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ON THE SECOND REALIZATION FOR THE POSITIVE PART

OF Uq(ŝl2) OF EQUITABLE TYPE

PASCAL BASEILHAC

Abstract. The equitable presentation of the quantum algebra Uq(ŝl2) is considered. This presentation was
originally introduced by T. Ito and P. Terwilliger. In this paper, following Terwilliger’s recent works the

(nonstandard) positive part of Uq(ŝl2) of equitable type UIT,+
q and its second realization (current algebra)

UT,+
q are introduced and studied. A presentation for UT,+

q is given in terms of a K-operator satisfying a
Freidel-Maillet type equation and a condition on its quantum determinant. Realizations of the K-operator in

terms of Ding-Frenkel L-operators are considered, from which an explicit injective homomorphism from UT,+
q to

a subalgebra of Drinfeld’s second realization (current algebra) of Uq(ŝl2) is derived, and the comodule algebra

structure of UT,+
q is characterized. The central extension of UT,+

q and its relation with Drinfeld’s second

realization of Uq(ĝl2) is also described using the framework of Freidel-Maillet algebras.

MSC: 16T25; 17B37; 81R50.
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1. Introduction

Originally introduced in [J85, D86], the quantum affine algebra Uq(ŝl2) admits a presentation in terms of gen-

erators {Ei, Fi,K
±1
i |i = 0, 1} and relations. In the literature, this presentation is usually referred as the Drinfeld-

Jimbo or Chevalley type presentation of Uq(ŝl2), denoted U
DJ
q . V. Drinfeld gave also another presentation [D88],

the so-called Drinfeld’s second realization of Uq(ŝl2) in terms generators {x±k , hℓ,K
±1, C±1/2|k ∈ Z, ℓ ∈ Z\{0}}

and relations, denoted UDr
q . For further analysis, both UDJ

q and UDr
q are recalled in Appendix A. A third

presentation, initiated by Reshetikhin-Semenov-Tian-Shansky in [RS90] and denoted URS
q , takes the form of

a Faddeev-Reshetikhin-Takhtajan (FRT) type presentation [FRT89]. In this case, generating functions for the

generators of UDr
q (and more generally Drinfeld’s second realization of Uq(ĝl2)) are the entries of the so-called

L-operators, see [DF93] for details. In these definitions, note that the derivation generator is ommited (see
[CP94, Remark 2, page 393]). In the context of mathematics and physics, the presentation UDJ

q and especially

UDr
q , URS

q , have played a crucial role in developments of quantum affine algebras, conformal field theory and
integrable lattice systems.

In [IT03], T. Ito and P. Terwilliger obtained a fourth presentation of Uq(ŝl2) called ‘equitable’, here denoted

U IT
q , see Theorem 4.3. It is generated by {y±i , k

±
i |i = 0, 1} subject to the defining relations (2.1)-(2.3). An

explicit isomorphism U IT
q → UDJ

q is known [IT03], see (2.4)-(2.6). To our knowledge, the relationship between

U IT
q , UDr

q and URS
q has not been investigated. As a starting point, in this paper we consider the subalgebra of

U IT
q generated by {y+0 , y

+
1 }. We denote this subalgebra by U IT,+

q and call it the (nonstandard) positive part

of U IT
q . It is known that U IT,+

q has a presentation by generators {y+0 , y
+
1 } subject to the q-Serre relations; see

(2.3). In a recent work [T19a], P. Terwilliger gave a second realization - called ‘alternating’ - for an algebra with
q-Serre defining relations. Adapting the results and notations of [T19a] to U IT,+

q , we introduce Terwilliger’s

second realization of U IT,+
q , denoted UT,+

q . It has equitable generators {y+−k, y
+
k+1, z

+
k+1, z̃

+
k+1|k ∈ N} subject to

a set of relations displayed in Theorem 2.7. A PBW basis for UT,+
q is given in Proposition 2.9. For completeness,

following [T19b] the central extension of UT,+
q , denoted UT,+

q , is considered in the last section. See Definitions
4.1, 4.2.
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The purpose of this paper is to study the relationship between UT,+
q , its central extension UT,+

q and certain

subalgebras of URS
q , UDr

q and Uq(ĝl2)’s counterparts. The main result is a Freidel-Maillet type presentation

[FM91] for UT,+
q , see Theorem 2.10. In this presentation, the generators of UT,+

q arise as coefficients of generating
functions characterizing the entries of a K-operator that satisfies a Freidel-Maillet type equation and a quantum
determinant equation. A K-operator that reads as a quadratic combination of L-operators of URS

q (known in
the literature as Sklyanin’s dressed operators [Sk88]) is derived, see Lemma 3.5 and (3.37). Using this relation
between K and L-operators, the following results are obtained in a straightforward manner: generating functions
of equitable generators of UT,+

q and Drinfeld generators of UDr
q are related, see Proposition 3.6 and Example

3.7; UT,+
q is interpreted as a comodule algebra. See Proposition 3.10 and Lemma 3.11. Relaxing the condition

on the quantum determinant, the central extension UT,+
q is studied along the same lines using a Freidel-Maillet

type presentation. See Theorem 4.3, Propositions 4.4, 4.9 and Corollary 4.10.

The text is organized as follows. In Section 2, the equitable presentation U IT
q , its nonstandard positive part

U IT,+
q and Terwilliger’s second realization UT,+

q are introduced. Then, following recent results [B20] a Freidel-

Maillet type presentation for UT,+
q is proposed. In Section 3, the analysis of [B20, Subsection 5.2] is extended:

K-operator solutions of a Freidel-Maillet type equation are constructed, from which an injective homomorphism

ν : UT,+
q → U ′

q
Dr,⊲,+

is derived, where U ′
q
Dr,⊲,+

is a subalgebra for UDr
q . Using the Freidel-Maillet type

presentation, it is also shown that UT,+
q admits a (left) comodule algebra structure δ : UT,+

q → U ′
q
Dr,⊲,+⊗UT,+

q .
For the specialization C = 1, the image of the equitable generators by the corresponding (left) coaction map
is given. In Section 4, for completeness a Freidel-Maillet type presentation for UT,+

q is given. An injective

homomorphism µ : UT,+
q → U ′

q(ĝl2)
⊲,+ is derived, where U ′

q(ĝl2)
⊲,+ is a subalgebra of Uq(ĝl2). In particular,

in terms of the Drinfeld’s generators of Uq(ĝl2) the image of the quantum determinant by µ enjoys a simple
factorized structure, see (4.18) or (4.20). In the last section, the results here presented together with [B20] are
summarized and some perspectives are given.

Nota bene. In a recent paper [Ter21], the relationship between the positive part of Uq(ŝl2) denoted U+
q

(see comments around eq. (2.7)) and its central extension U+
q is studied in details using the framework of

generating functions. Explicit relations between generating functions in terms of Damiani’s root vectors for U+
q

and generating functions for the alternating generators of U+
q are obtained. For the choice ǭ± = 0, fixing k̄±

and λ according to the normalizations chosen in [Ter21] and using Beck’s correspondence between Drinfeld’s
generators and root vectors [Be94] (see (3.49)-(3.50)), it can be readily checked that the expressions given in
Proposition 4.9 with (3.39)-(3.42), and eq. (4.20) match with the expressions given in [Ter21, Propositions 9.1,
9.3] and [Ter21, eq. (65)], respectively.

Notation 1. Recall the natural numbers N = {0, 1, 2, · · · } and integers Z = {0,±1,±2, · · · }. C(q) denotes
the field of rational functions in an indeterminate q. The q-commutator

[
X,Y

]
q
= qXY −q−1Y X is introduced.

We denote [x] = (qx − q−x)/(q − q−1).

2. The equitable subalgebra U IT,+
q and second realization UT,+

q

In this section, the equitable presentation of Uq(ŝl2) introduced in [IT03] is recalled, and an isomorphism
U IT
q → UDJ

q is displayed. Then, the positive part U IT,+
q is considered. For its second realization UT,+

q recently
introduced in [T18], some properties are recalled. Following [B20] a Freidel-Maillet type presentation is given
for UT,+

q .

Theorem 2.1. [IT03] The quantum affine algebra Uq(ŝl2) is isomorphic to the unital associative C(q)-algebra

with equitable generators {y±i , k
±1
i |i = 0, 1} and the following relations:

kik
−1
i = k−1

i ki = 1, k0k1 central,(2.1) [
y+i , ki

]
q

q − q−1
= 1,

[
ki, y

−
i

]
q

q − q−1
= 1,

[
y−i , y

+
i

]
q

q − q−1
= 1,

[
y+i , y

−
j

]
q

q − q−1
= k−1

0 k−1
1 , i 6= j,(2.2)
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(y±i )
3y±j − [3]q(y

±
i )

2y±j y
±
i + [3]qy

±
i y

±
j (y

±
i )

2 − y±j (y
±
i )

3 = 0, i 6= j.(2.3)

We call U IT
q the Ito-Terwilliger or equitable presentation of Uq(ŝl2).

An isomorphism U IT
q → UDJ

q is given in [IT03], where UDJ
q is the Drinfeld-Jimbo presentation of Uq(ŝl2)

recalled in Appendix A. Namely,

k±1
i 7→ K±1

i ,(2.4)

y−i 7→ K−1
i + (q − q−1)Fi ,(2.5)

y+i 7→ K−1
i − q(q − q−1)K−1

i Ei .(2.6)

In this paper, we focus on the following subalgebra.

Definition 2.2. U IT,+
q is the subalgebra of U IT

q generated by {y+0 , y
+
1 }. We call U IT,+

q the positive part of

Uq(ŝl2) of equitable type.

By (2.3), this subalgebra has a presentation by generators {y+0 , y
+
1 } subject to the q-Serre relations. Let

UDJ,+
q (resp. UDJ,−

q ) denote the subalgebra of UDJ
q generated by E0, E1 (resp. F0, F1); See Appendix A. In the

literature, UDJ,+
q (resp. UDJ,−

q ) is usually called the positive (resp. negative) part of Uq(ŝl2). For this reason,

the definition above of positive part of Uq(ŝl2) is nonstandard. The negative part of Uq(ŝl2) of equitable type -

denoted by U IT,−
q - can be introduced similarly. It is generated by {y−0 , y

−
1 }. Another subalgebra is the ‘Cartan

part’ denoted U IT,0
q , generated by {k±1

0 , k±1
1 }.

Definition 2.3. U ′
q
DJ,+ (resp. U ′

q
DJ,−) denotes the subalgebra of UDJ

q generated by UDJ,+
q (resp. UDJ,−

q ) and

{K±1
0 ,K±1

1 }.

By (A.1), (2.3), it follows:

Remark 2.4. An injective homomorphism U IT,+
q → U ′DJ,+

q is given by (2.6).

From the point of view of generators and relations, UDJ,+
q and U IT,+

q are exactly the same, up to isomorphism.

However, it is seen that their embeddings into Uq
DJ essentially differ. To avoid any confusion in further

discussions, let us introduce the algebra U+
q with fundamental generators A,B and q-Serre defining relations:

[
A,
[
A,
[
A,B

]
q

]
q−1

]
= 0 ,

[
B,
[
B,
[
B,A

]
q

]
q−1

]
= 0 .(2.7)

According to previous definitions,

Lemma 2.5. There exists an algebra isomorphism U+
q → UDJ,+

q that sends A 7→ E0 and B 7→ E1.

Lemma 2.6. There exists an algebra isomorphism U+
q → U IT,+

q that sends A 7→ y+0 and B 7→ y+1 .

For U+
q , Terwilliger recently gave a new presentation called alternating. The alternating presentation consists

of infinitly many countable alternating elements called the alternating generators satisfying certain relations
[T18, T19a].

For A 7→ E0 and B 7→ E1, the alternating presentation produces a new ‘current’ realization for UDJ,+
q besides

the known one in terms of Drinfeld generators and relations [Be94]. In this case, an explicit isomorphism
between Terwilliger’s alternating algebra and certain alternating subalgebras of UDr

q is established in [B20]. For
the precise relation between the alternating and Drinfeld’s generators, see [B20, Subsection 5.2.3]. Using the

correspondence (A.13), in particular one finds A 7→ x
−
1 K

−1 and B 7→ x
+
0 .

For A 7→ y+0 and B 7→ y+1 , the alternating presentation produces similarly a new realization for U IT,+
q .



4 PASCAL BASEILHAC

Theorem 2.7. (see [T19a]) U IT,+
q is isomorphic to the unital associative C(q)-algebra with equitable generators

{y+−k, y
+
k+1, z

+
k+1, z̃

+
k+1|k ∈ N} subject to the following relations

[y+1 , y
+
−k] = [y+k+1, y

+
0 ] =

(z+k+1 − z̃+k+1)

q + q−1
,(2.8)

[y+1 , z̃
+
k+1]q = [z+k+1, y

+
1 ]q = ρ̄y+k+2,(2.9)

[z̃+k+1, y
+
0 ]q = [y+0 , z

+
k+1]q = ρ̄y+−k−1,(2.10)

[y+k+1, y
+
ℓ+1] = 0, [y+−k, y

+
−ℓ] = 0,(2.11)

[y+k+1, y
+
−ℓ] + [y+−k, y

+
ℓ+1] = 0,(2.12)

[y+k+1, z̃
+
ℓ+1] + [z̃+k+1, y

+
ℓ+1] = 0,(2.13)

[y+k+1, z
+
ℓ+1] + [z+k+1, y

+
ℓ+1] = 0,(2.14)

[y+−k, z̃
+
ℓ+1] + [z̃+k+1, y

+
−ℓ] = 0,(2.15)

[y+−k, z
+
ℓ+1] + [z+k+1, y

+
−ℓ] = 0,(2.16)

[z̃+k+1, z̃
+
ℓ+1] = 0, [z+k+1, z

+
ℓ+1] = 0,(2.17)

[z+k+1, z̃
+
ℓ+1] + [z̃+k+1, z

+
ℓ+1] = 0 ,(2.18)

and the condition (z+0 = z̃+0 = ρ̄/(q − q−1)):

ρ̄(q + q−1)

n∑

k=0

q−n+2ky+k+1y
+
−n+k −

n+1∑

k=0

q2k−n−1z+k z̃
+
n+1−k = 0 , n ≥ 0 ,(2.19)

with

ρ̄ = q−1(q2 − q−2)2 .(2.20)

This algebra is denoted UT,+
q . We call UT,+

q Terwilliger’s second realization of U IT,+
q . For a proof of the above

Theorem, we refer the reader to [T19a, T19b] for all details. Compared with the conventions in [T19a, T19b],
the following substitutions are considered:

y+k+1 →W−k , y+−k →Wk+1 ,

z+k+1 → q−1(q2 − q−2)Gk+1 , z̃+k+1 → q−1(q2 − q−2)G̃k+1 ,

ρ̄→ q−1(q2 − q−2)(q − q−1) .

Remark 2.8. The relations (2.8)-(2.18) coincide with the defining relations for the alternating central extension
of U+

q , denoted U+
q , see [T19b, Definition 3.1]. To get UT,+

q from U+
q , the additional relation (2.19) is asserted,

see [T19b, Lemma 2.8].

Note that there exists an automorphism σ and an antiautomorphism S (see [T19a, Proposition 5.3]) such
that:

σ : y+−k 7→ y+k+1 , y+k+1 7→ y+−k , z+k+1 7→ z̃+k+1 , z̃+k+1 7→ z+k+1 ,(2.21)

S : y+−k 7→ y+−k , y+k+1 7→ y+k+1 , z+k+1 7→ z̃+k+1 , z̃+k+1 7→ z+k+1 .(2.22)

The following proposition is a straightforward adaptation of [T19b, Theorem 10.2].

Proposition 2.9. A PBW basis for UT,+
q is obtained by its equitable generators

{y+−k}k∈N , {z+n+1}n∈N , {y+ℓ+1}ℓ∈N

in any linear order < that satisfies

y+−k < z+n+1 < y+ℓ+1 , k, ℓ, n ∈ N .
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Combining σ, S, other examples of PBW bases can be obtained.

The equitable generators of UT,+
q are polynomials in y+0 , y

+
1 . Explicit expressions are obtained recursively

adapting [T19a, Lemma 2.9]. For instance, besides y+0 , y
+
1 , the first generators read:

z+1 = qy+1 y
+
0 − q−1y+0 y

+
1 ,(2.23)

y+−1 =
1

ρ̄

(
(q2 + q−2)y+0 y

+
1 y

+
0 − (y+0 )

2y+1 − y+1 (y
+
0 )

2
)

(2.24)

and y+2 = σ(y+−1), z̃
+
1 = σ(z+1 ). Thus, the algebra UT,+

q has a natural N2-grading. Define deg : UT,+
q → N× N.

For instance, deg(y+0 ) = (1, 0) and deg(y+1 ) = (0, 1). More generally, deg(y+−k) = (k+1, k), deg(y+k+1) = (k, k+1),

deg(z+k+1) = deg(z̃+k+1) = (k + 1, k + 1).

The algebra UT,+
q admits a presentation in the form of a quadratic algebra of Freidel-Maillet type [FM91],

which can be viewed as a limiting case of a reflection algebra introduced in the context of boundary quantum
inverse scattering theory [C84, Sk88]. Let R(u) be the quantum R−matrix defined by [Ba82]

R(u) =




uq − u−1q−1 0 0 0
0 u− u−1 q − q−1 0
0 q − q−1 u− u−1 0
0 0 0 uq − u−1q−1


 ,(2.25)

where u is an indeterminate, called ‘spectral parameter’ in the literature on integrable systems, and deformation
parameter q. It is known that R(u) satisfies the quantum Yang-Baxter equation in the space V1⊗V2⊗V3, with
V ≡ C2. Using the standard notation

Rij(u) ∈ End(Vi ⊗ Vj),(2.26)

the Yang-Baxter equation reads

R12(u/v)R13(u)R23(v) = R23(v)R13(u)R12(u/v) .(2.27)

As usual, intoduce the permutation operator P = R(1)/(q−q−1). Here, note thatR12(u) = PR12(u)P = R21(u).
In addition to (2.25), define:

R(0) = diag(1, q−1, q−1, 1) .(2.28)

Define the generating functions:

Y+(u) =
∑

k∈N

y+k+1U
−k−1 , Y−(u) =

∑

k∈N

y+−kU
−k−1 ,(2.29)

Z+(u) =
∑

k∈N

z̃+k+1U
−k−1 , Z−(u) =

∑

k∈N

z+k+1U
−k−1 ,(2.30)

where the shorthand notation U = qu2/(q + q−1) is used. Let k̄± ∈ C(q) such that

ρ̄ = k̄+k̄−(q + q−1)2 .(2.31)

For the alternating central extension of U+
q , a Freidel-Maillet type presentation has been proposed in [B20,

Theorem 3.1]. It is given in terms of a K-operator satisfying a Freidel-Maillet type equation. To get U+
q , a

condition on the quantum determinant of the K-operator is required.

Theorem 2.10. The algebra UT,+
q has a presentation of Freidel-Maillet type. Let K(u) be a square matrix such

that

K(u) =


 uqY+(u)

1
k̄−(q+q−1)

Z+(u) +
k̄+(q+q−1)
(q−q−1)

1
k̄+(q+q−1)

Z−(u) +
k̄−(q+q−1)
(q−q−1) uqY−(u)


(2.32)
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with (2.29)-(2.30). The defining relations are given by:

R(u/v) (K(u)⊗ I) R(0) (I⊗K(v)) = (I⊗K(v)) R(0) (K(u)⊗ I) R(u/v)(2.33)

and1

tr12
(
P−
12(K(u)⊗ I) R(0)(I⊗K(uq))

)
= −

ρ̄

(q − q−1)2
.(2.34)

Proof. By specializing some results of [B20], the proof follows. The first part of the proof concerns the equiv-
alence between (2.8)-(2.18) and (2.33). Recall the defining relations of the alternating central extension of U+

q

(i.e. U+
q ) given in [B20, Definition 2.1]. Observe that they coincide with the subset of relations (2.8)-(2.18)

upon the substitution:

W−k → y+k+1 , Wk+1 → y+−k ,(2.35)

Gk+1 → z̃+k+1, G̃k+1 → z+k+1 .(2.36)

Now, by [B20, Theorem 3.1] it is known that U+
q admits a Freidel-Maillet type presentation given by a K-operator

satisfying (2.33). So, for the K-operator (2.32), the relations (2.8)-(2.18) are equivalent to (2.33).
The second part of the proof concerns the equivalence between (2.19) and (2.34). By [B20, Proposition 3.3],

the l.h.s of (2.34) is the so-called quantum determinant that generates the center of U+
q . For convenience, define

C(u) = (q − q−1)u2q2Y+(u)Y−(uq)−
(q − q−1)

ρ̄
Z−(u)Z+(uq)−Z−(u)−Z+(uq) .(2.37)

Inserting (2.32) into the l.h.s. of (2.34), the quantum determinant reduces to:

tr12
(
P−
12(K(u)⊗ I) R(0)(I⊗K(uq))

)
=

1

2(q − q−1)

(
C(u) + σ(C(u))−

2ρ̄

(q − q−1)

)
.(2.38)

Using the exchange relations between the generating functions (2.29)-(2.30) extracted from (2.33), one shows
σ(C(u)) = C(u). Thus, the condition (2.34) is equivalent to:

C(u) = 0 .(2.39)

Extracting the set of constraints on the coefficients of the generating function C(u), one gets (2.19). �

Note that eqs. (2.33), (2.34), are left invariant under the transformation (u, v) 7→ (λu, λv) for λ invertible
and [λ, UT,+

q ] = 0. This property will be used in further analysis.

3. Relating Terwilliger’s and Drinfeld’s second realizations

It is natural to ask for the precise relationship between the equitable and Drinfeld’s generators. As shown
in this section, the Freidel-Maillet type presentation of Theorem 2.10 combined with the framework of FRT
algebras [FRT89, RS90, DF93] gives a suitable framework for answering this question. In addition, it provides
a tool for constructing left or right coaction maps that ensure a comodule algebra structure for UT,+

q .

Below, as a preliminary the FRT presentation for UDr
q is first recalled, and Drinfeld type ‘alternating’

subalgebras {UDr,a,±
q }, their extensions {U ′

q
Dr,a,±

} for a = ⊲, ⊳, are introduced. Then, a K-operator satisfying

a Freidel-Maillet type equation is constructed, and used to derive an injective homomorphism ν : UT,+
q →

U ′
q
Dr,⊲,+

. Using the comodule algebra structure of the Freidel-Maillet type presentation, a left coaction map

δ : UT,+
q → U ′

q
Dr,⊲,+

⊗UT,+
q is also derived. For the specialization δ̄ : UT,+

q → U ′
q
Dr,⊲,+

/C=1⊗UT,+
q the image

of the generating functions for the equitable generators (2.29), (2.30) is given.

1As usual, ‘tr12’ stands for the trace over V1 ⊗ V2. Also, we denote P−

12 = (1 − P )/2.
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3.1. FRT presentation. For the quantum affine Lie algebra Uq(ĝl2), a FRT presentation is known [RS90,
DF93]. Define the R-matrix:

(3.1) R̃(z) =




1 0 0 0

0 z−1
zq−q−1

z(q−q−1)
zq−q−1 0

0 (q−q−1)
zq−q−1

z−1
zq−q−1 0

0 0 0 1




where z is an indeterminate. It is known that R̃(z) satisfies the quantum Yang-Baxter equation

R̃12(z1/z2)R̃13(z1)R̃23(z2) = R̃23(z2)R̃13(z1)R̃12(z1/z2) .(3.2)

In terms of R̃(z), the permutation operator reads P = R̃(1). Note that R̃12(z) = R̃t1t2
21 (z).

Theorem 3.1. [RS90, DF93] Uq(ĝl2) admits a FRT presentation given by a unital associative algebra with

generators {x±k , k
+
j,−ℓ, k

−
j,ℓ, q

±c/2|k ∈ Z, ℓ ∈ N, j = 1, 2}. The generators q±c/2 are central and mutally inverse.
Define:

L±(z) =

(
k±1 (z) k±1 (z)f

±(z)
e±(z)k±1 (z) k±2 (z) + e±(z)k±1 (z)f

±(z)

)
(3.3)

in terms of the generating functions in the indeterminate z:

e+(z) = (q − q−1)

∞∑

k=0

qk(c/2−1)x−−kz
k , e−(z) = −(q − q−1)

∞∑

k=1

qk(c/2+1)x−k z
−k ,(3.4)

f
+(z) = (q − q−1)

∞∑

k=1

q−k(c/2+1)x+−kz
k , f

−(z) = −(q − q−1)

∞∑

k=0

q−k(c/2−1)x+k z
−k ,(3.5)

k+j (z) =

∞∑

k=0

k+j,−kz
k , k−j (z) =

∞∑

k=0

k−j,kz
−k , j = 1, 2 .(3.6)

The defining relations are the following:

k+i,0k
−
i,0 = k−i,0k

+
i,0 = 1 ,(3.7)

R̃(z/w) (L±(z)⊗ I) (I⊗ L±(w)) = (I⊗ L±(w)) (L±(z)⊗ I) R̃(z/w) ,(3.8)

R̃(qcz/w) (L+(z)⊗ I) (I⊗ L−(w)) = (I⊗ L−(w)) (L+(z)⊗ I) R̃(q−cz/w) .(3.9)

For (3.8), the expansion direction of R̃(z/w) can be chosen in z/w or w/z, but for (3.8) the expansion direction
is only in z/w. The Hopf algebra structure is characterized as follows. The coproduct2 ∆, antipode S and counit
E are such that:

∆(L±(z)) = (L±(zq±(1⊗c/2)))[1](L
±(zq∓(c/2⊗1)))[2] ,(3.11)

S(L±(z)) = L±(z)−1 , E(L±(z)) = I .(3.12)

The complete isomorphism between the FRT presentation of Theorem 3.1 and Drinfeld second presentation

of Uq(ĝl2) is given in [GJ02, Section 4] (see also [FMu02]). Following [GJ02, Section 4], introduce the generating

2The index [j] characterizes the ‘quantum space’ V[j] on which the entries of L±(z) act. With respect to the ordering V[1]⊗V[2],
one has:

((T )[1](T
′)[2])ij =

2∑

k=1

(T )ik ⊗ (T ′)kj .(3.10)
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functions

k
±
i (z) = k

±
i,0 exp

(
±(q − q−1)

∞∑

n=1

ai,∓nz
±n

)
(3.13)

in terms of the new generators ai,∓n. In terms of Drinfeld generators hm, the new generators a1,m, a2,m
decompose as:

a1,m =
1

qm + q−m
(hm + γm) , a2,m = −

1

qm + q−m
(q2mhm − γm) .(3.14)

where γm are central elements of Uq(ĝl2). For our purpose, introduce the surjective map γ′D : Uq(ĝl2) → UDr
q

that is defined as follows. Let γ′m be Laurent polynomials in C1/2, that will be specified later on. We define:

γ′D(qc/2) 7→ C1/2 ,(3.15)

γ′D(x±k ) 7→ x
±
k ,(3.16)

γ′D(a1,m) 7→
1

qm + q−m
(hm + γ′m) , γD(a2,m) 7→ −

1

qm + q−m
(q2mhm − γ′m) ,(3.17)

γ′D(k∓2,0(k
∓
1,0)

−1) 7→ K
±1 , γD(k±1,0k

±
2,0) 7→ 1 .(3.18)

Note that the map γ′D slightly differs from the map chosen in [B20, eq. (5.62)-(5.65)].

3.2. Alternating subalgebras of UDr
q . Certain ‘alternating’ subalgebras of Uq(ŝl2) have been introduced in

[B20], that are now reviewed for further analysis.

Definition 3.2.

UDr,⊲,±
q = {C∓k/2K−1x±k , C

±(k+1)/2x∓k+1, hk+1|k ∈ N} ,

UDr,⊳,±
q = {C∓k/2x±−k, C

±(k+1)/2x∓−k−1K, h−k−1|k ∈ N} .

We call UDr,⊲,±
q and UDr,⊳,±

q the right and left alternating subalgebras of UDr
q . The subalgebra generated by

{K±1, C±1/2} is denoted UDr,⋄
q .

The defining relations of the alternating subalgebras are identified using (A.4)-(A.9). Consider for instance

UDr,⊲,+
q . If we denote A+

k = C−k/2
K
−1

x
+
k , A

−
ℓ = Cℓ/2

x
−
ℓ and Bk = K

−1ψk, using the relations in Appendix A
one gets the defining relations:

[
hk, hℓ

]
= 0 ,

[
hk, Bℓ

]
= 0 ,(3.19)

[
hk, A

±
ℓ

]
= ±

[
2k
]
q

k
A±

k+ℓ ,(3.20)

A±
k+1A

±
ℓ − q±2A±

ℓ A
±
k+1 = q±2A±

k A
±
ℓ+1 −A±

ℓ+1A
±
k ,(3.21)

[
A+

k , A
−
ℓ

]
q−1 =

q−1Bk+ℓ

q − q−1
.(3.22)

The defining relations of the other alternating subalgebras can be similarly written.

For Uq(ŝl2), it is known that given a certain ordering the elements {x±k , hℓ,K
±, C±1/2} generate a PBW

basis. See [Be94, Proposition 6.1] with [BCP98, Lemma 1.5]. For the alternating subalgebras, PBW bases
follow naturally. If one considers the subalgebra UDr,⊲,+

q , let us choose the ordering:

C1/2
x
−
1 < Cx−2 < · · · < h1 < h2 < · · · < C−1/2

K
−1

x
+
1 < K

−1
x
+
0 ,(3.23)

whereas for the subalgebra UDr,⊳,−
q we choose the ordering:

x
−
0 < C1/2

x
−
−1 < · · · < h−1 < h−2 < · · · < C−1

x
+
−2K < C−1/2

x
+
−1K .(3.24)

It follows:
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Proposition 3.3. The vector space UDr,⊲,+
q (resp. UDr,⊳,−

q ) has a linear basis consisting of the products

x1x2 · · ·xn (n ∈ N) with xi ∈ UDr,⊲,+
q (resp. xi ∈ UDr,⊳,−

q ) such that x1 ≤ x2 ≤ · · · ≤ xn.

Using the automorphism (A.12), PBW bases for UDr,⊲,−
q and UDr,⊳,+

q are similarly obtained.

Extensions of the alternating subalgebras are now introduced, that will be useful in the analysis below.

Definition 3.4. U ′
q
Dr,⊲,±

(resp. U ′
q
Dr,⊳,±

) denote the subalgebras of UDr
q generated by UDr,⊲,±

q (resp. UDr,⊳,±
q )

and {K±1, C±1/2}.

If one considers for instance U ′
q
Dr,⊲,+

, in addition to the relations (3.19)-(3.22) one has:
[
hk,K

±1
]
= 0 ,

[
Bk,K

±1
]
= 0 , C1/2 central ,(3.25)

KA±
k K

−1 = q±2A±
k .(3.26)

3.3. The homomorphism ν : UT,+
q → U ′

q
Dr,⊲,+

. Consider the following Freidel-Maillet type equation (for a
non-symmetric R-matrix)

R̃12(z/w) (K̃(z)⊗ I) R(0) (I⊗ K̃(w)) = (I⊗ K̃(w)) R(0) (K̃(z)⊗ I) R̃21(z/w) .(3.27)

Assume there exists a matrix K̃0(z) with scalar entries and two quantum Lax operators L(z), L0, such that the

following relations hold (recall that R̃21(z) = PR̃12(z)P ):

R̃12(z/w) K̃
0
1 (z) R

(0) K̃0
2(w) = K̃0

2 (w) R
(0) K̃0

1(z) R̃21(z/w) ,(3.28)

R̃12(z/w)L1(z)L2(w) = L2(w)L1(z)R̃12(z/w) ,(3.29)

R̃21(z/w)(L
0)1(L

0)2 = (L0)2(L
0)1R̃21(z/w) ,(3.30)

(L0)1R
(0)L2(w) = L2(w)R

(0)(L0)1 ,(3.31)

L1(z)R
(0)(L0)2 = (L0)2R

(0)L1(z) .(3.32)

Adapting [Sk88, Proposition 2], using the above relations one finds that :

K̃(z) 7→ L(zλ)K̃0(z)L0(3.33)

satisfies (3.27) provided λ is invertible and [λ, Uq(ĝl2)] = 0. For instance, define:

K̃0(z) =

(
ǭ+

k̄+(q+q−1)
(q−q−1)

k̄−(q+q−1)
(q−q−1)

ǭ−
z

)
,(3.34)

where k̄± ∈ C(q) and
[
ǭ±, Uq(ĝl2)

]
= 0. It satisfies (3.28). It follows:

Lemma 3.5. The K-operator

K̃(z) 7→ K̃−(z) = L−(zλ)K̃0(z)L−,0(3.35)

satisfies (3.27) for any invertible λ such that [λ, Uq(ĝl2)] = 0.

Proof. By previous comment, it is sufficient to check that (3.29)-(3.32) hold. For the choices

L(z) 7→ L−(z) and L0 7→ L−,0 = diag((k−2,0)
−1, (k−1,0)

−1) ,(3.36)

eq. (3.29) holds by definition and it is checked that eqs. (3.30)-(3.32) hold. �

The R-matrices R(u) (symmetric) and R̃(z) (non-symmetric) given by (2.25) and (3.1), respectively, are
related through the similarity transformations:

(u
v
q −

v

u
q−1
)−1

R12(u/v) = M(u)1M(v)2R̃12(u
2/v2)M(v)−1

2 M(u)−1
1 ,

= M(u)−1
1 M(v)−1

2 R̃21(u
2/v2)M(v)2M(u)1 with M(u) =

(
u−1/2 0

0 u1/2

)
.
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Using this transformation, one relates (3.27) to (2.33): there exists an injective homomorphism from the Freidel-
Maillet algebra (2.33) to the Yang-Baxter algebra (3.7)-(3.9) given by:

K(u) 7→ M(u)K̃−(qu2)M(u) .(3.37)

The explicit expression for (3.37) is a generalization of the K-operator in [B20, Lemma 5.15]. Here the difference
relies on the additional elements ǭ± 6= 0 in (3.34).

The map (3.37) allows to establish the precise relation between the equitable generators {y+−k, y
+
k+1, z

+
k+1, z̃

+
k+1}

and the generators of alternating subalgebras. In the expressions below, for normalization convenience we set:

k̄+ = q−1(q − q−1) , k̄− = q − q−1 , ǭ+ = q + q−1 , ǭ− = q(q + q−1)C−1 , λ = C3/2 .(3.38)

Proposition 3.6. There exists an injective homomorphism ν : UT,+
q → U ′

q
Dr,⊲,+

such that:

Y+(u) 7→ g(u)

(
−k̄−(q

2 + 1)(qu2)−1
∞∑

k=0

qkC−k/2K−1x+k (qu
2λ)−k + ǭ+(qu

2)−1K−1

)
,(3.39)

Y−(u) 7→

(
−k̄+(q

−2 + 1)

∞∑

k=0

qk+1C(k+1)/2x−k+1(qu
2λ)−k−1(3.40)

+ ǭ−q
−1(qu2)−1


ψ(u2λ) + (q − q−1)2

∞∑

k,ℓ=0

qk−ℓC(k−ℓ+1)/2x−k+1x
+
ℓ (qu

2λ)−k−ℓ−1




 g(u) ,

Z+(u) 7→

(
ρ̄

q − q−1
− ǭ−k̄−q

−1(q2 − q−2)(qu2)−1
∞∑

k=0

q−kC−k/2x+k (qu
2λ)−k

)
g(u)−

ρ̄

q − q−1
,(3.41)

Z−(u) 7→ g(u)

(
ρ̄

q − q−1
K−1ψ(u2λ)− ǭ+k̄+(q

2 − q−2)
∞∑

k=0

q−k+1C(k+1)/2x−k+1K
−1(qu2λ)−k−1(3.42)

+ ρ̄(q − q−1)

∞∑

k,ℓ=0

q−k+ℓC(k−ℓ+1)/2K−1x−k+1x
+
ℓ (qu

2λ)−k−ℓ−1


−

ρ̄

q − q−1
,

where

g(u) = exp

(
−(q − q−1)

∞∑

n=1

(hn + γ′n)

qn + q−n
(qu2λ)−n

)
with γ′n = −

(q − q−1)2n−1

n

(
ǭ+ǭ−λ

ρ̄q

)n

.(3.43)

Proof. The first part of the proof concerns the derivation of the expressions on the r.h.s of (3.39)-(3.42). Recall

Lemma 3.5. Then, one expands explicitly (3.35) using (3.3). Consider for instance the entry (K̃−(z))11, where
some commutation relations given in [B20, eqs. (5.55)-(5.56)] are used:

(K̃−(z))11 =
k̄−(q + q−1)

q − q−1
k
−
1 (zλ) f

−(zλ)(k−2,0)
−1

︸ ︷︷ ︸
=q(k−2,0)

−1f−(zλ)

+ǭ+k
−
1 (zλ)(k

−
2,0)

−1

=
k̄−(q + q−1)

q − q−1
k
−
1 (zλ)(k

−
2,0)

−1

︸ ︷︷ ︸
=K−1 exp(−(q−q−1)

∑
∞

n=1 a1,n(zλ)−n)

f
−(zλ) + ǭ+ k

−
1 (zλ)(k

−
2,0)

−1

︸ ︷︷ ︸
by (3.13) .
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Inserting (3.5), one gets:

(K̃−(z))11 = −k̄−(q + q−1) exp

(
−(q − q−1)

∞∑

n=1

a1,n(zλ)
−n

)
∞∑

k=0

qkq−ck/2
K
−1

x
+
k (zλ)

−k(3.44)

+ ǭ+K
−1 exp

(
−(q − q−1)

∞∑

n=1

a1,n(zλ)
−n

)
.

Applying γ′D according to (3.15)-(3.18), one finds γ′D

(
K̃−(z)11

)
is a power series in the elements of U ′

q
Dr,⊲,+

.

Proceeding similarly for the other entries, γ′D (K−(z)ij) ∈ U ′
q
Dr,⊲,+

⊗ C[[z]]. Also, the entries are reordered
using the defining relations for Drinfeld’s currents [DF93]. In particular, one introduces (A.10) and uses:

x
−
ℓ+1g(u) = q−2ℓg(u)x−ℓ+1 , x

+
ℓ g(u) = q2ℓg(u)x+ℓ .(3.45)

Then, using (3.37) one compares (2.32) to M(u)γ′D

(
K̃−(qu2)

)
M(u). This gives (3.39)-(3.42).

The second part of the proof concerns the identification of the elements γ′n such that (2.34) holds, i.e. (2.39).

In the r.h.s. of (2.37), insert the explicit expressions previously obtained to get the image of C(u) in U ′
q
Dr,⊲,+

.
By [B20, Corollary 3.4, Remark 3.5] (recall the substitutions (2.35), (2.36)), ν(C(u)) is central: it can be reduced
to a function of C1/2. To determine this function, it is sufficient to extract all terms of ν(C(u)) that belong to
the center. According to the ordering (3.23) and the reduction rules (A.4)-(A.9), one identifies the subset of
terms in the images of {Y±(u),Z±(u)} that are relevant. One finds:

Y+(u) 7→ ǭ+K
−1(qu2)−1c(u) + · · · , Y−(uq) 7→ ǭ−q

−3
K(qu2)−1c(uq) + · · · ,

Z+(uq) 7→
ρ̄

(q − q−1)
(c(uq)− 1) + · · · , Z−(u) 7→

ρ̄

(q − q−1)
(c(u)− 1) + · · · ,

where

c(u) = exp

(
−(q − q−1)

∞∑

n=1

γ′n
qn + q−n

(qu2λ)−n

)
,(3.46)

and the ‘dots’ correspond to terms that will not contribute. After simplifications, one gets the factorized
expression:

ν(C(u))−
ρ̄

(q − q−1)
=

(
(q − q−1)q−2ǭ+ǭ−(qu

2)−1 −
ρ̄

(q − q−1)

)
c(u)c(uq) .(3.47)

The condition ν(C(u)) = 0 leads to

exp

(
−(q − q−1)

∞∑

n=1

(qλ)−nγ′n(qu
2)−n

)
= 1−

(q − q−1)2

ρ̄q2
ǭ+ǭ−(qu

2)−1 .(3.48)

Taking the logarithm on both sides, the corresponding formal power series are identified. It yields to (3.43). �

Recall (2.29), (2.30). Identifying the leading terms of the power series, from the proposition above with (3.38)
one gets for instance:

Example 3.7. The image in U ′
q
Dr,⊲,+

of UT,+
q is such that:

y+0 7→ C−1K− q−1(q − q−1)C−1x−1 ,

y+1 7→ K−1 − q(q − q−1)K−1x+0 ,

z̃+1 7→ −(q − q−1)2
(
q−1C−3/2h1 + (q + q−1)C−1x+0

)
+ (q − q−1)C−1 ,

z+1 7→ (q − q−1)2
(
qC−3/2h1 − (q + q−1)C−1x−1 K

−1 + q(q2 − q−2)C−1x−1 K
−1x+0

)
+ (q − q−1)C−1 .

Using (A.13), it is checked that the images of {y+i }i=0,1 match with (2.6).
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Remark 3.8. Alternative expressions for (3.39)-(3.42) can be written using the commutations relations (3.45)

and
[
ψ(z),K±1

]
=
[
ψ(z), g(u)

]
= 0.

Remark 3.9. The image of the equitable generators in terms of Lusztig’s root vectors and {K0,K1} is obtained
as follows. According to the definitions of the root vectors {Enδ+αi

, Enδ|i = 0, 1} ∈ UDJ,+
q (or {Fnδ+αi

, Fnδ|i =

0, 1} ∈ UDJ,−
q ) given in [Be94, BCP98], one uses the correspondence:

x+k = Ekδ+α1 , x−k+1 = −C−k−1KEkδ+α0 , hk+1 = C−(k+1)/2E(k+1)δ ,(3.49)

x−−k = Fkδ+α1 , x+−k−1 = −Fkδ+α0K
−1Ck+1 , h−k−1 = C(k+1)/2F(k+1)δ(3.50)

for k ∈ N and K = K1, CK
−1 = K0 in Proposition 3.6, where k̄±, ǭ±, λ, are chosen such that (2.6) is recovered

at the leading order of the power series.

3.4. The homomorphism δ : UT,+
q → U ′

q
Dr,⊲,+

⊗ UT,+
q . For UT,+

q , a comodule algebra structure can be
exhibited as follows. Starting from any K-operator satisfying (3.27) and following standard arguments [Sk88],
left or right coactions can be constructed using the FRT presentation. Consider the K-operator in the r.h.s. of
(3.35). A new K-operator can be constructed using a dressing procedure [Sk88], which leads naturally to a left
or right coaction map. For instance3

Proposition 3.10. UT,+
q is a left comodule algebra over U ′

q
Dr,⊲,+

with coaction map δ : UT,+
q → U ′

q
Dr,⊲,+

⊗UT,+
q

such that

δ(K̃−(z)) = (γ′D ⊗ γ′D)
(
(L−(zq(1⊗c/2)))[1](K̃

−(zq(c/2⊗1)))[2](L
−,0)[1]

)
.(3.52)

Proof. By construction, the r.h.s. satisfies (3.27) for the non-symmetric R-matrix (3.1). For UT,+
q to be a

comodule algebra, we need to check:

(∆⊗ id) ◦ δ = (id⊗ δ) ◦ δ ,(3.53)

(E ⊗ id) ◦ δ ∼= id .(3.54)

Firstly, consider (3.53). Apply the l.h.s. of (3.53) to K̃−(z) in (3.35) and use the Lax operator coproduct rule

(3.11). Compare the result with the r.h.s. of (3.53) applied on K̃−(z). Both expressions coincide. Secondly,

consider (3.54). Apply the l.h.s of (3.54) to K̃−(z) in (3.35) and use the counit rule (3.12). Thus, we conclude
that UT,+

q is a left comodule algebra. �

If needed, the image of the equitable generators by δ can be extracted in a straightforward manner. As
an example, for simplicity let us consider a specialization of (3.52), namely the left coaction map δ̄ : UT,+

q →

U ′
q
Dr,⊲,+

/C=1 ⊗UT,+
q . For the symmetric R-matrix (2.25) using (3.37) and (3.52) at c = 0 (i.e. C = 1) it yields

to:

δ̄(K(u)) = (γ′D ⊗ 1)
((

M(u)L−(qu2)M(u)−1
)
[1]

(K(u))[2](L
−,0)[1]

)
/C[1]=1 .(3.55)

Now, recall the generating functions (2.29), (2.30).

3With respect to the ordering V[1] ⊗ V[2]:

((T )[1](T
′)[2](T

′′)[1])ij =
2∑

k,ℓ=1

(T )ik(T
′′)ℓj ⊗ (T ′)kℓ .(3.51)
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Lemma 3.11. There exists a coaction map δ̄ : UT,+
q → U ′

q
Dr,⊲,+

/C=1 ⊗ UT,+
q such that:

δ̄(Y+(u)) 7→ (qu2)−1qγ′D
(
k−1 (qu

2)(k−2,0)
−1f−(qu2)

)
/C=1 ⊗

(
1

k̄+(q + q−1)
Z−(u) +

k̄−(q + q−1)

(q − q−1)

)

+ γ′D
(
k−1 (qu

2)(k−2,0)
−1
)
/C=1 ⊗ Y+(u) ,

δ̄(Y−(u)) 7→ q−1γ′D
(
e−(qu2)k−1 (qu

2)(k−1,0)
−1
)
/C=1 ⊗

(
1

k̄−(q + q−1)
Z+(u) +

k̄+(q + q−1)

(q − q−1)

)

+ γ′D
(
k
−
2 (qu

2)(k−1,0)
−1 + q−1e−(qu2)k−1 (qu

2)(k−1,0)
−1f

−(qu2)
)
/C=1 ⊗ Y−(u) ,

δ̄(Z+(u)) 7→ γ′D
(
k−1 (qu

2)(k−1,0)
−1
)
/C=1 ⊗Z+(u) +

ρ̄

q − q−1

(
γ′D
(
k−1 (qu

2)(k−1,0)
−1
)
− 1
)
/C=1 ⊗ 1

+ k̄−(q + q−1)γ′D
(
k−1 (qu

2)(k−1,0)
−1f−(qu2)

)
/C=1 ⊗ Y−(u) ,

δ̄(Z−(u)) 7→ γ′D
(
k−2 (qu

2)(k−2,0)
−1 + qe−(qu2)k−1 (qu

2)(k−2,0)
−1f−(qu2)

)
/C=1 ⊗Z−(u)

+
ρ̄

q − q−1
γ′D
(
k
−
2 (qu

2)(k−2,0)
−1 + qe−(qu2)k−1 (qu

2)(k−2,0)
−1f

−(qu2)− 1
)
/C=1 ⊗ 1

+ k̄+qu
2(q + q−1)γ′D

(
e−(qu2)k−1 (qu

2)(k−2,0)
−1
)
/C=1 ⊗ Y+(u) .

Proof. Compute (3.55) using (3.3), (3.37) and (2.32) . Compare the entries of the resulting matrix to δ̄(K(u))

with (2.32). Applying (3.15)-(3.18) to (3.4), (3.5) and (3.13), one finds γ′D
(
δ̄(K(u))ij

)
∈ U ′

q
Dr,⊲,+

/C=1⊗U
T,+
q ⊗

C[[u2]]. �

Other examples of left and right coaction maps can be derived along the same lines. Now, expanding the
power series on both sides of the above equations using (2.29), (2.30), (3.4)-(3.6) with (3.13), one gets the image
by δ̄ of the generators of UT,+

q .

Example 3.12.

δ̄(y+1 ) = −q(q − q−1)K−1x+0 ⊗ 1 + K−1 ⊗ y+1 ,

δ̄(y+0 ) = −q−1(q − q−1)x−1 ⊗ 1 + K ⊗ y+0 .

Using (A.13) at C = 1, for (2.6) one finds δ̄ coincides with ∆, see (A.3).

Note that tensor product representations for UT,+
q can be obtained from [B20, Section 4], adapting the

definitions of the generators and conventions. See [B20, Proposition 4.5].

4. The central extension of UT,+
q

In this section, following [T19b] the central extension of UT,+
q and its center are considered. Below, they are

denoted respectively UT,+
q and C

+. Specializing the results of [B20], a Freidel-Maillet type presentation for UT,+
q

is given. Then, following [B20] the alternating subalgebras Uq(ĝl2)
⊲,+, U ′

q(ĝl2)
⊲,+ and center C⊲ are introduced.

By analogy with the analysis in previous section, the Freidel-Maillet type presentation is used to compute the

images of the generators of UT,+
q and C

+ in U ′
q(ĝl2)

⊲,+ and C
⊲, respectively.

The following definitions are straightforward adaptations of [T19b].

Definition 4.1. UT,+
q is the unital associative C(q)-algebra with equitable generators {Y +

−k, Y
+
k+1, Z

+
k+1, Z̃

+
k+1|k ∈

N} subject to the relations (2.8)-(2.18) with the substitutions:

y+−k → Y +
−k , y+k+1 → Y +

k+1 , z+k+1 → Z+
k+1 , z̃+k+1 → Z̃+

k+1 .(4.1)

Definition 4.2. The center C+ is the subalgebra of UT,+
q generated by the elements:

Cn+1 = (q2 − q−2)
n∑

k=0

q−2n+2k−1Y +
k+1Y

+
−n+k −

(q − q−1)

ρ̄

n+1∑

k=0

q2k−2n−2Z+
k Z̃

+
n+1−k , n ∈ N(4.2)
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with Z+
0 = Z̃+

0 = ρ̄/(q − q−1).

Note that the automorphisms σ, S, given by (2.21), (2.22), naturally extend from UT,+
q to UT,+

q ; See [T19b,

Section 8] for details. Importantly, using the defining relations of UT,+
q one shows that the central elements

Cn+1 are fixed under the action of σ, S [T19b, Proposition 8.3].

A Freidel-Maillet type presentation for UT,+
q follows from [B20, Theorem 3.1], adapting the notations. We

refer the reader to this work for the proof of the Theorem below. Introduce the generating functions:

Y+(u) =
∑

k∈N

Y +
k+1U

−k−1 , Y−(u) =
∑

k∈N

Y +
−kU

−k−1 ,(4.3)

Z+(u) =
∑

k∈N

Z̃+
k+1U

−k−1 , Z−(u) =
∑

k∈N

Z+
k+1U

−k−1 .(4.4)

Theorem 4.3. UT,+
q has a presentation of Freidel-Maillet type. Let K(u) be a square matrix such that

K(u) =


 uqY+(u)

1
k̄−(q+q−1)

Z+(u) +
k̄+(q+q−1)
(q−q−1)

1
k̄+(q+q−1)

Z−(u) +
k̄−(q+q−1)
(q−q−1) uqY−(u)


(4.5)

with (4.3)-(4.4). The defining relations are given by:

R(u/v) (K(u)⊗ I) R(0) (I⊗ K(v)) = (I⊗ K(v)) R(0) (K(u)⊗ I) R(u/v) .(4.6)

In the Freidel-Maillet framework, a generating function for central elements of C+ is derived from the quantum
determinant of the K-operator (4.5). Introduce the generating function with coefficients (4.2)

C(u) =

∞∑

k=0

Ck+1U
−k−1 .(4.7)

By previous comments, note that σ(C(u)) = C(u). The following proposition is an alternative to [T19b, Section
13], adapted to the equitable case.

Proposition 4.4. The quantum determinant

Γ(u) = tr12
(
P−
12(K(u)⊗ II) R(0)(II ⊗ K(uq))

)
(4.8)

generates C+.

Proof. Firstly, one shows that Γ(u) is central i.e.
[
Γ(u), (K(u))ij

]
= 0. We refer the reader to [B20, Proposition

3.3] for details. Secondly, inserting (4.5) into the r.h.s. of (4.8), one gets

Γ(u) =
1

(q − q−1)

(
C(u)−

ρ̄

(q − q−1)

)
(4.9)

where

C(u) = (q − q−1)u2q2Y+(u)Y−(uq)−
(q − q−1)

ρ̄
Z−(u)Z+(uq)− Z−(u)− Z+(uq) .(4.10)

�

Also, the analogs of [T19b, Lemma 3.3, Lemma 2.8] take the following form. Recall Theorems 2.10, 4.3.

Lemma 4.5. There exists a surjective homomorphism UT,+
q → UT,+

q that sends

K(u) 7→ K(u) , Γ(u) 7→ −
ρ̄

(q − q−1)2
.(4.11)

An embedding of UT,+
q into a subalgebra of Uq(ĝl2) can be obtained using the the FRT presentation of

Theorem 3.1. To prepare the analysis below, some results from [B20] are needed. We refer to [B20, Section 5]
for details and references. The definition below is a variation of [B20, Definition 5.12, eqs. (5.52)-(5.53)].
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Definition 4.6.

Uq(ĝl2)
⊲,± = {C∓k/2K

−1
x±k , C

±(k+1)/2x∓k+1, a1,k+1, a2,k+1|k ∈ N} ,

Uq(ĝl2)
⊳,± = {C∓k/2x±−k, C

±(k+1)/2x∓−k−1K, a1,−k−1, a2,−k−1|k ∈ N} .

We call Uq(ĝl2)
⊲,± and Uq(ĝl2)

⊳,± the right and left alternating subalgebras of Uq(ĝl2). The subalgebra generated

by {K±1, C±1/2} is denoted Uq(ĝl2)
⋄.

Importantly, it is known that the elements

γm = qma1,m + q−ma2,m for m ∈ Z∗(4.12)

generate the center C of Uq(ĝl2) (see e.g. [FMu02]). It follows:

Definition 4.7. The center C⊲ (resp. C⊳) of Uq(ĝl2)
⊲,± (resp. Uq(ĝl2)

⊳,±) is generated by γm (resp. γ−m) with
m ∈ N∗.

Extensions of the alternating subalgebras of Uq(ĝl2) are now introduced.

Definition 4.8. U ′
q(ĝl2)

⊲,± (resp. U ′
q(ĝl2)

⊳,±) denote the subalgebras of Uq(ĝl2) generated by Uq(ĝl2)
⊲,± (resp.

Uq(ĝl2)
⊳,±) and {K±1, C±1/2}.

For the quantum algebra Uq(ĝl2), it is known that Uq(ĝl2) ∼= UDr
q ⊗C. Thus, for the alternating subalgebras

analog properties hold. Recall Definition 3.4 and (3.14). One has:

U ′
q(ĝl2)

⊲,± ∼= U ′
q
Dr,⊲,±

⊗ C⊲ , U ′
q(ĝl2)

⊳,± ∼= U ′
q
Dr,⊳,±

⊗ C⊳ .

The embedding of the Freidel-Maillet algebra (4.6) into the FRT presentation of Uq(ĝl2) is now studied.
Generalizing the results of previous section, the map (3.37) allows to establish the precise relation between the

equitable generators {Y +
−k, Y

+
k+1, Z

+
k+1, Z̃

+
k+1} and the generators of alternating subalgebras of Uq(ĝl2). Recall

(3.46) and Proposition 3.6. Introduce the generating function in the central elements:

c(u) = exp

(
−(q − q−1)

∞∑

n=1

γn
qn + q−n

(qu2λ)−n

)
∈ C⊲ ⊗ C[[u2]].(4.13)

Proposition 4.9. There exists an injective homomorphism µ : UT,+
q → U ′

q(ĝl2)
⊲,+ such that

Y±(u) 7→ ν(Y±(u))c(u)
−1c(u) ,(4.14)

Z±(u) 7→

(
ν(Z±(u)) +

ρ̄

(q − q−1)

)
c(u)−1c(u)−

ρ̄

(q − q−1)
.(4.15)

Proof. One expands explicitly (3.35) using (3.3). For the entry (K̃−(z))11, we previously obtained (3.44).
Inserting (3.14) and using (3.17), it factorizes as:

(K̃−(z))11 = exp

(
−(q − q−1)

∞∑

n=1

(γn − γ′n)

qn + q−n
(zλ)−n

)
γ′D((K̃−(z))11) .(4.16)

Actually, other entries (K̃−(z))ij ∈ U ′
q(ĝl2)

⊲,± ⊗C[[z]] and similarly factorize in terms of γ′D((K̃−(z))ij). Thus,
a solution of (4.6) is given by the K-operator:

M(u)
(
K̃−(qu2)

)
M(u) = c(u)c(u)−1M(u)γ′D

(
K̃−(qu2)

)
M(u)(4.17)

with (3.46), (4.13). Then, one compares (2.32) to (4.17) which gives (4.14)-(4.15). �

In terms of central elements of Uq(ĝl2), the quantum determinant takes a rather simple form.
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Corollary 4.10.

Γ(u)
µ
7→

(
ǭ+ǭ−(q − q−1)2 − k̄+k̄−(q + q−1)2

q3u2(q − q−1)2

)
exp

(
−(q − q−1)

∞∑

n=1

γn(q
2u2λ)−n

)
(4.18)

with (3.38).

Proof. Applying µ to (4.10) and using (4.14), (4.15), one gets:

µ(C(u))−
ρ̄

(q − q−1)
= c(u)c(uq)c(u)−1c(uq)−1

(
ν(C(u))−

ρ̄

(q − q−1)

)
.(4.19)

Using (2.31), (3.47), (4.9), (4.13), the r.h.s. of (4.18) follows. �

Remark 4.11. An alternative expression for µ(Γ(u)) is derived as follows. Inserting (4.12) into (4.13) and
using the second eq. of (3.14), (A.5) and (A.10), one gets:

Γ(u)
µ
7→

(
ǭ+ǭ−(q − q−1)2 − k̄+k̄−(q + q−1)2

q3u2(q − q−1)2

)
g(u)ψ(q2u2λ)g(uq)(4.20)

with

g(u) = exp

(
−(q − q−1)

∞∑

n=1

a1,n(qu
2λ)−n

)
.(4.21)

5. Concluding remarks

The results of this paper together with [B20] can be summarized as follows. In [B20], it was shown that
the alternating presentation for an algebra U+

q and its central extension U+
q introduced and studied in [T18,

T19a, T19b] admits a presentation of Freidel-Maillet type. For U+
q , this presentation consists of a K-operator

satisfying (4.6), which entries are generating functions in the alternating generators of U+
q [T19a, T19b]; See

[B20, Theorem 3.1]. To get the analog presentation for U+
q , a condition for the quantum determinant of the

K-operator is asserted. It reads (2.34). Now, by Lemmas 2.5, 2.6, two different embeddings of the alternating

presentation of U+
q into Uq(ŝl2) can be considered :

(i) The Drinfeld-Jimbo (or Chevalley) type: the alternating presentation for UDJ,+
q - the standard positive

part of Uq(ŝl2);

(ii) The equitable (or Ito-Terwilliger) type: the alternating presentation for U IT,+
q - the non-standard positive

part of Uq(ŝl2).

In this paper, the alternating presentation for the equitable type is denoted UT,+
q , and its central extension

UT,+
q . Its generators are called the equitable generators to avoid any confusion with the Drinfeld-Jimbo type.

The alternating presentations (i),(ii), are studied in details in [B20, Ter21] and the present paper. The
approach followed in [B20] and here is based on Freidel-Maillet type presentations. In this framework, to the
K-operator of U+

q (see [B20, eq. (3.8)] one associates a K-operator of Drinfeld-Jimbo type for (i), or of equitable

type (2.32) for (ii). For each type, embeddings into Yang-Baxter subalgebras of URS
q [RS90, DF93] and Drinfeld

second realization UDr
q [D88] are studied in details. They are characterized explicitly using L-operators and

Drinfeld generators as follows:

(i’) The K-operator of Drinfeld-Jimbo type is the image of (3.37) by γ′D for ǭ± = 0, k̄+ = q2, k̄− = −q−1 and
γ′n = 0, ∀n. As a corollary, the image of the alternating generators in UDr

q is obtained in terms of Drinfeld
generators/root vectors from (3.39)-(3.42); See [B20, Propositions 5.27];

(ii’) The K-operator of equitable type is the image of (3.37) by γ′D for (3.38), (3.43). As a corollary, the
image of the equitable generators in terms of Drinfeld generators is obtained. It follows from (3.39)-(3.42), thus
generalizing (2.6) of [IT03]. See Remark 3.9 for the corresponding expressions in terms of root vectors.
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Analogous results hold for their central extensions related with subalgebras of Uq(ĝl2), see [B20, Section 5.2])
and Section 4 of this paper. Furthermore, for the central extension of any type (i) and (ii) the image of the
quantum determinant (4.18) coincides, up to an overall factor, with a generating function for ‘half’ of central

elements (4.12) of Uq(ĝl2).

The results of [B20] and the present paper show that Freidel-Maillet type algebras provide a unified framework

for UDJ,+
q and U IT,+

q . Actually, this unified framework can be extended to Uq(ŝl2) (see [B20, Section 6] for

the Drinfeld-Jimbo type), thus providing an alternative to the FRT presentation for Uq(ŝl2) [DF93]. For the
Drinfeld-Jimbo type, the existence of a Freidel-Maillet type presentation can be understood from the FRT

presentation using a Drinfeld twist. The most interesting case is the Freidel-Maillet presentation for Uq(ŝl2) of
equitable type. Details will be considered elsewhere. As a preliminary, for the case of Uq(sl2) the Freidel-Maillet
type presentation unifying the Drinfeld-Jimbo and equitable presentations is introduced and studied in [B21].

Let us also mention that FRT presentations for higher rank affine Lie algebras have been recently achieved,
see [JLM19, JLM20, LP21]. By analogy, Freidel-Maillet and alternating presentations of Drinfeld-Jimbo or
equitable type for higher rank cases are expected.

From the perspective of physics, it seems natural to study further Freidel-Maillet type algebras of Drinfeld-
Jimbo or equitable type. Indeed, it is known that FRT presentations of quantum algebras provide a powerful
framework for the explicit construction and analysis of quantum integrable models such as spin chains, using
the Bethe ansatz or q-vertex operators’s techniques for instance. By analogy, it would be natural to investigate
the class of quantum integrable models generated from Freidel-Maillet type presentations.

Acknowledgments: I thank Paul Terwilliger for many discussions, kind explanations of his work and important
comments on the manuscript. Also, I thank him for sharing the unpublished results of [Ter21] which motivated
the analysis of Section 4. P.B. is supported by C.N.R.S.

Appendix A. Drinfeld-Jimbo and Drinfeld (second realization) presentation of Uq(ŝl2)

For the quantum affine Kac-Moody algebra Uq(ŝl2), two standard presentations are recalled. The Drinfeld-
Jimbo presentation UDJ

q and the Drinfeld (second) presentation UDr
q , see e.g. [CP94, p.392], [?].

A.1. Drinfeld-Jimbo presentation UDJ
q . Define the extended Cartan matrix {aij} (aii = 2, aij = −2 for

i 6= j). The quantum affine algebra Uq(ŝl2) over C(q) is generated by {Ej , Fj ,K
±1
j }, j ∈ {0, 1} which satisfy

the defining relations

KiKj = KjKi , KiK
−1
i = K−1

i Ki = 1 , KiEjK
−1
i = qaijEj , KiFjK

−1
i = q−aijFj , [Ei, Fj ] = δij

Ki −K−1
i

q − q−1

together with the q−Serre relations (i 6= j)
[
Ei,
[
Ei,
[
Ei, Ej

]
q

]
q−1

]
= 0 ,(A.1)

[
Fi,
[
Fi,
[
Fi, Fj

]
q

]
q−1

]
= 0 .(A.2)

The product C = K0K1 is the central element of the algebra.
The Hopf algebra structure is ensured by the existence of a comultiplication ∆ , antipode S and a counit E

with

∆(Ei) = 1⊗ Ei + Ei ⊗Ki ,(A.3)

∆(Fi) = Fi ⊗ 1 +K−1
i ⊗ Fi ,

∆(Ki) = Ki ⊗Ki ,
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S(Ei) = −EiK
−1
i , S(Fi) = −KiFi , S(Ki) = K−1

i S(1) = 1

and
E(Ei) = E(Fi) = 0 , E(Ki) = 1 , E(1) = 1 .

A.2. Drinfeld’s second realization UDr
q . A second presentation for the quantum affine algebra Uq(ŝl2),

known as the Drinfeld’s second realization, is now recalled. In [D88], it is shown that Uq(ŝl2) is isomorphic to

the associative algebra over C(q) with generators {x±k , hℓ,K
±1|k ∈ Z, ℓ ∈ Z\{0}}, central elements C±1/2 and

the following relations (see e.g. [CP94, Theorem 12.2.1]):

C1/2C−1/2 = 1 , KK
−1 = K

−1
K = 1 ,(A.4)

[
hk, hℓ

]
= δk+ℓ,0

1

k

[
2k
]
q

Ck − C−k

q − q−1
,(A.5)

[
hk, x

±
ℓ

]
= ±

1

k

[
2k
]
q
C∓|k|/2

x
±
k+ℓ ,(A.6)

Kx
±
k K

−1 = q±2
x
±
k ,(A.7)

x
±
k+1x

±
ℓ − q±2

x
±
ℓ x

±
k+1 = q±2

x
±
k x

±
ℓ+1 − x

±
ℓ+1x

±
k ,(A.8)

[
x
+
k , x

−
ℓ

]
=

(C(k−ℓ)/2ψk+ℓ − C−(k−ℓ)/2φk+ℓ)

q − q−1
,(A.9)

where the ψk and φk are defined by the following equalities of formal power series in the indeterminate z:

ψ(z) =

∞∑

k=0

ψkz
−k = K exp

(
(q − q−1)

∞∑

k=1

hkz
−k

)
,(A.10)

φ(z) =

∞∑

k=0

φ−kz = K
−1 exp

(
−(q − q−1)

∞∑

k=1

h−kz

)
.(A.11)

Note that there exists an automorphism such that:

θ : x
±
k 7→ x

∓
k , hk 7→ −hk , K 7→ K , C 7→ C−1, q 7→ q−1 .(A.12)

An isomorphism UDJ
q → UDr

q is given by (see e.g [CP94, p. 393]:

K0 7→ CK−1 , K1 7→ K , E1 7→ x
+
0 , E0 7→ x

−
1 K

−1 , F1 7→ x
−
0 , F0 7→ Kx

+
−1 .(A.13)

Note that it is still an open problem to find the complete Hopf algebra isomorphism between UDJ
q and UDr

q .
Only partial information is known, see e.g. [CP91, Section 4.4].
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[B20] P. Baseilhac, The alternating presentation of Uq(ĝl2) from Freidel-Maillet algebras, Nucl. Phys. B 967 (2021) 115400,
arXiv:2011.01572.

[B21] P. Baseilhac, Freidel-Maillet type presentations of Uq(sl2), preprint 2021.
[Ba82] R. Baxter, Exactly solvable models in statistical mechanics, New York, Academic Press (1982).
[Be94] J. Beck, Braid group action and quantum affine algebras, Commun. Math. Phys. 165 555-568.
[BCP98] J. Beck, V. Chari and A. Pressley, An algebraic characterization of the affine canonical basis Duke Math. J. 99 (1999) 3,

455-487, arXiv:math/9808060.
[CP91] V. Chari and A. Pressley, Quantum affine algebras, Commun. Math. Phys. 142 261-283.
[CP94] V. Chari and A. Pressley, A guide to quantum groups, (1994) Cambridge University Press.

[C84] I.V. Cherednik, Factorizing particles on the half-line and root systems, Teor. Mat. Fiz. 61 (1984) 35-44.

[DF93] J. Ding and I. Frenkel, Isomorphism of two realizations of quantum affine algebra Uq(ŝl(n)), Commun. Math. Phys. 156
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