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ABSTRACT 26 

 27 

Pneumocystis pneumonia is a severe lung infection that occurs primarily in largely 28 

immunocompromised patients. Few treatment options exist and the mortality remains 29 

substantial. To develop new strategies in the fields of diagnosis and treatment, it appears 30 

critical to improve the scientific knowledge about the biology of the Pneumocystis agent and 31 

the course of the disease. In the absence of in vitro continuous culture system, in vivo animal 32 

studies represent a crucial cornerstone for addressing Pneumocystis pneumonia in 33 

laboratories. These models constitute an essential complement to clinical studies. Here, we 34 

provide an overview of the animal models of Pneumocystis pneumonia that were reported in 35 

the literature over the last 60 years. It summarizes the various technical parameters to consider 36 

in the preparation of the model and the interpretation of the limits / results of such studies. 37 

Overall, this review highlights the great heterogeneity of the variables studied: the choice of 38 

the host species and its genetics, the different immunosuppressive regimens to render animal 39 

susceptible, the experimental challenge, and the different validation methods of the model. 40 

 41 

Keywords: Pneumocystis pneumonia, animal model, Pneumocystis spp., in vivo, infectious 42 

challenge. 43 
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INTRODUCTION  45 

Pneumocystis pneumonia is a lung infection involving Pneumocystis jirovecii, an ubiquitous 46 

fungus with opportunistic behavior (1). First described in malnourished children during and 47 

after World War II (2), fatal Pneumocystis pneumonia was one of the first signals of the AIDS 48 

epidemic in the United States in the early 1980s (3). The advent of antiretroviral drugs has 49 

resulted in a significant decrease in the incidence of Pneumocystis pneumonia in Human 50 

Immunodeficiency Virus (HIV)-positive patients. Today, in regions where HIV testing and 51 

treatment are available without restrictions, Pneumocystis pneumonia primarily occurs in 52 

subjects undergoing non-viral sources of immunosuppression. This includes pathological 53 

conditions responsible for the decrease of blood leucocytes such as hematological 54 

malignancies, auto-immune diseases, and drug-induced immunosuppression such as 55 

corticosteroids, TNF-alpha inhibitors, alkylating agents (4, 5). Actually, Pneumocystis 56 

pneumonia occurs mainly when risk factors are cumulative, i.e. immunosuppressive 57 

therapeutic associated to a fragile medical condition. Altogether, Pneumocystis pneumonia 58 

affects each year more than 500,000 patients worldwide. After Candida spp, P. jirovecii is the 59 

second most common fungal agent among invasive fungal infections (6). Pneumocystis 60 

pneumonia mortality is significant and has been estimated at 10-20% in HIV-positive patients 61 

and 20-40% in HIV-negative patients (7, 8). 62 

Two main forms co-exist during P. jirovecii life cycle: the asci and the trophic forms that are 63 

differentially involved. The transmission, which is human-to-human airborne, is ensured by 64 

the asci form, the only form capable of living transiently in the external environment (9, 10). 65 

Next, the trophic forms thrive at the surface of type I-pneumocytes in the pulmonary alveoli. 66 

This leads to the generation of a local inflammation, while the infection remains extracellular 67 

and never becomes invasive in tissues (11, 12). Clinically non-specific, Pneumocystis 68 

pneumonia can manifest with fever associated with non-productive cough and chest pain (1, 69 

13, 14). Chest scans usually show bilateral interstitial alveolar syndrome revealed by ground-70 
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glass findings, that are non-pathognomonic of Pneumocystis pneumonia (15). The specific 71 

biological diagnosis relies on microbiological identification of P. jirovecii in pulmonary 72 

secretions / lung tissues by microscopic examination and qPCR. Likewise, it can be indirectly 73 

suggested by measuring (1,3)-β-D-glucan, a polysaccharide component of the cell wall of P. 74 

jirovecii and other fungi, in the serum of patients (16, 17).  75 

Despite some advance in the scientific knowledge, Pneumocystis pneumonia still contains 76 

many unknowns. The cycle of Pneumocystis is not fully elucidated yet, thus preventing from 77 

dispensing clear prevention guidelines. Concerning the pathophysiology, there is a critical 78 

need to investigate all the immune mechanisms integrated in the host response. Therefore, 79 

experimental models are essential to complete clinical studies. Although theoretically easier 80 

and sparing animal lives, in vitro models are unable to mimic the complexity of host-fungus 81 

interactions. Importantly, there is no in vitro continuous culture system for Pneumocystis spp., 82 

despite long research in this area (18, 19). Animal models can circumvent these limitations 83 

(20–22). Therefore, various animal models of Pneumocystis pneumonia have been developed 84 

in attempt to address pathogenesis, virulence, immune response, diagnosis or therapy 85 

concerns. However, a single model cannot answer all the aforementioned questions, which 86 

explains in part the great multiplicity of supports that have been developed so far. This 87 

variability can hind the scientific comparisons, and each mammal species has its own 88 

Pneumocystis species (e.g. P. murina for the mouse or P. carini for the rat). Of all the animal 89 

model variables, the investigator has to question at the pivotal experimental parameters and 90 

major technical features that are assumed to likely influence the results according to the 91 

question asked.    92 

Here, we conducted an extensive literature review of published reports related to animal 93 

models of Pneumocystis pneumonia using a search strategy in the PubMed database for 94 

articles published up to December 2020, based on MeSH terms. Our electronic request about 95 

animal models of Pneumocystis pneumonia retrieved 1,444 publications. Experimental animal 96 
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studies were included when they met the following inclusion criteria: (a) the article was 97 

accessible and written in English; (b) the study was an original article, (c) the animal model 98 

was not exclusively used to produce Pneumocystis organisms for an in vitro study; (d) the 99 

study was not a post hoc analysis in laboratory or wild animals. After thorough reviewing, a 100 

total of 341 articles, corresponding to 749 distinct animal models, were finally retained for 101 

complete analysis (Figure 1). Initially, articles were mostly dedicated to the description of the 102 

implementation of animal models and to preclinical therapeutic studies (Figure 2). Then, at 103 

the beginning of the 2000s, pathophysiology studies became by far the largest area of 104 

experimentation. We now propose to the reader a progressive and in-depth review of the 105 

elements that we consider essentials in the design of an animal model of Pneumocystis 106 

pneumonia, i.e. the host species, the parameters inducing susceptibility to Pneumocystis 107 

pneumonia, , the implementation of the experimental infection (route of inoculation, fungal 108 

inoculum)  and and the biological parameters to follow up to assert correct implementation of 109 

the disease the validation methods of the model.  110 

 111 

  112 
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GENERAL DESCRIPTION OF THE VARIOUS ANIMAL MODELS: HOST 113 

SPECIES AND STRAINS, SEX, WEIGHT AND AGE 114 

The choice of the host species is critical to reproduce as faithfully as possible the pathology 115 

that develops in Humans, but also to ensure the best reproducibility. Indeed, as in Humans, 116 

animals need to be carriers of Pneumocystis and transmit it to their congeners by air. Also, as 117 

in Humans, depending on their immune status, they must be able to eliminate the fungus 118 

naturally without developing a disease if they are immunocompetent, or on the contrary, in 119 

case of immunosuppression. Overall so far, more than ten animal species have been used as 120 

host models to in vivo study Pneumocystis pneumonia (Table I). Not surprisingly, rodents, 121 

were extensively exploited (95.9%) compared to other orders of mammals. Mice were used in 122 

74.8% of the selected studies, compared to 20.8% and 0.3% for rats and other rodents (e.g. 123 

Guinea pigs and hamsters), respectively. The mouse model was widely used for its well 124 

characterized physiology, as well as biochemical and genetic homologies with Humans (23), 125 

but also for the dedicated toolbox that has been developed. Rabbits were used in 1.3% of the 126 

studies. Nonetheless, rabbits usually display lower fungal loads than other animals, and few 127 

tools and products are adapted to rabbit’s biology. In addition, they are more expensive and 128 

difficult to handle than rats and mice. In 1.3% of the models, non-human primates (NHP) 129 

were used, from two species belonging to the family of Cercopithecidae (26–33). The latter, 130 

thanks to their physiological similarities and evolutionary conservation with Humans, 131 

represented privileged models for studying Pneumocystis pneumonia in a viral 132 

immunodeficiency background. Nevertheless, even if Humans and NHP are closely related, it 133 

should be kept in mind that, in normal conditions, each is contaminated by its own species, 134 

P. jirovecii for Humans and P. macacae for macaques. Other mammals were rarely used such 135 

as ferrets (34–36), pigs (37–39), cats (37) and dogs (37). Lastly, two arthropod-based studies, 136 

with Drosophila melanogaster and Galleria mellonella, assessed the non-susceptibility of 137 
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non-mammalian species to Pneumocystis pneumonia (40, 41). Depending on the 138 

purpose/issue of the study, some animals were used more frequently than others (Figure 3). 139 

Rabbits have most commonly been used to study the Pneumocystis agent and its transmission. Indeed, 140 

spontaneous Pneumocystis pneumonia is described in the absence of induced immunosuppression at 141 

the time of weaning, thus naturally facilitating its study (24, 25). Mice and rats have also been used to 142 

study the transmission of Pneumocystis between the same or different host species. Mice have been 143 

are mostly used to study host-pathogen interactions and host immune response. Non-human primates 144 

have been little used, in part for ethical restrictions; but they have the great advantage to reproduce the 145 

development of Pneumocystis pneumonia in a context of virus-induced immunodepression. Finally, 146 

rats have been the preferred species for pre-clinical therapy studies (prophylactic, immunization, 147 

curative). The relative benefits and limitations of these models for the study of Pneumocystis 148 

pneumonia are summarized in the Table II.  149 

The importance of an informed choice for the animals concerns not only the species, but also 150 

the strain. Focusing on mouse models, studies using inbred strains predominated: BALB/c 151 

and C57BL/6 were the more reported before C3H/HeN. Attention should be paid to the 152 

selection of strains, as highlighted in a study conducted by Swain et al, in which BALB/c and 153 

C57BL/6 mice have been shown to develop a specific early immune reaction after inoculation 154 

of P. murina (42). Strains also appeared to show a different permissiveness to Pneumocystis 155 

infection with variable lung burdens as shown by Tisdale et al. (43). Considering all animal 156 

models other than mice, outbred animals were used more frequently than inbred ones. For 157 

studies with outbred rats, Sprague-Dawley represented 64.1% of the rat models, while Wistar 158 

strain was associated with 14.7% reports. The data on susceptibility in different rat strains do 159 

not seem to be unanimous. Whereas Boylan et al. evaluated that Sprague-Dawley, Fisher 344, 160 

and Lewis rats immunosuppressed by steroid developed the same heavy infection six weeks 161 

after the inoculation, Hong et al. showed that Wistar rats developed an earlier and severer 162 

infection than Fisher and Sprague-Dawley rats under steroid immunosuppression  (37, 44). 163 
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The sex of the animal chosen is also important although, in the majority of models (64.6%), it 164 

was not specified. When reported, they were females in 48.3%, males in 37.4%, and both 165 

genders in 14.3%. In a study comparing the progression of Pneumocystis pneumonia in male 166 

and female, Tisdale et al. showed that females of three distinct mouse strains had higher 167 

fungal burdens as compared to males after six weeks of infection (43). This contrasts with 168 

what is usually observed in Humans where men are the most affected by Pneumocystis 169 

pneumonia (45, 46). Concerning the weight of animals used, when informed (14.2%), it was 170 

quite homogeneous and standard with 21.0 ± 4.5g and 189.4 ± 48.4g, for mice and rats 171 

respectively. In models of Pneumocystis pneumonia, weight loss is rarely reported and 172 

appears as a poor and irrelevant indicator of disease. Moreover, in human medicine, there are 173 

very few data on the importance of the initial weight of patients suffering from Pneumocystis 174 

pneumonia, only a few cases reported in a context of nutritional deprivation (47, 48). In 175 

contrast, the choice of life stage of the animals may be an important element, especially 176 

considering that the immune system is not fully developed during the first weeks of life and 177 

strongly evolves throughout aging (49). Indeed, studies have compared the different life 178 

stages of mice in relation to the immune response: neonates showed a delay in the onset of the 179 

immune response due to an inadequate lung environment coupled with an inherent inability to 180 

develop a robust innate immune response to infection and an inexperienced adaptive immune 181 

system (50–52).   182 
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SELECTION OF THE REGIMEN INDUCING SUSCEPTIBILITY TO 183 

PNEUMOCYSTIS PNEUMONIA  184 

In the great majority of cases, tools to render animals susceptible to Pneumocystis pneumonia 185 

are an essential element to consider. Indeed, patients susceptible to Pneumocystis infection 186 

have the particularity of presenting pre-existing underlying conditions. Therefore, usage of a 187 

regimen inducing susceptibility to Pneumocystis pneumonia was reported in 663 animal 188 

models, i.e., 88.5% of those described. The advantages and disadvantages of the principal 189 

strategies to render animal susceptible to Pneumocystis pneumonia are summarized in 190 

Table III.   191 

Based on analogy with other models of fungal infections of the respiratory tract (e.g. 192 

aspergillosis), anti-cancerous drugs like alkylating substances, and more specifically 193 

cyclophosphamide, were used to induce adequate immunocompromised conditions (53, 54). 194 

However, alkylating agents primarily target neutrophils, that are less involved in the response 195 

to Pneumocystis than T-lymphocytes and macrophages. The latter are rather targeted by 196 

steroids, recognized as major risk factor for the development of Pneumocystis pneumonia 197 

(55–57). They have been largely used to induce immunosuppression in animal models of 198 

Pneumocystis pneumonia (30.8% of the animal models) (58–64). Dexamethasone 199 

administered in drinking water at a concentration of 1 to 4 mg/L was the most commonly used 200 

(57.8% of steroids models), ahead of injectable cortisone acetate (23.9% of steroids models) 201 

and injectable methylprednisolone (15.2% of steroids models), both administered 202 

subcutaneously. Dexamethasone has the advantage of a longer duration of action, but also a 203 

higher anti-inflammatory potency than cortisone and methylprednisolone. Oral administration 204 

is convenient, relatively safe, economical and compatible with refinement of experimental 205 

procedures, although it does not possess the highest bioavailability compared to parenteral 206 

routes of administration (65). In most models, steroid-dependent immunosuppression started 207 
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one to two weeks prior experimental challenge, in order to reproduce a suitable condition for 208 

the development of Pneumocystis pneumonia (66), and was continuously pursued until the 209 

infection had been established (67, 68). Other immunosuppressive drugs were alternatively 210 

used in rare models: dichloromethylene diphosphonate-containing liposomes or clodronate-211 

liposomes for the specific depletion of macrophages (69, 70, 64), or more broad-spectrum 212 

medicines such as calcineurin inhibitors, tacrolimus and ciclosporin (71), mTOR inhibitor, 213 

sirolimus (72), or inhibitor of inosine-5'-monophosphate dehydrogenase, mycophenolate 214 

mofetil (72). 215 

Considering that CD4
+
 T-lymphocytes count is a reliable predictor of opportunistic 216 

Pneumocystis pneumonia during HIV infection (66), a more specific treatment of this lineage 217 

has also been tested. Depleting monoclonal antibodies (mAbs) targeting CD4
+
 T-lymphocytes 218 

(clone GK1.5) were widely used (81.7% of these models based on immunotherapy) alone or 219 

in combination with other T-cell depleting mAbs such as anti-CD8 (clone 2.43) or anti-220 

Thy1.2 (clone 30H12) mAbs in mice. Some other antibodies were given, such as anti-CD20 221 

mAb (clone 5D2 or 18B12) allowing B cell depletion (73, 74). mAbs could be administered 222 

either once, before or just after the experimental infection, or several times throughout the 223 

course of infection. Immunotherapy was most often administered by intraperitoneal injection 224 

and almost exclusively in mice. Unfortunately, the risk of hypersensitivity reaction or 225 

cytokine release-associated acute reactions, and the multiplication of parenteral injections 226 

constitute major drawbacks (75, 76).  227 

Genetically modified mice also offer interesting advantages for the development of 228 

Pneumocystis pneumonia and have been widely used (56.4% of the studies in mouse models). 229 

They can be grossly divided into two groups: 1) models displaying a general 230 

immunodeficiency such as SCID or RAG1
-/-

 mice that lack functional T-cells and/or B-cells, 231 

or 2) more refined models that target a specific gene implicated in the host response. The first 232 

ones aforementioned were primarily used to study Pneumocystis biology including its life 233 
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cycle and efficiency of anti-Pneumocystis curative drugs. In 1993, the study by Chen et al. 234 

used CB17/scid (SCID) mice to support the concept that Pneumocystis pneumonia develops 235 

in immunocompromised patients because of recent exposure to an exogenous source and not 236 

necessarily because of reactivation of latent infection (77). The second ones were exploited to 237 

study and identify cellular and molecular entities involved in the innate and adaptive anti-238 

Pneumocystis immune responses. For example, the involvement of the surfactant proteins 239 

A and D in fighting against Pneumocystis was highlighted by the generation of deficient mice 240 

that were knocked out for the relative encoding genes (78–84). Later in 2018, Elsegeiny et al. 241 

used several mouse models to recapitulate human primary immune disorders, enabling them 242 

to understand which types of CD4 T-cells were involved or relevant to mediate the clearance 243 

of Pneumocystis (22). However, care should be taken when interpreting outcomes in these 244 

models because of redundancy in the immune system and/or compensatory hyperactivity that 245 

can lead to confounding effects (85). In addition, scientists have to keep in mind that the use 246 

of such genetically modified or defined mice under standardized environmental conditions 247 

may influence host immunity and inflammation (86). While the generation of such mice still 248 

remains complicated, expensive and time consuming, they represent very useful biological 249 

tools for studying the host immune response to Pneumocystis.  250 

Alternative immunosuppression procedures have also been implemented. This was the case 251 

for the majority of Pneumocystis pneumonia models in NHP. In order to reproduce as closely 252 

as possible the immunosuppression that affects AIDS patients, NHP were infected 253 

intravenously with Simian Immunodeficiency Virus (SIV) (26–32).  254 

To enhance the magnitude of Pneumocystis infection, low protein diet was used in 7.9% of 255 

the models (87). This particular diet, harmful to longevity/metabolic health, was set up to 256 

reproduce the malnutrition status observed in some patients suffering from Pneumocystis 257 

pneumonia. However, it was quite expensive and barely used after the 2000s. 258 



12 

 

Since the models are mostly immunocompromised, it is important to use antibiotic 259 

prophylactic strategy to prevent from the occurrence of opportunistic bacterial infection, that 260 

would occur more quickly than the Pneumocystis pneumonia. Antibiotics were used in 23.0% 261 

of the models. The molecules used belonged to a broad spectrum of antibiotic 262 

families. Cyclins were the most widely used, in 70.9% of the models using antibiotics. 263 

Tetracycline was administered in drinking water at a concentration between 0.5 and 1 mg/mL, 264 

and doxycycline, by far less used, was administrated by subcutaneous injection. Beta-265 

lactamins were used in 26.2% of the models, along with ampicillin, cephadrin, penicillin G, 266 

amoxicillin with or without clavulanic acid. They were mostly administered in drinking 267 

water. Other antibiotics were less used, such as quinolones with ciprofloxacin (69), 268 

aminosides with streptomycin and gentamicin (88, 89), or sulfamides with sulfadiazine 269 

(90). Anecdotally, 2.4% of the models used polyenes, nystatin or amphotericin B to prevent 270 

for other fungal diseases. The antibiotic prophylaxis strategy based on the use of cyclins, 271 

especially tetracycline, which is widely used, inexpensive and easily administered in drinking 272 

water, is to be preferred. Concerning the use of antibiotic prophylactic strategy, the parallel 273 

with what can be observed in human medicine is complicated to establish. Indeed, while most 274 

cases of Pneumocystis pneumonia occur in immunocompromised patients, little or no 275 

retrospective data are available on the use of antibiotics concomitant with the development 276 

and/or diagnosis of Pneumocystis pneumonia. Such information could be of interest in 277 

assessing the impact of such treatment might have on the pathophysiology of the disease.  278 

  279 
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IMPLEMENTATION OF THE EXPERIMENTAL INFECTION  280 

Setting up a relevant animal model of fungal infection first requires considering the route of 281 

infection. Three main methods of experimental challenge have been proposed in the literature 282 

for generating Pneumocystis pneumonia.  283 

A first passive strategy was based on the presumed latency of Pneumocystis within the lung 284 

alveoli and its subsequent reactivation following the induction of immunosuppression. This 285 

strategy was adopted in 20.7% of the models, especially in the pioneer reports. With respect 286 

to the recent evidences rather in favor of a de novo infection, this protocol seemed clearly 287 

inadequate and moreover insufficient to ensure a methodologically strict and reproducible 288 

study. Indeed, in most of these ancient reports, animals were kept under unspecified exposure 289 

conditions, and the occurrence of Pneumocystis pneumonia was quite random and most likely 290 

due to the transmission of Pneumocystis organisms by the other animals housed in the same 291 

facilities. Nowadays, one acknowledges that it is essential to use animals with the SOPF 292 

(Specific and Opportunistic Pathogen Free) certification in housing conditions such as 293 

microisolator/filtered cages that eliminate the risk of transmission from other animals. 294 

A second passive strategy, used in 17.0% of the studied models, was implemented by co-295 

housing healthy animals with Pneumocystis-pre-infected seeder mate-fellows. Indeed,  the 296 

airborne route was clearly established in the early 1980’s in germ-free immunocompromised 297 

rats that had been exposed to potential sources of Pneumocystis carinii (i.e. natural 298 

Pneumocystis species in rats) (91). In isolators, animals exposed to filtered sterile air and 299 

unsterile water and food did not acquire P. carinii, while rats exposed in open cages to room 300 

air but maintained on sterile diet acquired the infection. Thus thanks to this model, it has been 301 

demonstrated that Pneumocystis was naturally acquired by horizontal transmission as an 302 

airborne organism in a de novo infection (67, 91, 92). In the same vein, healthy 303 

immunocompromised animals were co-housed with fellows of the same species infected with 304 

Pneumocystis, for a time varying from one day to several weeks (93–98). It appeared that 305 
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inoculum or dose effect determined the rate at infection progression (99). Although this kind 306 

of strategy replicates the natural transmission of Pneumocystis in mammals, it could lack 307 

control and reproducibility.  308 

In order to control these points, a third experimental infection strategy was developed through 309 

the direct inoculation of Pneumocystis organisms into the animals’ respiratory tract. Various 310 

modes of administration have been developed. Most of the time, animals were sedated or 311 

anesthetized prior delivery, in order to minimize struggling and sneezing. The anesthesia 312 

procedure and the operator skills were critical steps to achieve a robust and reliable infection 313 

(100). Inoculation of Pneumocystis organisms could be achieved by intranasal, 314 

oropharyngeal, intratracheal instillation or by transtracheal deposition. The intranasal 315 

instillation, consisting in the deposition of droplets of a Pneumocystis suspension close to the 316 

nostrils, appears as the softest methods (easiest and the least invasive technique). At the 317 

opposite, the transtracheal alternative requires to expose the trachea surgically to a direct 318 

injection of organisms inside. Intratracheal delivery of Pneumocystis via blunted - needle or 319 

feeding cannula allows refining of the procedure by getting rid of the surgical incision. 320 

Overall, the direct inoculation strategy was the most common method used in mouse models, 321 

with a majority of administration based on intratracheal instillation (Table I). The frequency 322 

of Pneumocystis inoculation was generally based on a single administration, except for some 323 

specific studies that completed two or three successive inoculations, separated by two to 324 

twenty days (50, 101–104). Garvy et al. performed several inoculations to induce 325 

immunization (50), whereas Vuk et al. used a second inoculation to be certain that mice 326 

strains used, known to exhibit low levels of Pneumocystis infection according to them, were 327 

sufficiently exposed to P. murina organisms (104). None of the studies compared multiple 328 

inoculations vs. a single one; thus, it is difficult to appreciate whether this resulted in a greater 329 

infection. However, the time until the onset of Pneumocystis pneumonia was similar whatever 330 
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the number of inoculations used. The advantages and disadvantages of each strategy to 331 

implement Pneumocystis pneumonia are summarized in Table III.  332 

Other concerns raised from the variability of the composition and the size of the Pneumocystis 333 

inoculum. Because, so far, in vitro production of Pneumocystis has not been successful, 334 

Pneumocystis were extracted, and mostly purified, from fresh or frozen pulmonary grindings 335 

of previously-infected animals. Extraction could be based on different methods, such as 336 

stomacher blending, ultrasonication or magnetic stirring (10, 105–107). Because 337 

Pneumocystis organisms can only be partially purified, inoculum will contained immune 338 

cells, cytokines, or other immune stimulators that may affect the host’s pulmonary immune 339 

response. Thus, a control with lungs from healthy animals having undergone the same 340 

purification process seems essential.. In some rare publications, the animal received 341 

Pneumocystis asci from another animal species (40, 41, 108, 109). Although Walzer et al. 342 

initially showed that the sporadic transmission of Pneumocystis was possible between rats and 343 

mice (108), the opposite was subsequently demonstrated and definitively admitted (109). 344 

Furthermore, there was a great diversity in the way to count the number of Pneumocystis 345 

organisms in order to prepare the infectious suspension for the experimental challenge. When 346 

some counted only the asci through microscopic observation, others counted in addition the 347 

trophic forms (80, 110–112). Noteworthy, counting of trophic forms is a tedious task and 348 

requires a great deal of experience on the part of the microscopist, and taking trophic forms in 349 

account is also quite sensitive, since they were shown as insufficient to induce Pneumocystis 350 

pneumonia (9, 10, 111, 113). In a concern of homogeneity and scientific relevance, it seems 351 

more appropriate to consider and count only the asci for the inoculum. Large variations in the 352 

inoculum size, defined by the prior numbering of Pneumocystis forms, were observed, from 353 

1.0x10
4
 to 1.0x10

8
 Pneumocystis forms, with an average around 1.0x10

6
 to 1.0x10

7
 354 

Pneumocystis organisms. Thereafter, the experimentalist should be aware that the 355 
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establishment of the clinical Pneumocystis pneumonia is a long process requiring four to 356 

seven weeks after the inoculation  357 
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VALIDATION OF THE MODEL AND OUTCOME PARAMETERS TO 358 

FOLLOW UP 359 

In all the infectious animal models, it is essential to verify the effective infection or 360 

colonization and quantify the microorganism load. Since the clinical and radiological 361 

signatures of Pneumocystis are not specific, the use of histological / biological techniques was 362 

almost systematic, although none of these methods provided actual information about the 363 

viability of the fungal elements. Overall, 98.4% of the articles reported at least one 364 

histological or biological test (including microscopic approaches) to confirm that the 365 

experimental infection has been correctly implemented in the exposed animals or to assess the 366 

fungal burden. However, most of the models exploited only one technique (78.6%).  367 

Microscopic observations of pulmonary secretions/lung sections/lung grindings slides, 368 

longtime considered as the reference standard to prove Pneumocystis pneumonia or 369 

colonization, have been largely described, in 81.8% of all models. These direct methods used 370 

different types of staining like Diff quick, Giemsa, Grocott methanamine silver nitrate 371 

(GMS), and toluidine blue O or calcofluor-blue brightener to demonstrate the presence of 372 

discoid Pneumocystis asci and/or ascospores and/or trophic forms. Microscopic approaches 373 

require substantial microscopic expertise, but they seem essential because they allow to 374 

distinguish quickly the asci forms, while being easy-to-implement and inexpensive methods.  375 

Methods based on molecular biology like nucleic acid amplification by qPCR or fluorescence 376 

in situ hybridization (FISH) are more sensitive techniques. They are more refined to 377 

determine the fungal load (asci and trophic forms included), and could be used in various 378 

kinds of samples (lung tissues, bronchial-alveolar lavage fluids (BALF), or oral swab 379 

samples). They were widely used, in 31.8% of the models, with the following targets: 380 

mitochondrial large subunit (mtLSU) rRNA gene, 5.8 S rRNA gene or dihydrofolate 381 

reductase (DHFR) gene. As for other molecular biology methods, qPCR requires specialized 382 
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costly equipment and reagents, which are now available in a large number of laboratories. It 383 

should be noted that the primers used for Pneumocystis jirovecii usually do not overlap with 384 

those of other Pneumocystis spp., like P. jirovecii.  385 

Other tools were used, such as detection of anti-Pneumocystis antibodies, performed in 6.9% 386 

of the models, or the blood / BALF detection of (1,3)-β-D-glucan (17, 112, 114–116). The 387 

serology, never used alone, was attended by huge difficulties involving potential false-388 

negative test results and is questionable with regard to the production of antibodies in 389 

immunocompromised animals. In Humans, its use is restricted to epidemiological questions 390 

(117). Detection of (1,3)-β-D-glucan is not specific to Pneumocystis pneumonia and is quite 391 

costly.  392 

In general, and whatever the type of study, to assess Pneumocystis presence, identify its 393 

forms, and ensure the most accurate quantification possible, the combination of a microscopic 394 

and a molecular biology technique appears the most suitable. 395 

  396 
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CONCLUSION 397 

Pneumocystis pneumonia is a severe respiratory disease that occurs especially in 398 

immunocompromised patients. Worldwide, the number of deaths due to Pneumocystis spp. is 399 

estimated at almost 250,000 (Gaffi data, 2017). In absence of models of continuous in vitro 400 

culture, in vivo animal studies represent a crucial cornerstone for the study of Pneumocystis 401 

pneumonia. However, it is important to keep in mind that Pneumocystis species are host-402 

specific (35); they have progressively diverged several tens of millions years ago and co-403 

evolved with their hosts, thus defining their host obligate nature (118, 119). Therefore, these 404 

models are imperfect, and we can wonder about the extrapolation of the results obtained with 405 

models using microorganisms genetically different from those infecting Humans. 406 

Ethical considerations are important when planning the use of an animal model and should be 407 

governed by the “3 R’s” rule: Replacement, Reduction, and Refinement (120). Animal 408 

experiments should be designed in such a way that they allow statistically significant results 409 

with the smallest possible number of animals, while being robust and reproducible. In such a 410 

manner, the choice of the animal species and strains to study Pneumocystis pneumonia is 411 

decisive. As seen previously, the mouse seems to be the most suitable species. Refinement in 412 

animal models of Pneumocystis pneumonia can be achieved by choosing a mean of 413 

immunosuppression that avoids parenteral administration (same comment for the choice of 414 

antibiotics prophylaxis), and by using parameters other than the overall mortality to assess the 415 

disease progression. 416 

Studying articles published for the last 60 years has enabled us to establish a wide range of 417 

criteria and factors to be considered for implementing an animal model to address 418 

Pneumocystis pneumonia. It requires to make choices to best answer the question posed and 419 

includes many elements such as permissiveness to infection, homology, analogy, and fidelity 420 

with Humans, reproducibility, ease of handling, safety, and of course cost. Thus, if one 421 

wonders about the cycle of Pneumocystis, it seems more relevant to replicate the natural 422 
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transmission of Pneumocystis in mammals by using co-housing of healthy animals with 423 

infected fellows, whether rodents with which we have the most experience, or NHP, whose 424 

Pneumocystis species is the closest phylogenetically to that of Humans. In contrast, in pre-425 

clinical therapeutic studies that require rigorous design to obtain homogenous population, a 426 

model with an implementation of the infection by direct inoculation of Pneumocystis 427 

organisms allows necessary reproducibility and high control. For studies focusing on the 428 

understanding of the pathophysiology and particularly the host immune response, several 429 

types of models can be suggested. The first ones use refined genetically modified mice with a 430 

very specific immunodeficiency to study its specific involvement in the host response. The 431 

other ones study the immune response more generally, using models displaying general 432 

immunodeficiency such as genetically modified SCID or RAG1-/- mice, or animals 433 

immunosuppressed by the use of corticosteroids, the major iatrogenic risk factor of 434 

Pneumocystis pneumonia in Humans (55–57).  435 

Finally according to our experience, we can propose a relevant example of an animal model to 436 

study the immune response that uses genetically modified or not and steroid 437 

immunosuppressed rodents (Figure 4), challenged by intranasal inoculation of Pneumocystis 438 

murina and validated by a microscopic and a molecular biology technique. However, the 439 

scientific debate is not close to be shut.  440 

 441 

 442 

  443 
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