Equidistribution speed of periodic points for complex polynomials
Résumé
Let $f: \mathbb C \to \mathbb C$ be a polynomial map of degree $d \geq 2$. We show that the periodic points of $f$ of period $n$ equidistribute towards the equilibrium measure of $f$ exponentially fast. This quantifies a theorem of Lyubich.
Origine | Fichiers produits par l'(les) auteur(s) |
---|