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P.O. Box 6128, Centre-ville Station, Montréal (Québec), H3C 3J7, Canada.
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Abstract

The time and band limiting operator is introduced to optimize the reconstruction of a
signal from only a partial part of its spectrum. In the discrete case, this operator commutes
with the so-called algebraic Heun operator which appears in the context of the quantum
integrable systems. The construction of both operators and the proof of their commuta-
tivity is recalled. A direct connection between their spectra is obtained. Then, the Bethe
ansatz, a well-known method to diagonalize integrable quantum Hamiltonians, is used to
diagonalize the Heun operator and to obtain insights on the spectrum of the time and band
limiting operator.

Introduction

The reconstruction of a signal in a finite interval of time when only a part of the Fourier data
is available leads to the diagonalization of the so-called time and band limiting operator. This
paper establishes the link with the time and band limiting operator in the discrete case, the
Heun operator and the Bethe ansatz.

The relation between the time and band limiting operator and the Heun operator was
first highlighted in the continuous case. Slepian, Landau and Pollack considered the following
question: how much can a function limited to a band of frequencies [−Ω,Ω] be concentrated in
the finite interval [−t, t]? One might as well consider the problem where the role of time and
frequency are exchanged. In a seminal series of paper [38, 31], they showed that an answer
could be obtained by diagonalizing an integral operator with a sinc kernel, i.e. the time
and band limiting operator. They also made the surprising observation that the latter has the
property of commuting with a second order linear differential operator and thus shares with it a
common set of eigenfunctions. These were further recognized to be the prolate spheroidal wave
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functions. This breakthrough greatly simplifies the diagonalization of the integral operator,
which is otherwise difficult even numerically.

These results have now been applied in various settings, from random matrix theory [23, 33]
to the study of quantum entanglement in free fermions systems [24]. They have also been
generalized to treat cases where the functions are defined on finite [28] and infinite discrete
sets, on circles and in higher dimensions [32, 39, 40]. Furthermore, other instances in which an
integral operator or a full matrix commutes with a simple differential operator or tridiagonal
matrix have since been discovered. In many cases, including the original sinc kernel and its
discrete counterpart, the commuting operator can be identified as an algebraic Heun operator
[29, 30]. It has been also used for the computation of the entanglement entropy of free Fermions
on different chains [20, 21, 9] and on graphs associated to various association schemes [19, 10,
11]. These results provide an algebraic explanation of the existence of a tridiagonal matrix
commuting with Q± which has been found by direct computations [25].

Recently, the Heun operator of Askey–Wilson type has been identified in the transfer matrix
associated to the XXZ spin chain with generic boundaries thus allowing to use the methods
developed in this context to study the Heun operator [5]. Although the integrability of the
XXZ spin chain with generic boundaries was discover already in 1988 [37], its diagonalization
was an open problem for a long time. The eigenvalues in the context of the Bethe ansatz have
been given only 25 years later in [14, 15, 34] and the eigenvectors were obtained in [8] by using
a generalization of the Bethe ansatz called the modified algebraic Bethe ansatz. Let us also
mention that the separation of variable method has been developed in parallel to solve the
same problem [35]. This connection between integrable systems and Heun operators opens
a very interesting path and has already been used in the context of the computation of the
entanglement entropy [9]. In this paper, we show that it allows to get insights into the time
and band limiting problem by providing the Bethe ansatz for its associated Heun operator.

The paper is organized as follows. In Section 1, the discrete Fourier transform is recalled to
fix the notations. The time and band limiting problem is settled precisely with the definition
of the time and band limiting operator. The associated Heun operator is then constructed
and it is shown that the time and band limiting operator can be expressed as a polynomial
of the latter. Section 2 is devoted to the diagonalization of the Heun operator by the Bethe
ansatz method. Although the results could be deduced from [5] as different limits, we give a
self-contained presentation for the particular case needed in this paper. We do not use the R-
matrix formalism introduced usually in the algebraic Bethe ansatz but give a straightforward
presentation using only the Askey–Wilson algebra. We believe that this presentation is simpler
to follow for the non-experts of the Bethe ansatz methods.

1 Discrete time and band limiting operators

1.1 Fourier transform

Let F denote the vector space over the complex field consisting of all the functions from
{0, 1, 2, . . . , 2n − 1} to C. Its dimension is dim(F) = 2n. Only the even case is considered
in this paper to simplify its presentation although similar results can be obtained for the odd
case. For two functions f, g ∈ F , a scalar product is defined by

〈f |g〉 =

2n−1∑
x=0

f(x)∗g(x) . (1.1)
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The space F can be decomposed as a direct sum F = F+⊕F− where a function f belongs to
F± if it has the symmetry property: f(j) = ±f(2n − j) for any j ∈ {0, 1, 2, . . . , 2n − 1} (by
convention f(2n) = f(0)). The dimensions of these vector spaces are dim(F+) = n + 1 and
dim(F−) = n− 1.

For latter convenience, let us introduce the functions δk, sk, and ck of F defined by

δk(x) =

{
1, if k = x mod 2n

0, otherwise
, (1.2)

and

sk(x) = sin

(
πkx

2n

)
, ck(x) = cos

(
πkx

2n

)
. (1.3)

Let us notice that δ2n = δ0, s4n = s0 and c4n = c0. We introduce also the following shortened
notations:

c = c1 , s = s1 . (1.4)

Orthonormal bases of F+ and F− are given by the following sets of vectors, respectively,

|j,+〉 =
δj + δ2n−j

ρ(j)
√

2
, for 0 ≤ j ≤ n, and |j,−〉 =

δj − δ2n−j√
2

, for 1 ≤ j ≤ n− 1 , (1.5)

where the function ρ(j) = 1 if 1 ≤ j ≤ n − 1 and ρ(0) = ρ(n) =
√

2. These bases are called
position bases. There exist other natural bases, called momentum bases. The orthonormal
vectors for the momentum bases of F+ and F− are, respectively,

|θk,+〉 =
c2k

ρ(k)
√
n

for 0 ≤ k ≤ n, and |θk,−〉 =
s2k√
n
, for 1 ≤ k ≤ n− 1 . (1.6)

By convention, we set |0,−〉 = |n,−〉 = |θ0,−〉 = |θn,−〉 = 0.
The Fourier transform consists in writing a function f of F in terms of |θk,+〉 and |θk,−〉:

|f〉
n∑
k=0

f+k |θk,+〉+
n−1∑
k=1

f−k |θk,−〉 , (1.7)

with f±k ∈ C the Fourier coefficients. In particular, the Fourier transforms of the position basis
vectors are, for 0 ≤ j, k ≤ n,

|j,+〉 =

√
2

n

n∑
k=0

c2k(j)

ρ(k)ρ(j)
|θk,+〉 , |j,−〉 =

√
2

n

n−1∑
k=1

s2k(j)|θk,−〉. (1.8)

1.2 The discrete time and band limiting problem and Q±

As indicated in the introduction, an important challenge in signal processing is to reconstruct
a function restricted to a finite interval from an incomplete knowledge of its Fourier decompo-
sition. For the finite discrete case introduced in [28], one wants to recover f given that:

• f±k is only known for k ∈ {0, 1, . . . ,K} ⊂ {0, 1, . . . , n};

• f(x) = 0 outside the interval x ∈ {−L, . . . , L − 1, L} with 0 ≤ L ≤ n (where x must be
understood modulo 2n).
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In terms of the projectors

π±1 =
L∑
j=0

|j,±〉〈j,±| , π±2 =
K∑
k=0

|θk,±〉〈θk,±| , (1.9)

it amounts to determining f = (π+1 + π−1 )f from the knowledge of (π+2 π
+
1 + π−2 π

−
1 )f . This is

referred to as the discrete time and band limiting problem. To assert if this is possible, one
has to consider the singular value decomposition of E± = π±2 π

±
1 . This decomposition can be

deduced from diagonalization of the (discrete) time and band limiting operators,

Q± = E∗±E± = π±1 π
±
2 π
±
1 . (1.10)

In particular, if Q± has a zero eigenvalue associated to an eigenvector in π±1 F±, then the
intersection of π±1 F± with the kernel of E± is non-empty and recovering f exactly is impossible.
The presence of eigenvalues near zero also indicates a risk for numerical instability.

It is interesting to note that the diagonalization of the time and band limiting operators
Q± is motivated by other questions. The eigenvector associated to the largest eigenvalue
of Q+ (resp. Q−) gives the symmetric function g+ = π+1 g (resp. antisymmetric function
g− = π−1 g) restricted to the interval x ∈ {−L, . . . , L − 1, L} which is best contained in the
band of frequencies {0, 1, . . . ,K}, i.e.

‖π±2 g±‖
‖g±‖

= maxf∈π±1 F±

(
‖π±2 f‖
‖f‖

)
. (1.11)

The matrices Q± also arise as the chopped correlation matrices for systems of free fermions
on 2n-gon in their ground state. Their spectrum therefore contains the necessary information
to compute von Neumann entanglement entropies. Indeed, the methods used in [19, 10, 11]
associated to different graphs may be used in the context of the 2n-gon.

Next, we derive by algebraic means the tridiagonal matrices commuting with Q±. These
were also obtained in [28].

1.3 Associated Heun operators

Leonard pair. Let us introduce the operators A− and A∗− on F− by

A−|j,−〉 = |j − 1,−〉+ |j + 1,−〉 , and A∗−|j,−〉 = 2c(2j)|j,−〉 , (1.12)

for j = 1, . . . , n− 1. We recall that |0,−〉 = |n,−〉 = 0. By direct computation, one can show
that |θk,−〉 are the eigenvectors of A− and that the action of A∗− is tridiagonal:

A∗−|θk,−〉 = |θk−1,−〉+ |θk+1,−〉 , and A−|θk,−〉 = 2c(2k)|k,−〉 . (1.13)

Let us now define the operators A+ and A∗+ on F+ by

A+|j,+〉 = ρ(j−1)ρ(j)|j−1,+〉+ρ(j)ρ(j+1)|j+1,+〉 , and A∗+|j,+〉 = 2c(2j)|j,+〉 , (1.14)

for j = 0, . . . , n (by convention ρ(−1) = ρ(n+ 1) = 0). By direct computation again, one finds
that |θk,+〉 are the eigenvalues of A+ and that the action of A∗+ is tridiagonal:

A∗+|θk,+〉 = ρ(k − 1)ρ(k)|θk−1,+〉+ ρ(k)ρ(k + 1)|θk+1,+〉 , and A+|θk,+〉 = 2c(2k)|k,+〉 .
(1.15)

The couples of operators (A+, A
∗
+) or (A−, A

∗
−) satisfying the above properties are usually

called Leonard pair [41, 42].
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Heun operators. For a given Leonard pair (A,A∗), the associated algebraic Heun operator
is the most general bilinear combination of A and A∗ [36, 29]

T = r1{A,A∗}+ r2[A,A
∗] + r3A

∗ + r4A+ r5 , (1.16)

where ri are new parameters. It has the property of acting tridiagonally on the eigenbasis of
both A and A∗. We are interested in the particular Heun operators given by

T± =
1

4c(1)
{A±, A∗±} − c(2K + 1)A∗± − c(2L+ 1)A± . (1.17)

The action of T± on the position and momentum bases can be deduced from equation (1.12)-
(1.15). On the position basis, this action reads explicitly as follows:

T±|j,±〉 = aj,±|j − 1,±〉+ bj,±|j,±〉+ cj,±|j + 1,±〉, (1.18)

where

aj+1,− = cj,− = c(2j + 1)− c(2L+ 1), bj,± = −2c(2K + 1)c(2j), (1.19)

aj+1,+ = cj,+ = ρ(j)ρ(j + 1)(c(2j + 1)− c(2L+ 1)). (1.20)

On the momentum basis, it is:

T±|θk,±〉 = ak,±|θk−1,±〉+ bk,±|θk,±〉+ ck,±|θk+1,±〉, (1.21)

where

ak+1,− = ck,− = c(2k + 1)− c(2K + 1), bk,± = −2c(2L+ 1)c(2k), (1.22)

ak+1,+ = ck,+ = ρ(k)ρ(k + 1)(c(2k + 1)− c(2K + 1)). (1.23)

Note that [T±, π±1 ] = 0 also implies that we can choose the basis |t`,±〉 such that the first L+ 1
vectors are in the subspace onto which π±1 projects, i.e.

π±1 |t`,±〉 =

{
|t`,±〉 if ` ≤ L,
0 if ` > L.

(1.24)

From these explicit forms of T±, it is easy to show that they satisfy [T±, π±1 ] = 0 and
[T±, π±2 ] = 0. Therefore, T± commute with the time and band limiting operators Q±. They
can be diagonalized in the same basis {|t`,±〉}, with ` ∈ {0, 1, . . . ,dim(F±)− 1}:

T±|t`,±〉 = t`,±|t`,±〉, Q±|t`,±〉 = q`,±|t`,±〉. (1.25)

1.4 The time-band limiting operators as polynomials of the Heun operators

We are now interested in the relation between t`,± and q`,±. In other words, we are looking to
express the time and band limiting operators Q± as polynomials P± of π±1 T

±, i.e.

Q± = π±1 P±(T±). (1.26)
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In particular, we look for polynomials P± such that

P+(t`,+) = q`,+, ∀` ∈ {0, 1, . . . , L} (1.27)

and

P−(t`,−) = q`,−, ∀` ∈ {0, 1, . . . , L− 1}. (1.28)

This would allow to obtain the spectrum ofQ± from the eigenvalues t`,± of T±, ` ∈ {0, 1, . . . , L}.
This type of relation between the spectra of the Heun and the time and band limiting

operators has been discovered previously in different contexts [9, 12]. We follow the approach
used in [12], where the continuous time and band limiting operator is expressed as function of
the confluent Heun operator, and consider the following equation:(

T± ⊗ I − I ⊗ T±
)
|ψ〉 = 0, (1.29)

where |ψ〉 ∈ Cdim(F±) ⊗ Cdim(F±). We also define Ej,± as the following matrices

Ej,+ = |0,+〉〈j,+| ⊗ I, Ej,− = |1,−〉〈j + 1,−| ⊗ I, (1.30)

where I is the identity matrix. For any solution |ψ〉 of (1.29), we note that

(I ⊗ T±)Ej,±|ψ〉 = Ej,±(I ⊗ T±)|ψ〉 = Ej,±(T± ⊗ I)|ψ〉. (1.31)

Then, we can use (1.18) and the Schmidt decomposition

|ψ〉 =
n∑
j=0

|j,±〉 ⊗ |χj,±〉, (1.32)

to show that

(I ⊗ T±)Ej,+|ψ〉 = Ej,+

n∑
j′=0

(
aj′,+|j′ − 1,+〉+ bj′,+|j′,+〉+ cj′,+|j′ + 1,+〉

)
⊗ |χj′,+〉

= aj+1,+Ej+1,+|ψ〉+ bj,+Ej,+|ψ〉+ cj−1,+Ej−1,+|ψ〉

(1.33)

and

(I ⊗ T±)Ej,−|ψ〉 = aj+2,−Ej+1,−|ψ〉+ bj+1,−Ej,−|ψ〉+ cj,−Ej−1,−|ψ〉. (1.34)

For j ∈ {0, 1, . . . , L − 1}, we have aj+1,± 6= 0 and the previous expression yields a three-term
recurrence relation for the action of the matrix Ej,± on |ψ〉. Thus, we can deduce that

Ej,±|ψ〉 = Rj,±(I ⊗ T±)E0,±|ψ〉, (1.35)

where Rj,+ is a polynomial of order j ∈ {0, 1, . . . , L} which verifies

xRj,+(x) = aj+1,+Rj+1,+(x) + bj,+Rj,+(x) + cj−1,+Rj−1,+(x), R0,−(x) = 1 (1.36)

and Rj,− is a polynomial of order j ∈ {0, 1, . . . , L− 1} which verifies

xRj,−(x) = aj+2,−Rj+1,−(x) + bj+1,−Rj,−(x) + cj,−Rj−1,−(x), R0,−(x) = 1 (1.37)
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It is interesting to note that equation (1.35) can also be rewritten as

Rj,+(T+)|χ0,+〉 = |χj,+〉, Rj,−(T−)|χ1,−〉 = |χj+1,−〉. (1.38)

Therefore, the matrices Rj,±(T±) have an action that can be interpreted as a translation and
play a role similar to the operators U(ξ;T ) introduced in [12]. Next, we can use the polynomials
Rj,± to construct P±. Note that

|ψ`〉 = |t`,±〉 ⊗ |t`,±〉, ` ∈ {0, 1, . . . , L}, (1.39)

verifies equation (1.29). Thus, equation (1.35) can be applied to this vector to obtain

〈0,+|t`,+〉Rj,+(I ⊗ T+)|0,+〉 ⊗ |t`,+〉 = 〈j,+|t`,+〉|0,+〉 ⊗ |t`,+〉, (1.40)

and

〈1,−|t`,−〉Rj,−(I ⊗ T−)|1,−〉 ⊗ |t`,−〉 = 〈j + 1,−|t`,−〉|1,−〉 ⊗ |t`,−〉. (1.41)

So, one concludes that

Rj,+(t`,+) =
〈j,+|t`,+〉
〈0,+|t`,+〉

, Rj,−(t`,−) =
〈j + 1,−|t`,−〉
〈1,−|t`,−〉

. (1.42)

Since |t`,±〉 is an eigenvector of Q±, one can check that the polynomials

P+ =

L∑
j=0

〈0,+|Q+|j,+〉Rj,+, P− =

L−1∑
j=0

〈1,−|Q−|j + 1,−〉Rj,− (1.43)

verify respectively

P+(t`,+) =

L∑
j=0

〈0,+|Q+|j,+〉
〈j,+|t`,+〉
〈0,+|t`,+〉

=
〈0,+|Q+|t`,+〉
〈0,+|t`,+〉

= q`,+, (1.44)

for ` ∈ {0, 1, . . . , L}, and

P−(t`,−) =
L−1∑
j=0

〈1,−|Q−|j + 1,−〉
〈j + 1,−|t`,−〉
〈1,−|t`,−〉

=
〈1,−|Q−|t`,−〉
〈1,−|t`,−〉

= q`,−, (1.45)

for ` ∈ {0, 1, . . . , L− 1}. It also follows that

Q± = π±1 P±(T±). (1.46)

2 Bethe ansatz

Askey–Wilson algebra. The previous pairs of operators (A+, A
∗
+) or (A−, A

∗
−) satisfy the

following relations

A2
±A
∗
± − 2c(2)A±A

∗
±A± +A∗±A

2
± = 4s(2)2A∗± , (2.1)

(A∗±)2A± − 2c(2)A±A
∗
±A± +A±(A∗±)2 = 4s(2)2A± . (2.2)
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These relations define an algebra which is a particular case of the Askey–Wilson algebra ap-
pearing in the context of the eponymous polynomials [43] or in the Racah problem for Uq(sl2)
[27] (see e.g. [18] for a review). In the context of association schemes, this algebra corresponds
to the irreducible decomposition of the Terwilliger algebra associated to the 2n-gon.

It has been found to also appear naturally in the framework of the integrable systems
[2, 3, 4] as a realization of the reflection equation [37]. It has further been shown that it is
possible to diagonalize the Heun operators associated to the general Askey–Wilson algebra [5]
and to the particular case of the Lie algebra sl2 [9]. These diagonalizations rely on the modified
Bethe ansatz which has been developed to deal with quantum integrable models without U(1)
symmetry [7, 8].

In the following, we show how the Bethe ansatz can be used to diagonalize the Heun
operators T± associated to the algebra (2.1)-(2.2). Usually, the R-matrix formalism is much
called upon. However, we chose to employ here only the commutation relations (2.1)-(2.2)
even if the definitions below are inspired by the R-matrix formalism.

Dynamical operators. Let us introduce the following dynamical operators:

D±(u,m) =
1

s(2u)s(2m)

(
c(2m+ 1)A± − c(2u− 2m)A∗± −

{A±, A∗±}
4c(1)

+ 2c(2u)

)
, (2.3)

B±(u,m) =
1

s(2m)

(
c(1)A± − c(2u)A∗± +

s(2m)[A±, A
∗
±]

4s(1)
−

c(2m){A±, A∗±}
4c(1)

+ 2c(2u)c(2m)

)
,

where m is an integer and u ∈ C. The idea of dynamical operators has been introduced in
[6, 26] to study the XYZ model; it was then adapted to analyze the XXZ spin chain with
boundary fields that are not parallel [13].

These operators have nice properties. From the commutation relations (2.1)-(2.2), one can
show that the dynamical operators satisfy the relations:

B±(u,m)B±(v,m− 1) = B±(v,m)B±(u,m− 1) , (2.4)

D±(u,m)B±(v,m) = f(u, v)B±(v,m)D±(u,m− 1) (2.5)

+B±(u,m)
(
g(u, v,m)D±(v,m− 1) + g(u,−v,m)D±(−v,m− 1)

)
,

where

f(u, v) =
s(u+ v − 1)s(u− v − 1)

s(u+ v)s(u− v)
, g(u, v,m) =

s(1)s(2v − 1)s(2m+ v − u)

s(2m)s(2u)s(u− v)
. (2.6)

The Heun operators T± can be expressed in terms of the the dynamical operator D±(u,m)
for two different values of the parameter m = L and m = −L − 1. One gets correspondingly
the following explicit expressions:

T± = 2c(2u) + ∆(u)D±(u, L) + ∆(−u)D±(−u, L) , (2.7)

T± = 2c(2u) + ∆(1− u)D±(u,−L− 1) + ∆(1 + u)D±(−u,−L− 1) , (2.8)

where

∆(u) = c
(
u+ L−K − 1

2

)
c
(
u+ L+K +

1

2

)
. (2.9)
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Finally, these dynamical operators have nice action on the vectors |0,+〉 or |1,−〉. Indeed,
using (1.12) or (1.14), one obtains

D+(u,m)|0,+〉 = −2|0,+〉 − 1

s(2u)
B+(u,m)|0,+〉 , (2.10)

D−(u,m)|1,−〉 = 2
s(2− 2u)

s(2u)
|1,−〉 − s(m− 1)

s(m+ 1)s(2u)
B−(u,m)|1,−〉 . (2.11)

Bethe ansatz for T−. Let us consider the following vectors, called Bethe states,

V −(x) = B−(x1, L)B−(x2, L− 1) . . .B−(xL−2, 3)B−(xL−1, 2)|1,−〉 (2.12)

where x = {x1, . . . xL−1} are some parameters, called Bethe roots. Using relation (2.4), it is
easy to show that V −(x) does not depend on the order of the parameters xi. Noticing that
B−(x,m) has a tridiagonal action on the vectors {|j,−〉}, we deduce that

V −(x) ∈ spanC({|1,−〉, |2,−〉, . . . |L,−〉}) . (2.13)

which corresponds to π−1 F−. For different choices of the set x, one can expect that the
associated vector V −(x) are independent. Therefore, a basis of π−1 F− can be obtained from L
independent vectors V −(x). The next step consists in finding the set x such that V −(x) is an
eigenvector |t`,−〉 of T− (which, we recall, leaves π−1 F− stable).

The results of the previous paragraph permit to compute the action of D−(u, L) on V −(x).
Namely, after algebraic manipulations typical of the algebraic Bethe ansatz approach, one gets

D−(u, L)V −(x) = 2
s(2− 2u)

s(2u)

L−1∏
i=1

f(u, xi)V
−(x) (2.14)

+2
L−1∑
j=1

∑
ε=±1

s(2− 2εxj)

s(2εxj)
g(u, εxj , L)

L−1∏
i=1
i6=j

f(εxj , xi)V
−(u, x 6=j) ,

where V −(u, x 6=j) stands for V −(x) with xj replaced by u. Let us remark that we used relation
(2.11) with the particular value m = 1 for which the second term in the r.h.s. vanishes.

Then, using expression (2.7) of T−, one deduces its action on V −(x):

T−V −(x) =

(
2c(2u) + 2

∑
ε=±

∆(εu)
s(2− 2εu)

s(2εu)

L−1∏
i=1

f(εu, xi)

)
V −(x) (2.15)

+2s(1)

L−1∑
j=1

∑
ε=±1

∆(εxj)s(2− 2εxj)s(2εxj − 1)

s(u− xj)s(u+ xj)s(2εxj)

L−1∏
i=1
i6=j

f(εxj , xi)V
−(u, x 6=j) .

Finally, asking that the different coefficients in the sum over j in the second row of the previous
equation vanish, one gets the following equations for the Bethe roots x , for j = 1, . . . , L− 1,

∆(xj)s(2− 2xj)s(1− 2xj)

∆(−xj)s(2 + 2xj)s(1 + 2xj)
=

L−1∏
i=1
i6=j

s(xj − xi + 1)s(xj + xi + 1)

s(xj − xi − 1)s(xj + xi − 1)
. (2.16)
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These equations are called Bethe equations. For each solution of the Bethe equations, the
associated vector V −(x) become an eigenvector |t`,−〉 of T− with the eigenvalue

t`,−(u) = 2c(2u) + 2∆(u)
s(2− 2u)

s(2u)

L−1∏
i=1

f(u, xi)− 2∆(−u)
s(2 + 2u)

s(2u)

L−1∏
i=1

f(−u, xi) . (2.17)

At first glance, it seems that this eigenvalue depends on the parameter u. However, writing this
eigenvalue in terms of U = exp

(
iπu
2n

)
, we see that τ−(U) is a rational function w.r.t. U2 and

1/U2. We can show easily that all the residues at the apparent poles of this rational function
vanish using the Bethe equations satisfied by x. It proves that it is a polynomial w.r.t. U2

and 1/U2. Then, its asymptotic behavior for U →∞ is

t`,−(U) ∼
U→∞

U2 − U2 exp(iπL/n) exp(−iπ/n)

L−1∏
i=1

exp(−iπ/n) (2.18)

which actually goes to zero. A similar result holds for the asymptotic limit at 0 which proves
that τ−(u) does not depend on u, as expected, and is the eigenvalue of T−.

Second Bethe ansatz for T−. In the previous paragraph, relation (2.7) between T− and
D−(u, L) has been used. In this paragraph, we want to use relation (2.8) between T− and
D−(u,−L− 1). The Bethe states are given by

W−(y) = B−(y1,−L−1)B−(y2,−L−2) . . .B−(yL−2,−2L+2)B−(yL−1,−2L+1)|1,−〉 , (2.19)

where y = {y1, . . . , yL−1} is the set of Bethe roots in this case. The action of D−(u,−L − 1)
on W−(y) is computed as before:

D−(u,−L− 1)W−(y) = 2
s(2− 2u)

s(2u)

L−1∏
i=1

f(u, yi)W
−(y) (2.20)

+2

L−1∑
j=1

∑
ε=±1

s(2− 2εyj)

s(2εyj)
g(u, εyj ,−L− 1)

L−1∏
i=1
i6=j

f(εyj , yi)W
−(u, y 6=j)

− s(2L+ 1)s(4L)

s(2L− 1)s(2L+ 2)s(2u)
W−({y1, . . . , yL−1, u}) ,

where

W−({y1, . . . , yL−1, u}) = B−(y1,−L− 1) . . .B−(yL−1,−2L+ 1)B−(u,−2L)|1,−〉 . (2.21)

This relation is more complicated than the one of the previous case (2.14) since the action (2.11)
of D−(u,−2L) on |1,−〉 has now two terms. It is necessary to compute W−({y1, . . . , yL−1, u})
which is the crucial step of the modified algebraic Bethe ansatz. A formula has been conjectured
in [7] and proven in different cases in [16, 1, 17] to explain the inhomogeneous terms appearing
in the Bethe equations in [14, 15, 34]. One remarks that 〈L + 1,−|B−(x,−L − 1)|L,−〉 = 0.
Therefore W−({y1, . . . , yL−1, u}) are still in π−1 F− and can be expressed in terms of the L
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vectors W−(y) and W−(u, y 6=j). The unexpected fact in the context of the modified algebraic
Bethe ansatz is that this expression is simple. In the case treated here, one gets

W−({y1, . . . , yL})

=
2s(2L− 1)s(2L+ 1)

s(4L)

L∑
j=1

s(2yj(L+ 1))

s(2yj)

L∏
i=1
i6=j

1

4s(yi + yj)s(yi − yj)
W−({y1, . . . , yL} 6=j) . (2.22)

In the above formula we replace u by yL to shorten it. Then, the computations are similar to
the ones of the previous paragraph and the eigenvalues of T− are

t`,−(u) = 2c(2u) + 2∆(1− u)
s(2− 2u)

s(2u)

L−1∏
i=1

f(u, yi)− 2∆(1 + u)
s(2 + 2u)

s(2u)

L−1∏
i=1

f(−u, yi)

−2
s(2L+ 1)2s(2u(L+ 1))

s(2u)

L−1∏
i=1

1

4s(yi + u)s(yi − u)
, (2.23)

with the following Bethe equations

∆(1− yj)s(2− 2yj)s(1− 2yj)

∆(1 + yj)s(2 + 2yj)s(1 + 2yj)
=

L−1∏
i=1
i6=j

s(yj − yi + 1)s(yj + yi + 1)

s(yj − yi − 1)s(yj + yi − 1)
(2.24)

−s(2L+ 1)2s(2yj(L+ 1))s(2yj − 1)

s(2yj + 1)s(2 + 2yj)∆(1 + yj)

L−1∏
i=1

1

4s(yi − yj + 1)s(yi + yj − 1)
.

The second line in the expression (2.23) of the eigenvalues t`,−(u) and of the Bethe equations
(2.24) are referred as the inhomogeneous terms.

Bethe ansatz for T+. In this case, if we consider the expression (2.7) connecting T+ and
D+(u, L), the corresponding Bethe state is

B+(x0, L)B+(x1, L− 1) . . .B+(xL−2, 2)B+(xL−1, 1)|0,+〉 . (2.25)

There is one additional operator B+ in comparison with (2.12) since the dimension of the space
π+1 F+ is L + 1 in comparison to dim(π−1 F−) = L. Then, the computation of the action of
D+(u, L) on this state leads to the computation of D+(u, 0)|0,+〉. Unfortunately this term is
ill-defined (see the expression (2.3) with m = 0). Therefore, this Bethe state is not a good
candidate to be an eigenvalue of T+.

Let us now consider the expression (2.8) between T+ and D+(u,−L− 1) and the following
Bethe state

W+(z) = B+(z0,−L− 1)B+(z1,−L− 2) . . .B+(zL−2,−2L+ 1)B+(zL−1,−2L)|0,+〉 , (2.26)

with z = {z0, z1, . . . , zL−1}.
Proceeding along the lines of the previous paragraph, the eigenvalues of T+ are found to

be

t`,+(u) = 2c(2u)− 2∆(1− u)

L−1∏
i=0

f(u, zi)− 2∆(1 + u)

L−1∏
i=0

f(−u, zi)

−2
s(4L+ 2)s(2L+ 1)c(2u(L+ 1))

c(2L+ 1)

L−1∏
i=0

1

4s(zi + u)s(zi − u)
. (2.27)
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with the following Bethe equations

∆(1− zj)s(2zj − 1)

∆(1 + zj)s(2zj + 1)
=

L−1∏
i=0
i6=j

s(zj − zi + 1)s(zj + zi + 1)

s(zj − zi − 1)s(zj + zi − 1)
(2.28)

−s(4L+ 2)s(2L+ 1)c(2zj(L+ 1))s(2zj − 1)

c(2L+ 1)s(2zj + 1)∆(1 + zj)

L−1∏
i=0

1

4s(zi − zj + 1)s(zi + zj − 1)
.

For a given Bethe root z, the function W+(z) gives one of the L eigenfunction |t`,+〉 of T+.

3 Concluding remarks

Our objective was to demonstrate that the Bethe ansatz methods developed to study integrable
systems can be applied in time and band limiting problems. We have recalled the definition
of these problems in the special case of the discrete Fourier transform and have shown that
the associated time and band limiting operators could be expressed as polynomials of the
commuting matrices. These were recognized as algebraic Heun-Askey-Wilson operators and
diagonalized by Bethe ansatz. The result was an expression for the eigenvalues of these Heun
operators, and by extension for the spectrum of the time and band limiting operators, as
functions of the solutions of Bethe equations.

The present work opens the door for further researchs. There exist many different Heun
operators and their connection with integrable systems remains an interesting open question.
Integral operators, with kernel different from the sinc one studied in this paper, arise and
are studied in various domains. It would be interesting to generalize the work done here to
these kernels. There are also numerical and analytical methods developed in both contexts.
The comparison between these methods may improve, for example, the resolution of the Bethe
equation or speed up the reconstruction of a signal from its Fourier data.
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