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Abstract: Confocal Raman microscopy (CRM) has become a versatile technique that can be applied
routinely to monitor skin penetration of active molecules. In the present study, CRM coupled to
multivariate analysis (namely PLSR—partial least squares regression) is used for the quantitative
measurement of an active ingredient (AI) applied to isolated (ex vivo) human stratum corneum
(SC), using systematically varied doses of resorcinol, as model compound, and the performance is
quantified according to key figures of merit defined by regulatory bodies (ICH, FDA, and EMA).
A methodology is thus demonstrated to establish the limit of detection (LOD), precision, accuracy,
sensitivity (SEN), and selectivity (SEL) of the technique, and the performance according to these key
figures of merit is compared to that of similar established methodologies, based on studies available
in literature. First, principal components analysis (PCA) was used to examine the variability within
the spectral data set collected. Second, ratios calculated from the area under the curve (AUC) of
characteristic resorcinol and proteins/lipids bands (1400–1500 cm−1) were used to perform linear
regression analysis of the Raman spectra. Third, cross-validated PLSR analysis was applied to perform
quantitative analysis in the fingerprint region. The AUC results show clearly that the intensities of
Raman features in the spectra collected are linearly correlated to resorcinol concentrations in the SC
(R2 = 0.999) despite a heterogeneity in the distribution of the active molecule in the samples. The
Root Mean Square Error of Cross-Validation (RMSECV) (0.017 mg resorcinol/mg SC), The Root Mean
Square of Prediction (RMSEP) (0.015 mg resorcinol/mg SC), and R2 (0.971) demonstrate the reliability
of the linear regression constructed, enabling accurate quantification of resorcinol. Furthermore, the
results have enabled the determination, for the first time, of numerical criteria to estimate analytical
performances of CRM, including LOD, precision using bias corrected mean square error prediction
(BCMSEP), sensitivity, and selectivity, for quantification of the performance of the analytical technique.
This is one step further towards demonstrating that Raman spectroscopy complies with international
guidelines and to establishing the technique as a reference and approved tool for permeation studies.

Keywords: stratum corneum; high performance liquid chromatography; confocal Raman spectroscopy;
resorcinol; quantification
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1. Introduction

One of the most important functions of the skin is as a protective barrier preventing
excessive transepidermal water loss while protecting against external physical, chemical,
and biological aggressions. The outermost layer of the skin, the stratum corneum (SC), is
of particular interest, as it determines the effectiveness of this barrier function. A “bricks
and mortar” model is commonly used to describe the composition of the SC [1], the
corneocyte and corneodesmosome “bricks”, containing highly cross-linked proteins, being
held together by an intercellular lipidic matrix consisting of free fatty acids, cholesterol,
and ceramides, acting as the ‘mortar’. This specific biochemical architecture of proteins,
lipids, and water provides an efficient barrier function [2], which limits the penetration and
permeation of exogenous agents [3].

As a direct consequence, active substances (such as active cosmetic ingredient: ACI)
and drugs (active pharmaceutical ingredient: API) released from topically applied formula-
tions can also face limited absorption and permeation. It is commonly accepted that the
effectiveness of a product is directly correlated to the ability of the ACI or API to penetrate
into, and permeate through the skin [4]. Therefore, pharmaceutical and cosmetic industries
are driven to develop new formulations, integrating new active molecules into galenic
forms with appropriate stability and sensorial properties, but also enabling release and pen-
etration of active ingredients (AI) [5]. Topical formulations, like emulsions or gels, consist
of multicomponent mixtures with specific galenic properties. The physicochemical proper-
ties of the active ingredients, the rheology of the formulation, the hydrophilic–lipophilic
balance and particle size for emulsions are critical parameters which strongly impact on the
interaction of the product and the skin, and hence the penetration and permeation [5]. Ac-
cordingly, for the development of new formulations, it is necessary to carry out comparative
studies to evaluate the efficiency of skin penetration and permeation of an AI [6].

To study skin penetration and permeation ex vivo, data are commonly obtained using
Franz diffusion cells coupled to a reference analytical method such as high performance
liquid chromatography (HPLC) or UV spectrophotometry [7]. This approach is considered
the gold standard, recommended in international guidelines such as the OECD Guideline
428 and 427 for the testing of chemicals, skin absorption: in vivo and in vitro method [3], the
Scientific Committee on Consumer Safety (SCCS) for basic criteria for the in vitro assessment
of dermal absorption of cosmetic ingredients [8], and the EMA draft guideline on quality
and equivalence of topical products [9]. For this purpose, human biopsies/explants are
used to measure the partitioning of an AI into and diffusion within the skin, depending on
its physicochemical properties.

In vivo assessment requires more or less invasive protocols to assess the penetration
depth of the AI. The so-called tape stripping (TS) approach is widely used to investigate
skin penetration of active ingredients into viable tissues [10–12]. The method has many
limitations, however, including the variability associated with the pressure applied to the
tape, the time of contact, and the velocity of removing the tape, leading to uncertainties in
the depth of penetration estimated [13].

Microdialysis (MD) is used in dermatological research as an in vivo tool that requires
the insertion of a small catheter under the skin to enable measurement of percutaneous
drug penetration [10]. This method is a versatile sampling technique that can be used to
recover soluble endogenous and exogenous molecules from the extracellular compartment
of human skin. MD can be applied in both clinical and preclinical settings [14]. However,
the main disadvantage is mechanical stress from the probe that can alter tissue morphology
and therefore it can be considered minimally invasive, at best. More recently, open-flow
microperfusion (dOFM) has been used as an alternative to MD for its potential for bioe-
quivalence and bioavailability assessment of topical products [15]. However, TS and other
methods such as MD and dOFM that are minimally invasive lead to local irritation and
discomfort for volunteers.

There is an increasing demand for alternative methods to assess the penetration of
active ingredients, ultimately in vivo. Since the pioneering work of Caspers et al. in the
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1990s, demonstrating the use of Raman spectroscopy for the molecular analysis of skin
structure and composition [16], the technique has been widely documented for its potential
in the medical field as a tool for investigation of physio-pathological processes, diagnosis
of different skin lesions (atopic skin, cancers, actinic keratosis, etc.) [17–19]; in the pharma-
ceutical and cosmetic fields to investigate the penetration of active molecules [20–25]; or to
study the effects of UV and pollutants on skin [26]. Confocal Raman microscopy (CRM) is
now a versatile technique that can be applied routinely to skin cross sections in vitro, ex
vivo on biopsies and in vivo. Operating in confocal conditions, the measurements can be
performed from the surface to the deeper layers of skin, non-invasively, to yield information
about the water content [16,27], the thickness of skin layers [21,28], study the impact of
emulsifiers and formulations on intercellular lipids of stratum corneum [29], or to determine
the diffusion of active ingredients in the skin [30]. However, Raman spectroscopy has not
yet been fully established as a tool for absolute quantification ex vivo or in vivo.

Increasingly, comparative studies of CRM and conventional methods such as TS
coupled to HPLC are conducted to highlight the complementarity of the techniques in
monitoring AI diffusion into the skin and determining semi-quantitative penetration and
permeation profiles [21]. Iliopoulos et al. have carried out a comparative study between
in vitro permeation data using Franz cells and in vivo Raman data on niacinamide (NIA).
The results demonstrated a good correlation between in vitro cumulative permeation and
in vivo skin uptake at −2 µm (R2 = 0.98) [31]. Caspers et al. have reported a promising
mathematical method for in vivo quantification in the SC, relying on fitting of data collected
from skin with Raman spectra collected for reference compounds. This approach was no-
tably applied to calculate the flux of diffusion for trans-retinol after topical applications [32].

Despite the flourish of literature in recent years, few studies have directly targeted the
demonstration of analytical performances proscribed by international regulatory authorities
such as the US Food and Drug Administration (FDA) [33], the European Medicines Agency
(EMA) [34], or the International Council for Harmonisation (ICH) [35], which provide
statistical criteria to numerically evaluate a method. Franzen et al. proposed a proof of
concept correlating the Raman signal of a model drug with its controlled amount of caffeine
in an isolated human SC, determined by CRM and HPLC [36], although without any further
insights or discussion about capabilities of the technique for quantification. In a follow-up
study, Alonso et al. correlated Raman signal ratios and caffeine concentration obtained
by HPLC, but in porcine skin, hence limiting applicability to human skin penetration
studies [37].

Therefore, in the present study, CRM coupled with multivariate analysis (namely
PLSR—partial least squares regression) is used for the quantitative measurement of resorci-
nol, selected as a model compound, applied to isolated (ex vivo) human SC at systemically
varied doses. The performance is quantified according to key figures of merit defined
by the regulatory bodies ICH, FDA, and EMA. A methodology is thus demonstrated to
establish the limit of detection (LOD), precision, accuracy, sensitivity (SEN), and selectivity
(SEL) of the technique, and the performance according to these key figures of merit are
compared to similar established methodologies, based on studies available in literature.

2. Material and Methods
2.1. Chemicals

Resorcinol was purchased from Sigma Aldrich (Saint-Quentin-Fallavier, France),
methanol and phosphoric acid from Thermo Fisher Scientific (Iiilkrich-Graffenstaden,
France), and phosphate-buffered saline (PBS) from Hyclone Laboratories (Logan, UT,
USA). Ultra-pure water was obtained using a Millipore MilliQ system (Merck Millipore,
Molsheim, France).

2.2. Isolated Human Stratum Corneum

Stratum corneum (SC) discs, 12 mm in diameter, were purchased from Biopredic
international (Rennes, France). The SC was collected during abdominal skin surgery from
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a 53-year-old Caucasian female according to the French law L. 1245 CSP “product and
element of human body taken during surgical procedure and used for scientific research”.
The SC were shipped frozen and were stored at −20 ◦C until the day of the experiment.

2.3. Preparation of Infused SC Samples

On the day of the study, SC were immersed in resorcinol solutions prepared in PBS.
Firstly, SC discs were thawed at room temperature for 1 h and weighed. The SC discs were
then completely immersed in 4 mL of resorcinol solutions in Petri dishes for 24 h at room
temperature, to enable complete infusion until equilibrium.

Samples for HPLC: Solutions of 4, 10 and 25 g·L−1 resorcinol in PBS were used. For
each concentration, 3 SC samples were prepared. After infusion for 24 h, SC were gently
removed from resorcinol solutions with tweezers and placed in 2 mL of methanol for 8 h,
for extraction of resorcinol, at which point the supernatant was analysed by HPLC.

Samples for Raman spectroscopy: A range of resorcinol solutions in PBS was prepared for
use with SC samples. Concentrations of 0.5, 1, 2.5, 5, 10, 25, and 50 g·L−1 are respectively
identified as C2, C3, C4, C5, C6, C7, and C8. An SC negative control sample immersed
in PBS was additionally prepared (C1). After 24 h immersion, SC discs were collected
and deposited on calcium fluoride (CaF2) substrates, dried with cotton-tips to remove any
excess resorcinol solution on the surface of the SC samples, and then air dried at room
temperature before analysis by CRM as described in Figure 1.
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2.4. HPLC Analysis

HPLC analysis was performed using an Ultimate 3000 (Thermo Fisher Scientific,
Voisins-le-Bretonneux, France) piloted by Chromeleon 7.1 software. The system was
equipped with a DAD UV ultimate 3000 detector and an C18 column with the particle size
of 5 µm and length of 4.6 × 150 mm (Interchim, Montluçon, France). The temperature
of the column was adjusted to 25 ◦C. Absorbance was recorded at 275 nm for detection
of resorcinol. The analysis was performed in isocratic mode using a methanol/water
(25%/75%) mobile phase supplemented with phosphoric acid at 10 µM. A 10 µL sample of
each experimental solution was injected and a flow rate of 1 mL·min−1 was applied for
6 min runs per analysis.

Calibration curve: To construct the calibration plot, a stock solution of resorcinol was
prepared at concentration 1 mg·mL−1 in PBS, and serial dilutions were used to obtain
the following standard solutions: 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, and 0.0001 mg·mL−1

for analysis by HPLC. The observed retention time was 4.14 min for resorcinol. For each
concentration, the area under the peak was calculated and used for the calibration curve [38].
Each day, calibration curves were done in triplicate.

2.5. Confocal Raman Microscopy Analysis

CRM analysis was performed using an Alpha300R Raman microscope (WiTec, Ulm,
Germany) equipped with 532 nm laser source. To avoid photo damage, the power was set to
10 mW at the samples, corresponding to a laser density of 7.54 mW µm−2. A 600 lines/mm
grating was selected, and the back scattered light was collected on a back illuminated deep
depletion CCD detector over the spectral range 0–3600 cm−1 with a spectral resolution
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~5 cm−1. Spectra were collected using a 20 × objective (Zeiss EC-Epiplan-NEOFLUAR,
NA = 0.5, spot size ~1.3 µm) and the acquisition time was set to 30 s × 2 accumulations.
For each disc, 20 maps were performed across the SC, to account for spatial heterogeneity.
For each map, 9 spectra (3-by-3) were collected using a 4 µm step size, resulting in 180
spectra recorded per sample and a total of 1440 spectra for the study. The instrument
is calibrated daily using a 2-step procedure. Firstly, the True Cal function of Project 5
(WITec, Ulm, Germany) is used. It is an automatic multipoint calibration routine performed
with a mercury–argon (HgAr) light source integrated in the Raman microscope. Secondly,
prior to data acquisition, a verification was done using the peak at 520.7 cm−1 from a
silicon substrate.

2.6. Data Analysis

Data analysis was performed using Matlab® (MathWorks, Natick, MA, USA). The
spectra were cut between 400 and 1800 cm−1 to refine the analysis to the finger-print
region. A Lieber baseline correction was applied [39], using a linear correction function
with 10 iterations, followed by a unit vector normalisation.

Principal Components Analysis (PCA): PCA is an unsupervised multivariate analysis
technique used to evaluate the variability and to simplify a complex data set of multiple
dimensions. It allows the reduction of the number of variables in a multidimensional data
set, although it retains most of the variation within the data set. The other advantage of
this method is the derivation of PC loadings which represent the variance of each variable
(wavenumber) for a given PC, hence reflecting the variations in the chemical components
contributing to the spectra [40]. In the scatter plot, the first principal component (PC1)
accounts for the highest explained variance. Moreover, each dot in the scatterplot, corre-
sponding to a spectrum, can be located in space using the coordinates defined by the scores
along both PC1 and PC2. Therefore, similar spectra tend to be gathered together with
relatively close PC scores while the presence of significant variations in spectral features
will result in higher distances between spectra. The data collected at a given concentrations
are rather grouped in a so-called cluster.

Area under the curve (AUC): The ratio between the AUC 724–794 cm−1 corresponding
to aromatic ring band of resorcinol and the AUC 1400–1500 cm−1 corresponding to C-H
of lipids and proteins band was calculated. The value of the band ratio found in the SC
control sample C1 (unexposed to resorcinol) was subtracted from all other band ratios
calculated from samples C2 to C8.

Partial least squares regression (PLSR): PLSR has been applied to construct a linear
regression model. The data set was divided into the training set (3/4 of the Raman maps
per sample) and the test set (the remaining 1/4 of Raman maps for each sample). The test
set is used as unknown samples to determine the accuracy of the analysis. The training
set was further separated in the calibration set (3/4 of samples) and validation sets (1/4 of
samples). A 100-fold iteration was implemented to evaluate the stability of the calibration
model with multiple random combinations of calibration/validation sets. The validation
set is used to select the best number of latent variables, independently of the test set.
Notably, in all iterations, the models were tested with the same 1/4 of the data, identified
as the test set, i.e., the unknown samples to be determined. The results are presented
as predicted concentrations regressed against observed concentrations. The output of
this model gives information to evaluate the PLSR using the linearity of the regression
between the measured and predicted concentrations (R2), root mean square error of cross
validation (RMSECV), calculated from the training datasets and the root mean square error
of prediction (RMSEP), calculated from the test set. The regression vectors were also used
to visualise the variables (wavenumbers) used by the PLSR algorithm that are represented
under regression coefficients.

2.7. Analytical Performance Figures of Merit

The following figures of merit for performance were used in this study:
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Linearity: The correlation coefficient (R2) is usually used to represent the linearity of a
model. For the band ratio of AUC, the R2 can be used to evaluate the linearity between the
intensity of the instrumental response (peak intensity) as a function of concentration. For
PLSR analysis, the R2 reflects the linearity between the predicted concentrations regressed
against the observed concentration. For both, a value as close as possible to 1 is expected, as
a gauge of the reliability of fitting for the linear model. Additionally, for PLSR, the equation
of the regression line is expected to display a slope close to 1.

Precision and accuracy: The precision is the closeness of agreement among a series of
measurements, while the accuracy is the degree of closeness of the measurement between
calculated and predicted values. Both were calculated following ICH guides lines [35].

The accuracy from a linear regression can be expressed using the root mean square
error (RMSE) (1) [35]:

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(1)

where yi is the measured values (i.e., prepared), ŷi is the predicted values, and n is the
number of samples.

For PLSR, the RMSE is given as the RMSECV or RMSEP calculated respectively for
the calibration (training set) and predictive (test set) models. Moreover, the precision of
the model can be estimated using bias corrected mean error square prediction (BCMSEP)
following Equation (2) [41]. A low BCMSEP corresponds to high model precision.

BCMSEP =
∑n

i=1(yi − ŷi)
2 − [∑n

i=1(yi − ŷi)]
2/n

n− 1
(2)

Limit of detection (LOD): The IUPAC guidelines define the limit of detection (LOD)
as the lowest quantity of analyte that can be distinguished from the blank (absence of
analyte) [42]. According to available recommendations from regulatory authorities such as
FDA, EMA, and ICH, the LOD from univariate analysis can be calculated as follows:

LODAUC = 3.3 · SC1

a
(3)

where LODAUC is the lowest detectable concentration calculated, 3.3 is the Student’s t-test
value obtained from t-test using a 5% probability and a is the slope of the linear regression
model. SC1 is defined as the standard deviation of the response and can be determined
using two approaches. Firstly, SC1 can be the standard deviation of a blank sample, for
instance sample C1. Secondly, SC1 can be defined as the residual standard deviation of a
regression line, i.e., the RMSE. These methods of calculation all estimate deviation in y,
i.e., the intensity of the signal measured. In Equation (3), SC1 is divided by the slope to
convert the value of LOD from Raman intensity to concentrations. The calculation can be
extended to PLSR results, by calculating LODPLSR as follows:

LODPLSR = 3.3 · RMSECV (4)

Similar to SC1 in Equation (3), RMSE of cross validation (RMSECV) calculated from
the training datasets can be determined either including all concentrations C1-C8 analysed
or only calculated from the lowest concentration analysed (C1).

Sensitivity: According to ICH guidelines, the sensitivity is the lowest analyte concentra-
tion that can be measured with acceptable accuracy and precision [35]. The sensitivity was
calculated based on the method of Li et al. [43], and the net analyte signal (NAS) developed
by Lorber et al. [44], following Equations (5) and (6):

SENi =
NASi

yi
(5)
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NASi = (xi·b)·(bT·b)−1·bT (6)

The sensitivity (SEN) is reported as a single value averaged for all concentrations
analysed, where xi is a sample spectrum, b is a PLSR coefficient column vector, bT is its
transposed vector, and yi is the measured concentration of resorcinol in the SC.

Selectivity: Selectivity is a measurement of the ability of a method to determine a partic-
ular compound in the analysed matrices without interference from other components [35].
The selectivity was calculated based on the method of Li et al. [43], following Equation (7).

SELi =
||NASi||
||xi||

(7)

The selectivity (SEL) is reported as an average for all concentrations analysed. With
the NASi vector and xi the sample spectrum.

Ratio of performance deviation (RPD): the RPD is the ratio between the standard de-
viation of measured values from the calibration set, divided by the RMSEP. The higher
the RPD value is, the better the performance of model. Values higher than 2.5 are accept-
able, values > 5 are adequate for quality control, and values > 10 are considered to be
excellent [45]. It is calculated as follows.

RPD =
SCi

RMSEP
(8)

SCi is the standard deviation for measured values of each concentration from C1 to C8.
Regression coefficients: Regression coefficients were also used to visualise the variables

(wavenumbers) used by the PLSR algorithm. They can be interpreted similarly to spectra
and provide a visual representation of the molecular selectivity.

3. Results
3.1. Validation of the Protocol for Sample Preparation

For the purpose of the study, a protocol that delivers systematically varying mass of
resorcinol in SC was developed. Figure 2 shows a plot of the mass (mg) of resorcinol per
mass (mg) of SC, as determined by HPLC, regressed against resorcinol concentrations of
solutions (g·L−1) used as immersion medium. The equation Y = 0.0051·X + 0.0027 and
the R2 value 0.998 confirm the proportionality achieved. The analysis validates that SC
samples immersed in resorcinol solutions for 24 h reach an equilibrium and that there is
a linear relationship between the concentrations of solutions used to immerse SC discs
and the resulting concentration in tissues, for instance mg resorcinol/mg SC. Therefore,
the linear regression presented in Figure 2 is used as a calibration curve to determine
the concentration of resorcinol in SC samples analysed by CRM. Table 1 summarises
the concentrations obtained that are used for the subsequent quantitative analysis using
univariate and multivariate methods.

3.2. Spectral Characterisation of Human Stratum Corneum and Resorcinol by Confocal Raman
Microscopy (CRM)

Figure 3A displays the mean spectrum of control SC samples (i.e., C1). The main
characteristic features observed originate from the lipids, nucleic acids, and proteins found
in human skin [27]. The broad band at 1655 cm−1 is assigned to amide I of proteins (N–C=O
deformation). The intense band between 1440 and 1469 cm−1 is assigned to combined
contributions of C–H scissoring from proteins and lipids. However, the position of the
maximum at 1444 cm−1 and the presence of a shoulder at 1465 cm−1 suggests a high
lipid content [46,47]. This is confirmed by the bands found at 1303 cm−1 and 1750 cm−1,
respectively assigned to CH2 deformation and C–O–O elongation in lipids [46]. The sharp
peak at 1005 cm−1 is typically found in biological samples and assigned to the ring breathing
(C–C=C deformation) of aromatic acids (phenylalanine) [47,48]. Table 2 provides a list of
bands reported in the literature for the SC [46–49].
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Figure 2. Linear regression of concentration in SC against resorcinol concentrations used as
immersion medium.

Table 1. Calculated reference concentrations in SC for samples analysed by CRM.

Applied Concentration
[g·L−1]

Concentration in SC
[mg resorcinol/mg SC]

C1 0 0

C2 0.5 0.006

C3 1 0.008

C4 2.5 0.016

C5 5 0.028

C6 10 0.054

C7 25 0.130

C8 50 0.257
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Table 2. Raman band assignments in SC [46–49].

Raman Shift (cm−1) Assignment

614 Phenylalanine ring

646 Tyrosine ring, ν C–S

702 ν C–S gauche of cysteine cholesterol

751 Aromatic ring puckering

864 Proline, RNA

898 Tryptophan

939 ρ CH3 terminal, m CC a helix (secondary structure), phospholipids

1005 Symmetric ring breathing phenylalanine

1033 C–H Phenylalanine

1067 Lipids: skeletal trans conformation ceramides; ν

1130 Lipids: hydrocarbon chain, trans conformation ceramides

1177 CH Tyrosine, phenylalanine

1303 Amide III, CH2 phospholipids

1444 δ CH proteins and lipids

1524 –C=C– carotenoids

1655 Amide I
ν: stretch; δ: deformation; ρ: rocking.

The Raman spectrum collected from resorcinol (Figure 3B) displays fewer sharp
bands. Notably, the strongest features found are assigned to aromatic ring deformation at
532 cm−1, C–C stretching of the aromatic ring at 741 cm−1 and 1001 cm−1, O–H deformation
at 1314 cm−1, and C–C stretching at 1608 cm−1. Further weaker features are assigned to
aromatic ring twisting at 617 cm−1, C–C of aromatic ring elongation at 1086 cm−1, and
C–H in plane bending of the aromatic ring at 1186 cm−1 [50].

Figure 4 shows the mean Raman spectra corresponding to control SC (C1) and SC
infused with resorcinol solutions at different concentration (C2 to C8) for 8 h. Raman spectra
from immersed SC show that specific bands of resorcinol increase in the SC according to
the concentration of resorcinol solutions, most evident for the bands at 532 cm−1, 610 cm−1,
and 741 cm−1, which are in a spectral region in which strong features from skin constituents
are absent. Vibrational modes like the ring breathing (C–C=C deformation) of aromatic
acids can be shared between SC and resorcinol, although the peak positions from sample C1
to C8 remain specific to the chemical composition. Notably, the peak observed at 1005 cm−1

in the control sample (C1) gradually shifts to 1001 cm−1 as the concentration of resorcinol
increases (C2–C8), also coupled to a significant increase of the band intensity. This is
also observed for other features from resorcinol at 1086 cm−1, 1186 cm−1, 1314 cm−1, and
1608 cm−1 that display variations in positions and intensities that can also be correlated
with the variations in resorcinol concentration in SC. Although they overlap with bands
arising from the strong contributions of endogenous proteins and lipids in this spectral
range of the fingerprint region, when the concentration of the resorcinol in the tissue
increases, it gradually dominates the spectral signatures collected (C8).

3.3. Data Exploration by Principal Component Analysis (PCA)

The scatter plot in Figure 5 shows the distribution of data along PC1 (82.67% of the
explained variance) and PC2 (6.20% of the explained variance). Along PC1, data are
organised according to the concentration of resorcinol in SC samples starting from left with
C8 (brown dot, 0.257 mg resorcinol/mg SC) to the right with C0 (red dots, control C0).
Loading 1, shown in Figure 6A, highlights that PC1 reflects spectral variations specific to
resorcinol. It is clearly observed that negative peaks of the loading 1 at 532 cm−1, 617 cm−1,
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741 cm−1, 1001 cm−1, 1086 cm−1, 1186 cm−1, 1314 cm−1, and 1608 cm−1 match with peaks
identified from the pure compound (Figure 6A,C—dotted lines). Interestingly, weaker
features of resorcinol, overlapping with SC constituents at 617 cm−1, 1086 cm−1, 1186 cm−1,
and 1314 cm−1 (Figure 3), are observed in the loading of PC1, indicating that they also
contribute to the variance of the data along PC1. The positive features are assigned to
biochemical constituents of the SC (Figure 6B) which are listed in Table 2.
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3.4. Data Analysis Using Area Under the Curve 

Figure 5. Scatter plot for the first two components obtained from PCA. Red is Raman spectra
of control SC (C1), green is C2—0.006 mg resorcinol/mg SC, blue C3—0.008 mg resorcinol/mg
SC, yellow C4—0.016 mg resorcinol/mg SC, black is C5—0.028 mg resorcinol/mg SC, magenta is
C6—0.054 in turquoise is C7—0.130 mg resorcinol/mg SC, and brown is C8—0.257 mg resorcinol/mg SC.
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PCA is a powerful tool to illustrate the spectral variability and detect subtle modifi-
cations in features. While PC1 captures the systematic variability of the samples infused
with different AI concentrations, it also indicates a degree of intra-sample variability. Skin
is a complex biological matrix, and it can be anticipated that the distribution of resorcinol
across the SC would display a level of heterogeneity, inherent in biological systems which
are heterogeneous by nature. The heterogeneous structure of the corneocytes embedded in
the lipid matrix of the SC results in an uneven distribution of the hydrophilic resorcinol
(log KOW = 0.78, octanol/water partition coefficient [51]). Although the data have been
recorded with a 20 × objective to increase the spot size to ~1.3 µm, it is natural to observe
such spectral variation. Indeed, the purpose of the study is the calculation of the analytical
performances specifically for quantification in the SC. Therefore, the variability linked to
biochemical properties is encompassed within the data collected.

The loading of PC2, shown in Figure 6B, reflects the further variability of biological
heterogeneity specific to SC. The most intense and positive peaks, observed at 1303 cm−1,
1444 cm−1, 1655 cm−1, and 1750 cm−1, correspond to features of SC (Figure 3A). It is seen
in Figure 5 that the distribution along PC2 is consistent for all concentrations and that all
the clusters are aligned, with no possible discrimination along this principal component.
Therefore, the variability along the second principal component, PC2, is not related to
resorcinol (Figure 6B), but represents intra-sample biological variability.

3.4. Data Analysis Using Area under the Curve

Figure 7 shows the linear regression constructed using the integrated band ratio of
AUC of the feature of SC (1400–1500 cm−1) to that of resorcinol (724–794 cm−1). The
regression has a linearity characterised by a value of R2 = 0.999. The proportionality
between the band ratio calculated from Raman spectra and the concentration of resorcinol
in SC samples confirms the suitability of the immersion setup as an in vitro model that can
be used to simulate different levels of diffusion within the skin tissues. The variations in
intensities for features of resorcinol in Raman spectra linearly correlates with the content
expressed as mg resorcinol/mg SC. The error bars, representing the standard deviation for
each concentration, clearly highlight the spectral variability in the data sets, as observed
previously with PCA (Figure 5). The RMSE calculated from Figure 7 was found to be
0.011 mg resorcinol/mg SC. According to Equation (1), the difference between yi, the
measured values (i.e., prepared), and ŷi, the predicted values, is taken into account, and
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therefore the results represent the performances of Raman spectroscopy in the SC, taking
into account the biological and biochemical heterogeneities.
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Figure 7. Band ratio of the AUC of the C–C band of the aromatic resorcinol ring [724–794 cm−1] and
the C–H band of protein/lipids of the SC [1400–1500 cm−1] regressed against resorcinol content in
SC expressed as mg resorcinol/mg SC.

The limit of detection (LOD) is one of the most important key figures of merit to be de-
termined to evaluate analytical methods, as it depends on both the precision and sensitivity
of the method [52,53]. According to the definition of the International Standardization Or-
ganization (ISO), adopted by the International Union of Pure Applied Chemistry (IUPAC),
the LOD indicates the lowest quantity of an analyte which can be distinguished from the
absence of the analyte within a stated confidence limit [54]. According to Equation (3), the
LODAUC can differ depending on the determination of the parameter SC1.

When SC1 is determined as the standard deviation from blank samples, for instance
sample C1, SC1 = 0.016 mg resorcinol/mg SC and the LODAUC = 0.017 mg resorcinol/mg SC.
Alternatively, when SC1 is determined as the residual standard deviation (i.e., RMSE) of the
regression line from Figure 7, SC1 = 0.011 mg resorcinol/mg SC and LODAUC = 0.012 mg
resorcinol/mg SC. Although similar, the LODAUC value calculated from the blank sample is
1.4 times higher than the LODAUC value using the RMSE. While AUC is a rapid approach to
visualise variations in data sets, the calculation can be influenced by residual contribution
from the SC, notably for the resorcinol band (724–794 cm−1). Multivariate methods of
determining the LOD, using the full range (for instance the fingerprint region) may be
more appropriate to delivery more specific and accurate figures of merits describing the
analytical performances of Raman spectroscopy. To this end, partial least squares regression
(PLSR) was applied to the data set.

3.5. Data Analysis Using Partial Least Squares Regression (PLSR)

PLSR is the most widely used multivariate method to perform quantitative analysis
of spectral data sets [43,55,56]. The first step is to construct the predictive model using
a training set corresponding to 3/4 of the maps analysed for each SC sample. A cross
validation was applied using 2/3 of the data from the training set used as the calibration set
and the remaining 1/3 of the dataset as the validation set. Figure 8 displays the RMSECV as
a function of number of latent variables (LV). There is a slight decrease in the RMSECV for
the three first LV, whereafter the overlapping errors bars suggests the improvement in the
accuracy of the model is not significant. Therefore, it was found preferable to select n = 3
for the LV to avoid introducing noise or interferences in the calibration model. The PLSR
plot for the cross validation, i.e., predicted concentrations in SC samples regressed against
the calculated (reference) concentrations, is presented in Figure 9. For each concentration,
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C1–C8, results are provided as mean predicted concentration and errors bars represent
standard deviations. The linear regression gives an equation Y = 0.957·X + 0.003 and
R2 = 0.975. The slope close to 1 suggests a good correlation between prepared and predicted
concentrations is observed. The R2 inferior to 0.99 is due to the large error bars that are
linked to the intra-sample heterogeneity. The value of RMSECV = 0.017 mg resorcinol/mg
SC corresponds to 13.2% of the median concentration of the range studied. The regression
coefficient (Figure 10) highlights the spectral characteristics used for the construction of
the quantitative model using PLSR. It is clearly observed that intense positive features
at 532 cm−1, 617 cm−1, 741 cm−1, 1001 cm−1, 1086 cm−1, 1186 cm−1, 1314 cm−1, and
1608 cm−1 seen in Figure 10 match well with resorcinol bands (see Figure 3B). Negative
features at 1655 cm−1 and 1444 cm−1 are characteristic of the biochemical constituents
found in the SC (Table 2).
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The second step of PLSR is to evaluate the quantitative performances of the PLSR
model with a test set. For this purpose, 1/4 of the Raman maps analysed for each SC
sample was kept independent and projected in the predictive models as unknown samples
to be determined. As described in Section 2.3, the samples in the test set are also prepared
by immersion and hence their concentration is known; these values are not used during
the training of PLSR model in order not to bias the analysis, but rather at the later stage
to assess the performance of the model based on the RMSEP and R2. The PLSR plot
obtained from the test set is presented in Figure 11. The linear regression gives an equation
Y = 1.009·X + 0.003 and a R2 = 0.971. The RMSEP = 0.015 mg resorcinol/mg SC corresponds
to 11.67% compared to the median concentration of the range studied.

Molecules 2022, 26, x FOR PEER REVIEW 15 of 20 
 

 

 

Figure 11. PLSR plot for the test set. Dots are mean predicted concentration and errors bars represent 

the standard deviation. 

While RMECV, RMSEP, and the respective R2 are commonly used to interpret PLSR 

outcomes, additional figures of merit referred to in guidelines and the literature are avail-

able to evaluate statistically the performance of an analytical technique. Multivariate data 

analysis generates more complex modes to interpret especially for data collected from bi-

ological systems like SC, because the data mining is performed using all wavenumbers 

from a given spectral range (for instance fingerprint region), hence including more varia-

bles in the calculations [52,57,58]. 

To enable comparison with results obtained from AUC in the previous section,  

LODPLSR was determined using the RMSECV from the blank sample C1 (LODPLSR = 0.023 

mg resorcinol/mg SC) and using the RMSECV including concentrations C1–C8 (LODPLSR 

= 0.06 mg resorcinol/mg SC). LODPLSR using the RMSECV, including all concentrations, is 

2.6 times higher compared to the LODPLSR using the RMSECV from the blank sample C1. 

This difference can be simply explained by the origin of the errors accounted for. For the 

blank sample, C1, the variability in Raman spectra collected is solely attributed to biolog-

ical heterogeneity, i.e., variations mostly due to proteins/lipids and other skin constituents 

contributing to the data collected. However, for C2–C8, in addition to the biological het-

erogeneity, there is the heterogeneity of resorcinol distribution across the SC (see PCA 

scatter plot in Figure 5). This observation is confirmed in Figure 7 by the increasing stand-

ard deviation from rationed AUC as a function of concentration. Therefore, the LODPLSR = 

0.06 mg resorcinol/mg SC, incorporating all sources of errors in the calculation, better re-

flects the performance of Raman spectroscopy applied to the quantification of an active 

molecule in a complex biological system. Furthermore, the LODAUC = 0.012 to 0.017 mg 

resorcinol/mg SC is ≈3.5 times lower than LODPLSR. The difference can be explained by 

PLSR being more challenging to the data due to the three-way splitting into calibration, 

validation, and test sets. 

PLSR results can also be assessed according to various statistical criteria, described 

in Section 2, including ratio of performance deviation (RPD), precision (BCMSEP), sensi-

tivity (SEN), and selectivity (SEL) (Table 3). The value of RPD = 8.112, that is superior to 

5, indicates a good model performance, while the BCMSEP value of 5.15 ×·10−5 mg resor-

cinol/mg SC, representing 0.04% of the range of concentration studied, highlights the po-

tential of Raman spectroscopy to accurately determine the amount of resorcinol in the 

skin, over the range extending from 0.006 mg resorcinol/mg SC to 0.257 mg resorcinol/mg 

SC. The sensitivity (SEN) is a representation of the lowest analyte concentration that can 

Figure 11. PLSR plot for the test set. Dots are mean predicted concentration and errors bars represent
the standard deviation.

While RMECV, RMSEP, and the respective R2 are commonly used to interpret PLSR
outcomes, additional figures of merit referred to in guidelines and the literature are available
to evaluate statistically the performance of an analytical technique. Multivariate data
analysis generates more complex modes to interpret especially for data collected from
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biological systems like SC, because the data mining is performed using all wavenumbers
from a given spectral range (for instance fingerprint region), hence including more variables
in the calculations [52,57,58].

To enable comparison with results obtained from AUC in the previous section, LODPLSR
was determined using the RMSECV from the blank sample C1 (LODPLSR = 0.023 mg resorci-
nol/mg SC) and using the RMSECV including concentrations C1–C8 (LODPLSR = 0.06 mg
resorcinol/mg SC). LODPLSR using the RMSECV, including all concentrations, is 2.6 times
higher compared to the LODPLSR using the RMSECV from the blank sample C1. This
difference can be simply explained by the origin of the errors accounted for. For the blank
sample, C1, the variability in Raman spectra collected is solely attributed to biological
heterogeneity, i.e., variations mostly due to proteins/lipids and other skin constituents
contributing to the data collected. However, for C2–C8, in addition to the biological hetero-
geneity, there is the heterogeneity of resorcinol distribution across the SC (see PCA scatter
plot in Figure 5). This observation is confirmed in Figure 7 by the increasing standard devi-
ation from rationed AUC as a function of concentration. Therefore, the LODPLSR = 0.06 mg
resorcinol/mg SC, incorporating all sources of errors in the calculation, better reflects the
performance of Raman spectroscopy applied to the quantification of an active molecule in
a complex biological system. Furthermore, the LODAUC = 0.012 to 0.017 mg resorcinol/mg
SC is ≈3.5 times lower than LODPLSR. The difference can be explained by PLSR being
more challenging to the data due to the three-way splitting into calibration, validation, and
test sets.

PLSR results can also be assessed according to various statistical criteria, described
in Section 2, including ratio of performance deviation (RPD), precision (BCMSEP), sen-
sitivity (SEN), and selectivity (SEL) (Table 3). The value of RPD = 8.112, that is superior
to 5, indicates a good model performance, while the BCMSEP value of 5.15 × 10−5 mg
resorcinol/mg SC, representing 0.04% of the range of concentration studied, highlights the
potential of Raman spectroscopy to accurately determine the amount of resorcinol in the
skin, over the range extending from 0.006 mg resorcinol/mg SC to 0.257 mg resorcinol/mg
SC. The sensitivity (SEN) is a representation of the lowest analyte concentration that can
be measured with acceptable accuracy and precision [35]. The higher the SEN value is,
the better the detection of compounds and therefore the performance of the technique.
The value of SEN = 18.994 mg SC · mg of resorcinol−1 suggests a quite high sensitiv-
ity. However, SEL = 0.3 clearly indicates a lower selectivity. According to the ICH, the
selectivity (SEL) is the ability of an analytical method to differentiate and measure the
analyte in the presence of potential interfering substances in the blank biological matrix [35].
SEL is a dimensionless criterion ranging between 0 and 1. A value of SEL = 0 implies
complete overlap between analyte and interferences. SEL = 1 indicates no overlap and
that the model is more selective [56]. The relatively low value obtained is consistent with
observation made in Figures 4 and 5 of the degree of interference and intrinsic variability
of the spectral features of the SC matrix. While mean spectra indicate that features from
SC are broad peaks overlapping with specific bands from resorcinol, PCA highlighted
the presence of an important biological heterogeneity that also impact on the selectivity.
SC is a complex matrix with proteins, nucleic acids, and lipids from different classes (ce-
ramides, phospholipids, etc.) resulting in a strong Raman response with numerous broad
bands that overlap with the features from the analyte (resorcinol), like the aromatic ring
deformation at 532 cm−1, C–C stretching of the aromatic ring at 741 cm−1 and 1001 cm−1

which interfere/overlap with C–C deformation and stretching and of phenylalanine ring at
614 cm−1, 751 cm−1, and 1005 cm−1. Furthermore, in Figure 10, the regression coefficient
from PLSR enables identification of specific features from resorcinol (positive peaks), but
also demonstrates that the quantification relies also on the SC features (negative peaks).
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Table 3. Estimation of analytical performance parameters of the models using PLSR data (RMSECV,
RMSEP, and BCMSEP are in mg resorcinol/mg SC, sensitivity is in (mg SC·mg of resorcinol−1), and
all other parameters are dimensionless).

RMSECV 0.017

RMSEP 0.015

Linearity (R2) 0.971

RPD 8.112

BCMSEP 5.15 × 10−5

Sensitivity (sen) 18.994

Selectivity (sel) 0.3

4. Discussion

The study of human skin represents an important area of research and development
in many areas, including dermatology, toxicology, pharmacology, and cosmetology. In
this context, a method which can noninvasively and quantitatively determine the concen-
tration profile of an AI in the skin, in situ, is highly desirable. A number of studies have
clearly demonstrated that confocal Raman microscopy can effectively profile the chemical
composition of skin, and monitor the penetration and permeation of topically-applied
exogenous molecules/agents both in vitro and in vivo [21,30]. Critical to its legislative
acceptance as a methodology for routine screening of AI penetration and permeation in skin
is the standardisation of protocols and the quantification and optimisation of performance
according to key figures of merit defined by legislative/regulatory bodies.

However, there are few reported studies about quantification of active molecules in
human skin using Raman spectroscopy that provide reference values for these criteria.
Although a few studies, for example Caspers et al. [32] and Iliopoulos et al. [31], have
demonstrated the ability of CRM to quantify the permeated flux [22], criteria such as RPD,
BCMSEP, SEN, and SEL are essential not only to evaluate the performance of a technique
but also to enable direct comparison of studies from the literature. Unfortunately, these
key figures of merit are seldom considered in studies reporting quantitative application of
Raman spectroscopy, not only for skin analysis, but in general.

Applying Raman spectroscopy to quantify ingredients in pharmaceutical tablets, Short et al.
reported values of SEN = 15.13 (%−1) and SEL = 0.37 for theophylline, SEN = 17.31 (%−1) and
SEL = 0.37 for lactose, SEN = 11.85 (%−1) and SEL = 0.18 for microcrystalline cellulose, and
SEN = 10.53 (%−1) and SEL = 0.16 for starch, although no values of RPD and BCMSEP
were reported [59]. The consistently high values of SEN, but low SEL, are similar to
the observations for AI in SC reported here, as the solid matrix of the tablets analysed
contributes a high degree of variability. Schönbichler et al. quantified furosemide from
a powder mixture using Raman spectroscopy with a RPD value between 6.67 and 9.13,
depending on data pre-processing [45]. Joshi et al. obtained a RPD = 7.84 and SEL = 0.01
for the quantification of olive oil in argan oil matrix using Raman spectroscopy [60]. In
both these studies, it is also observed that RPD reported for Raman are within the range
5 and 10, considered adequate for quality control. Fan et al. have used surface-enhanced
Raman spectroscopy (SERS) for quantification of carbaryl pesticides in Fuji apples with a
RPD equal to 7.71 [61]. Despite the enhancement of the Raman signals, the RPD value did
not improve compared to other studies.

Li et al. have reported in situ Raman spectroscopy for real time quantification of cell
culture medium in a bioreactor to monitor the production of a monoclonal antibody [43].
RPD values for key parameters were 4.8 for the antibody, 8.1 for glucose, 2.5 for lactate, and
2.6 for glutamine. It was observed that the RPDs display significant variations, depending
on the compounds quantified, which can have higher or lower Raman scattering cross
sections (Raman intensity). The dynamic range of concentrations found in the mixtures
was also seen to be a contributing factor. For instance, glucose, with the highest RPD,
also had the broadest range of concentration 0–4.5 g·L−1. BCMSEP further reflects the
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importance of concentration ranges to interpret the results. Li et al. reported values equal to
4.43 × 10−4 g·L−1 for the antibody, 0.189 g·L−1 for the glucose, 0.4716 g·L−1 for lactate, and
0.026 g·L−1 for glutamine [43]. However, when these values are expressed as percentage of
the concentration range analysed, it is found that BCMSEP represent respectively 0.22%,
8.4%, 41.9%, and 89.65% for the antibody, glucose, lactate, and glutamine. It suggests
that, despite the low absolute value of BCMSEP obtained for glutamine, the precision is
quite poor when concentrations analysed are considered. SEN values were respectively
14.24 g·L−1 for the antibody, 0.28 mM−1 for glucose, 0.67 mM−1 for lactate, and 1.43 mM−1

for glutamine. In the study of Li et al., SEL values of 0.65 for the antibody, 0.72 for
glucose, 0.74 for lactate, and 0.67 for glutamine were determined. All values above 0.5
are not surprising, due to the difference in Raman spectral signatures collected from
these compounds.

Therefore, although reports are few, it can be deduced that the reliability of the
predictive model is significantly influenced by the complexity of the matrix analysed,
the range of concentration studied, the strength of the Raman response of the AI, all of
which can contribute to the degree of heterogeneity in the data collected. Coupling Raman
spectroscopy with multivariate data mining methods such as PLSR enables the variance to
be captured, reduced, and quantified.

5. Conclusions

Raman spectra encompass biochemical information about skin composition and the
presence of active ingredients. Performing quantitative analysis for monitoring their
penetration and diffusion in the skin relies on the sensitivity and specificity of the technique.
In order to determine key figures of merit to characterise the performance of confocal
Raman microscopy (CRM), an in vitro model delivering controlled concentrations in human
stratum corneum (SC) has been developed. Resorcinol, used as model compound, can be
detected and quantified in isolated SC samples coupling CRM to multivariate PLSR analysis.
The RMSECV (0.017 mg resorcinol/mg SC), the RMSEP (0.015 mg resorcinol/mg SC), and
R2 (0.971) demonstrate the reliability of the linear regression constructed enable accurate
quantification of resorcinol. Furthermore, the results have enabled the determination, for
the first time, of numerical criteria to estimate analytical performances of CRM, including
limit of detection (LOD), precision (BCMSEP), sensitivity (SEN), and selectivity (SEL)
for quantification of the performance of the analytical technique. This is one crucial
step towards demonstrating the compliance of Raman spectroscopy with international
guidelines and towards establishing the technique as a reference and approved tool for
permeation studies.
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