first two layers are composed of 4,096 
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outputs, and the last layer has only two) with a Softmax classifier, which is reduced in our work to a simple logistic regression, 
composed of the two possible labels. The three fully connected layers alone account for more than 18.8 million parameters. 
Therefore, the network, having more than 20 million parameters, can then be trained. The Adam optimizer was used. 
However, in case of dropout, a neuron is removed from the network with a probability of 0.5. Even if dropout increases 
the number of iterations by 2, this step is essential to prevent oversizing of AlexNet. 
VGG16 (the number 16 meaning that the architecture is composed of 16 layers) is a convolutional neural network model 
proposed by Simonyan and Zisserman [59] to achieve 92.7% accuracy in the famous ImageNet top-5 test, which is a dataset 
of over 15 million labeled high-resolution images belonging to roughly 22,000 categories. This architecture improves 
AlexNet by replacing the large kernel filters (11 and 5 in the first and second convolutional layers, respectively) with multiple 
3 × 3 kernel filters, one after another. As shown in Figure 2, the image to be classified goes through a stack of convolutional 
layers, where filters of size 3 × 3. The spatial padding of the input to the convolution layers is such that the spatial resolution 
is preserved after convolution. The spatial pooling is performed by five max-pooling layers, which follow some of the 
convolution layers (not all convolution layers are followed by max-pooling). As for the AlexNet architecture, the ReLU 
activation function is used in the convolution steps. Three fully connected layers follow the convolutional layer stack. The 
last layer is a softmax layer used to classify each pixel into “crack” or “non-crack” classes. Although the VGG16 architecture 
is very large and requires nearly eight times more parameters to be trained compared to the AlexNet architecture, it is easy 
to implement in current open-source software libraries for artificial neural networks. 
To conduct this study, we used two computers connected in parallel; each of the two being equipped with a 9th generation 
Intel Core i7 Hexa Core microprocessor. Each computer is equipped with a high-end NVIDIA GeForce RTX 2080 graphics 
processing unit (GPU) with the following main memory features: GDDR6 type; 8 gigabyte (Gb) capacity; 14 Gb/s speed; 
448 Gb/s bandwidth; and a speed of 60 TOPS (tera operations per second) to process the very large number of operations 
(up to a few billion for each image) required to compute neural networks. As for software tools, the open source machine 
learning tool TensorFlow, developed by the Google Brain team, was used. This is now an essential tool for machine learning 
applications, such as neural networks [60]. The implementation of the convolutional neural network algorithms was done 
with the Keras library, using the Python programming language. Keras, which is used here as an interface for TensorFlow, 
was chosen for the ease of its implementation of many functions and procedures, its modularity, and its extension 
capabilities. 
 
 
MAIN RESULTS AND DISCUSSION 
 

irst, we tested the methodology on available image datasets of visually or optically observable cracks on the surface 
of concrete samples. For this purpose, we used a public database containing 4,800 manually labeled images of cracked 
and non-cracked concrete bridge decks [61]. 80% of these images were allocated to the training phase and 20% for 

validation. It is noted that regardless of the deep learning architectures implemented, the wavelet-based MRA does not add 
anything at this stage as the accuracy levels obtained are those found in the literature.    
We then sought to demonstrate the relevance of wavelet-based multiresolution analysis to identify the initiation of cracks 
in concrete, i.e. well before the fracture is visible on the surface of the material. For this purpose, a private database of B-
scan mappings obtained by wavelet-based MRA was constructed from the 35 concrete specimens we fabricated and aged 
by the compression tests. For each concrete specimen, this database contains 40 images without cracks, and 100 images 
representing several stages of aging, i.e. from the initiation of cracks in the core of the material, then to their propagation, 
to the fracture of the specimen itself. In total, 4,900 images are available, each with dimensions of 
120 pixels × 120 pixels × 3 color channels. For each of the two classes, i.e. “crack” and “non-crack”, 80% of the images are 
assigned to the training phase and 20% to the validation. Before training and validation, the images are normalized by 
subtracting their mean in order to have centered data. This ensures similar image characteristics to avoid uncontrollable 
gradients in the loss function with respect to the neural network weights during backpropagation. 
Figure 10 gives an illustrative example of the impact of wavelet-based multiresolution analysis combined with a simple deep 
learning architecture to automatically detect cracks in concrete long before they are visible by optical inspection. We have 
of course tested both architectures in Figure 2 (i.e., AlexNet and VGG16), as well as a more advanced architecture such as 
ResNet-50 (i.e., composed of 50 layers with over 23 million trainable parameters). With a CNN architecture composed of 
about 20 million of parameters, and the equipment used, the training phase lasted about 25 hours, or about 30 minutes per 
epoch (i.e. the number of cycles through the full training dataset). Similar results can be obtained regardless of the deep 
learning architecture implemented. 
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In Figure 10, the graph on the left shows the smoothed accuracy of the recognition of a crack as a function of the epochs. 
The graph on the right shows the evolution of the associated cost function. The cross-entropy loss function, also known as 
the logarithmic loss function, is one of the most commonly used cost functions when adjusting model weights during 
training.  We have used the binary cross-entropy loss function is implemented. It consists of comparing each predicted class 
probability with the desired 0 or 1 output, identifying “crack” or “non-crack” respectively, for the actual class. A score is 
then computed, penalizing the probability according to the distance between it and the expected real value. In the case that 
we have implemented, the penalty function is logarithmic, which gives a high score for large differences close to 1 and a 
low score for small differences tending towards 0. 
For both training and validation, the results in Figure 10 show that fewer than 25 epochs are required for the smoothed 
accuracy and loss function to converge. More precisely, the smoothed accuracy reaches a maximum of 97% during the 
training phase and 98% during the validation phase, thus confirming the great importance of the wavelet-based 
multiresolution analysis. The loss function, on the other hand, reaches a minimum lower than 0.1 during both training and 
validation, which means that the model is adequately fine-tuned.  
 

 
Figure 10: Wavelet-based multiresolution analysis coupled with a simple deep learning architecture for automatic detection of crack 
formation in concrete: examples of smoothed accuracy and loss function (binary cross-entropy model).   

 
 

CONCLUSIONS 
 

his paper reports on an original methodology that was implemented to efficiently detect crack initiation using non-
destructive ultrasonic testing of elements of a concrete civil engineering structure. Compared to existing related 
studies in the literature, our main contributions are as follows: 

 Proposal of a detection method at an early stage, i.e. well before the concrete fracture is visible on the surface, in 
order to implement appropriate maintenance actions and thus avoid the failure of the structure.  

 A key element of this method is the wavelet-based multi-resolution analysis (MRA) of the ultrasonic signal received 
from a sample or a concrete specimen subjected to several types of solicitation. The received ultrasonic signal is 
analyzed at each resolution (or scale) by wavelet transformation. 

 The resulting image is squared to serve as input to an automatic crack type identification system based on deep 
learning by convolutional neural networks (CNNs).  

Two architectures, chosen both for their ease of implementation in open-source platforms and libraries dedicated to 
machine learning and to limit the computational load, were tested. The purpose was not to optimize CNN architectures. If 
this were the case, then we would have chosen modular structures (e.g. ResNext, Xception, Channel Boosted CNN, etc.) 
based on auxiliary learners that utilize either spatial or feature map information or input channels to improve classification 
performance. The objective was to rather show that with a multiresolution analysis based on wavelets, it is possible to detect 
crack initiations in concrete and that the accuracy of this detection is independent of the chosen CNN architecture. 
After aging concrete specimens in compression tests, we built a database containing nearly 5,000 B-scan mappings from 
wavelet-based MRA of specimens with and without crack initiation and propagation. Regardless of the two architectures 
implemented, the results show that the accuracy is greater than 98%. The loss function reaches values less than 0.1, which 
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means that both models are finely tuned. All these results prove the relevance and efficiency of the approach described in 
this paper. 
It would be interesting if the non-destructive methodology proposed in this paper could be implemented on all or part of 
civil engineering structures, such as suspension bridges, reinforced concrete bridges with central cantilever spans or masonry 
railway viaducts, that require permanent remote monitoring in order to prevent the occurrence of failures that would 
jeopardize the safety and performance of the structure itself. Remote monitoring should not in any case replace visual or 
optical surveillance of structures, which remains the basis of monitoring. However, deep learning algorithms are of 
undisputable relevance for remote monitoring, especially when many images or videos showcasing structures’ state of health 
are captured, because any cracks can in this case be detected very quickly and automatically. 
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